organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-(4-Pyridylmethyl­ene)-4-(8-quinol­yl­­oxy)butanohydrazide 0.25-hydrate

aDepartment of Chemistry and Biology, Laboratory of Beibu Gulf Marine Protection and Exploitation, Qinzhou University, Qinzhou, Guangxi 535000, People's Republic of China
*Correspondence e-mail: ljmmarise@163.com

(Received 6 January 2009; accepted 9 January 2009; online 14 January 2009)

The asymmetric unit of the title compound, C19H18N4O2·0.25H2O, contains two organic mol­ecules and a solvent water mol­ecule with 50% occupancy. The two molecules differ in their conformations: in one mol­ecule it is (+)gauche-trans-trans-(+)gauche-trans, whereas in the other it is (−)gauche-trans-trans-(−)gauche-trans. The dihedral angles between the pyridine ring and the quinoline ring system are 67.4 (3) and 68.0 (2)°. Mol­ecules are linked into a supra­molecular two-dimensional array via N—H⋯N hydrogen bonds, with each partially occupied water mol­ecule connected via an O—H⋯O hydrogen bond. C—H⋯O inter­actions are also present.

Related literature

For general background, see: Cai et al. (2003[Cai, Y. P., Zhang, L., Shi, J. L., Zhang, H. X. & Kang, B. S. (2003). Chin. J. Struct. Chem. 22, 587-590.]); Chen et al. (2005[Chen, C. L., Goforth, A. M., Smith, M. D., Gemmill, W. R., Su, C. Y. & Loye, H. C. (2005). J. Cluster Sci., 16, 477-487.]); Park et al. (2006[Park, K. M., Moon, S. T., Kang, Y. J., Kim, H. J., Seo, J. & Lee, S. S. (2006). Inorg. Chem. Commun. 9, 671-674.]); Karmakar et al. (2007[Karmakar, A., Sarma, R. J. & Baruah, J. B. (2007). CrystEngComm, 9, 379-389.]). For related structures, see: Zheng et al. (2006[Zheng, Z.-B., Li, J.-K., Wu, R.-T. & Sun, Y.-F. (2006). Acta Cryst. E62, o4611-o4612.], 2007[Zheng, Z.-B., Wu, R.-T., Li, J.-K. & Lu, J.-R. (2007). Acta Cryst. E63, o3284.], 2008[Zheng, Z.-B., Li, J.-K., Sun, Y.-F. & Wu, R.-T. (2008). Acta Cryst. E64, o297.]); Xie et al. (2008[Xie, H., Meng, S.-M., Fan, Y.-Q. & Yang, G.-C. (2008). Acta Cryst. E64, o2114.]).

[Scheme 1]

Experimental

Crystal data
  • C19H18N4O2·0.25H2O

  • Mr = 1355.51

  • Monoclinic, P 21

  • a = 8.8816 (13) Å

  • b = 17.420 (2) Å

  • c = 11.3624 (17) Å

  • β = 100.765 (3)°

  • V = 1727.0 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.32 × 0.26 × 0.22 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.972, Tmax = 0.981

  • 9142 measured reflections

  • 3169 independent reflections

  • 1927 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.162

  • S = 1.01

  • 3169 reflections

  • 460 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C22—H22⋯O4i 0.93 2.51 3.224 (7) 134
C7—H7⋯N8ii 0.93 2.55 3.466 (9) 167
C3—H3⋯O2iii 0.93 2.52 3.353 (7) 150
C2—H1⋯N4iv 0.93 2.55 3.390 (9) 150
O5—H39⋯O4v 0.85 2.17 2.964 (10) 156
N6—H6⋯N1iii 0.86 2.10 2.934 (6) 163
N2—H2⋯N5i 0.86 2.25 3.077 (7) 161
Symmetry codes: (i) x, y, z-1; (ii) [-x+3, y-{\script{1\over 2}}, -z+2]; (iii) x, y, z+1; (iv) [-x+1, y+{\script{1\over 2}}, -z+1]; (v) [-x+1, y+{\script{1\over 2}}, -z+2].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The coordination chemistry of 8-hydroxyquinoline and its derivatives is well studied (Cai et al., 2003; Chen et al., 2005; Park et al., 2006; Karmakar et al. 2007). In the course of our studies searching for good extractants of metal ions, the title compound, (I), was synthesized and its crystal structure determined. The asymmetric unit comprises two independent molecules which differ in conformation and a water molecule with a 50% site occupancy factor. In one molecule, the conformation along the O1—C10—C11—C12—C13—N2—N3—C14 bond sequence is (+)gauche-trans-trans-(+)gauche-trans, whereas in the second molecule the conformation is (-)gauche-trans-trans-(-)gauche-trans along the corresponding O3—C29—C30—C31—C32—N6—N7—C33 bond sequence. Despite these differences, the dihedral angles between the mean planes of the pyridine and quinoline rings are not very different, i.e. 67.4 (3)° and 68.0 (2)° for the molecules containing atoms O1 and O3, respectively. The two independent molecules are linked to a supermolecular 2D array via N—H···N hydrogen bonds supported by C—H···O contacts, Table 1. Each partially occupied water molecules is connected to a layer via a O—H···O hydrogen bond.

Related literature top

For general background, see: Cai et al. (2003); Chen et al. (2005); Park et al. (2006); Karmakar et al. (2007). For related structures, see: Zheng et al. (2006, 2007, 2008); Xie et al. (2008).

Experimental top

4-(Quinolin-8-yloxy)butanohydrazide (0.01 mol), 4-pyridylaldehyde (0.01 mol), ethanol (40 ml) and some drops of acetic acid were added to a 100 ml flask, and refluxed for 8 h. After cooling to room temperature, the mixture was filtered. Colourless crystals were obtained by slow evaporation of a tetrahydrofuran solution over a period of 2 days; m.p. 438 K. Analysis found: C 67.34, H 5.50, N 16.53; C76H74N16O9 requires: C 67.30, H 5.54, N 16.51.

Refinement top

All H atoms were placed in idealized positions (C—H = 0.93–0.97 Å, N—H = 0.86 Å and O—H = 0.85 Å) and refined in the riding model approximation with Uiso(H) = 1.2Ueq(C or N) and Uiso(H) = 1.5Ueq(O). The water molecule was included in the model with a 50% site occupancy factor based on elemental analysis and refinement. In the absence of significant anomalous scattering effects, X Friedel pairs were averaged in the final refinement.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008.

Figures top
[Figure 1] Fig. 1. The molecular structures of the two independent molecules and the water molecule of crystallization (50% site occupancy) in (I), showing atom numbering scheme and displacement ellipsoids at the 30% probability level.
(E)-N'-(4-Pyridylmethylene)-4-(8-quinolyloxy)butanohydrazide 0.25-hydrate top
Crystal data top
C19H18N4O2·0.25H2OF(000) = 714
Mr = 1355.51Dx = 1.303 Mg m3
Monoclinic, P21Melting point: 438 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 8.8816 (13) ÅCell parameters from 1165 reflections
b = 17.420 (2) Åθ = 2.2–20.0°
c = 11.3624 (17) ŵ = 0.09 mm1
β = 100.765 (3)°T = 295 K
V = 1727.0 (4) Å3Block, colorless
Z = 10.32 × 0.26 × 0.22 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3169 independent reflections
Radiation source: fine-focus sealed tube1927 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ϕ and ω scansθmax = 25.1°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.972, Tmax = 0.981k = 1320
9142 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.162 w = 1/[σ2(Fo2) + (0.0877P)2 + 0.001P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
3169 reflectionsΔρmax = 0.32 e Å3
460 parametersΔρmin = 0.21 e Å3
0 restraintsAbsolute structure: nd
Primary atom site location: structure-invariant direct methods
Crystal data top
C19H18N4O2·0.25H2OV = 1727.0 (4) Å3
Mr = 1355.51Z = 1
Monoclinic, P21Mo Kα radiation
a = 8.8816 (13) ŵ = 0.09 mm1
b = 17.420 (2) ÅT = 295 K
c = 11.3624 (17) Å0.32 × 0.26 × 0.22 mm
β = 100.765 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3169 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1927 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.981Rint = 0.050
9142 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.162H-atom parameters constrained
S = 1.01Δρmax = 0.32 e Å3
3169 reflectionsΔρmin = 0.21 e Å3
460 parametersAbsolute structure: nd
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N11.1571 (5)0.0923 (3)0.6124 (4)0.0478 (12)
N20.7191 (6)0.1522 (3)0.1045 (4)0.0566 (14)
H20.72110.14600.02970.068*
N30.6437 (6)0.1008 (3)0.1636 (4)0.0510 (13)
N40.3307 (7)0.1253 (4)0.2546 (6)0.0817 (18)
N50.6503 (5)0.1139 (3)0.8355 (4)0.0495 (12)
N61.0930 (6)0.0735 (3)1.3512 (4)0.0510 (13)
H61.09090.08101.42570.061*
N71.1691 (6)0.1246 (3)1.2916 (4)0.0474 (12)
N81.4779 (7)0.3522 (3)1.1941 (6)0.0674 (15)
O10.9800 (4)0.2139 (2)0.5363 (3)0.0497 (10)
O20.8522 (6)0.2626 (3)0.1125 (4)0.0769 (14)
O30.8302 (5)0.0034 (2)0.9236 (3)0.0511 (10)
O40.9623 (6)0.0348 (2)1.3516 (4)0.0707 (14)
O50.2645 (9)0.3398 (5)0.6539 (8)0.072 (3)0.50
H390.21240.38050.63570.107*0.50
H400.27940.33620.72970.107*0.50
C11.0067 (7)0.1999 (3)0.6560 (5)0.0430 (14)
C20.9470 (7)0.2422 (3)0.7384 (5)0.0491 (15)
H10.88400.28400.71340.059*
C30.9807 (7)0.2225 (4)0.8599 (5)0.0557 (16)
H30.93890.25140.91470.067*
C41.0719 (7)0.1628 (4)0.8992 (5)0.0569 (17)
H41.09320.15150.98060.068*
C51.1361 (7)0.1168 (3)0.8187 (5)0.0478 (15)
C61.2298 (7)0.0529 (4)0.8537 (5)0.0583 (17)
H51.25340.03890.93400.070*
C71.2853 (8)0.0120 (4)0.7713 (6)0.0662 (18)
H71.34950.02980.79380.079*
C81.2449 (8)0.0333 (4)0.6505 (6)0.0608 (17)
H81.28240.00390.59400.073*
C91.1020 (6)0.1352 (3)0.6951 (4)0.0391 (13)
C100.8914 (7)0.2810 (3)0.4948 (5)0.0508 (15)
H10A0.94160.32680.53180.061*
H10B0.79030.27760.51520.061*
C110.8788 (7)0.2845 (3)0.3596 (5)0.0537 (16)
H11A0.82700.33150.32950.064*
H11B0.98080.28540.34060.064*
C120.7917 (7)0.2168 (3)0.2986 (4)0.0498 (15)
H12A0.68670.21920.31100.060*
H12B0.83700.16990.33530.060*
C130.7914 (7)0.2139 (4)0.1658 (5)0.0517 (15)
C140.5817 (7)0.0439 (4)0.1021 (5)0.0523 (15)
H140.59150.03890.02240.063*
C150.4960 (7)0.0130 (3)0.1556 (5)0.0491 (15)
C160.4348 (7)0.0766 (4)0.0895 (6)0.0593 (16)
H160.44880.08320.01100.071*
C170.3533 (8)0.1299 (4)0.1419 (7)0.075 (2)
H170.31160.17150.09600.090*
C180.3892 (9)0.0646 (5)0.3151 (7)0.076 (2)
H180.37490.06000.39380.091*
C190.4703 (7)0.0070 (4)0.2711 (5)0.0581 (17)
H190.50680.03500.31860.070*
C200.8106 (7)0.0064 (3)0.8035 (5)0.0442 (14)
C210.8736 (7)0.0391 (4)0.7273 (5)0.0558 (16)
H210.93400.08070.75770.067*
C220.8485 (8)0.0239 (4)0.6043 (6)0.0649 (19)
H220.89480.05460.55430.078*
C230.7566 (8)0.0355 (4)0.5573 (5)0.0649 (19)
H230.73960.04460.47520.078*
C240.6872 (7)0.0832 (4)0.6320 (5)0.0512 (16)
C250.5906 (8)0.1436 (4)0.5884 (6)0.070 (2)
H250.57010.15420.50680.084*
C260.5250 (8)0.1879 (4)0.6658 (6)0.070 (2)
H260.45890.22800.63780.083*
C270.5617 (8)0.1702 (4)0.7890 (6)0.0663 (18)
H270.51940.20100.84120.080*
C280.7132 (7)0.0686 (3)0.7572 (5)0.0455 (14)
C290.9213 (7)0.0686 (3)0.9732 (5)0.0523 (15)
H29A1.02270.06590.95330.063*
H29B0.87310.11610.94140.063*
C300.9317 (7)0.0652 (3)1.1079 (5)0.0472 (14)
H30A0.82910.06491.12590.057*
H30B0.98390.11071.14410.057*
C311.0176 (7)0.0060 (3)1.1622 (5)0.0479 (14)
H31A1.12170.00441.14770.057*
H31B0.96840.05141.12320.057*
C321.0214 (7)0.0116 (3)1.2951 (5)0.0492 (14)
C331.2327 (7)0.1813 (4)1.3530 (5)0.0517 (15)
H331.22560.18601.43330.062*
C341.3162 (6)0.2387 (3)1.2971 (5)0.0448 (14)
C351.3416 (7)0.2328 (4)1.1804 (5)0.0580 (17)
H351.30530.19041.13390.070*
C361.4204 (8)0.2895 (4)1.1339 (6)0.071 (2)
H361.43470.28401.05530.085*
C371.4515 (8)0.3568 (4)1.3043 (6)0.0665 (19)
H371.48790.40021.34820.080*
C381.3756 (7)0.3035 (4)1.3600 (6)0.0603 (17)
H381.36400.31071.43890.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.053 (3)0.049 (3)0.043 (3)0.012 (2)0.012 (2)0.000 (2)
N20.068 (4)0.063 (4)0.042 (3)0.004 (3)0.017 (3)0.005 (2)
N30.052 (3)0.061 (3)0.041 (3)0.000 (3)0.010 (2)0.001 (3)
N40.084 (5)0.072 (5)0.091 (5)0.008 (4)0.020 (4)0.010 (4)
N50.051 (3)0.052 (3)0.045 (3)0.006 (3)0.005 (2)0.000 (2)
N60.070 (4)0.050 (3)0.036 (3)0.004 (3)0.019 (3)0.003 (2)
N70.056 (3)0.042 (3)0.045 (3)0.000 (2)0.012 (2)0.004 (2)
N80.069 (4)0.059 (4)0.075 (4)0.009 (3)0.016 (3)0.007 (3)
O10.067 (3)0.046 (2)0.036 (2)0.013 (2)0.0091 (18)0.0019 (17)
O20.110 (4)0.072 (3)0.055 (3)0.020 (3)0.031 (3)0.010 (2)
O30.066 (3)0.054 (3)0.033 (2)0.010 (2)0.0065 (18)0.0019 (17)
O40.111 (4)0.060 (3)0.048 (2)0.026 (3)0.032 (3)0.002 (2)
O50.059 (6)0.055 (5)0.102 (7)0.002 (4)0.018 (5)0.020 (5)
C10.057 (4)0.037 (3)0.035 (3)0.005 (3)0.009 (3)0.001 (2)
C20.063 (4)0.041 (3)0.047 (4)0.002 (3)0.017 (3)0.011 (3)
C30.073 (4)0.055 (4)0.043 (3)0.006 (4)0.021 (3)0.013 (3)
C40.068 (4)0.069 (5)0.031 (3)0.019 (4)0.002 (3)0.004 (3)
C50.049 (4)0.050 (4)0.041 (3)0.000 (3)0.000 (3)0.001 (3)
C60.057 (4)0.074 (5)0.039 (4)0.003 (4)0.003 (3)0.009 (3)
C70.064 (4)0.070 (5)0.062 (4)0.019 (4)0.004 (3)0.014 (4)
C80.069 (4)0.058 (4)0.058 (4)0.016 (4)0.018 (3)0.002 (3)
C90.046 (3)0.037 (3)0.034 (3)0.001 (3)0.006 (2)0.000 (2)
C100.061 (4)0.039 (3)0.050 (4)0.003 (3)0.004 (3)0.002 (3)
C110.065 (4)0.049 (4)0.047 (4)0.001 (3)0.010 (3)0.006 (3)
C120.062 (4)0.051 (4)0.036 (3)0.004 (3)0.007 (3)0.008 (3)
C130.057 (4)0.054 (4)0.044 (3)0.002 (3)0.011 (3)0.007 (3)
C140.060 (4)0.059 (4)0.039 (3)0.010 (3)0.013 (3)0.002 (3)
C150.046 (4)0.049 (4)0.049 (4)0.003 (3)0.003 (3)0.004 (3)
C160.068 (4)0.048 (4)0.061 (4)0.009 (3)0.009 (3)0.006 (3)
C170.078 (5)0.052 (5)0.093 (6)0.003 (4)0.007 (4)0.006 (4)
C180.075 (5)0.084 (6)0.069 (5)0.006 (5)0.017 (4)0.006 (4)
C190.068 (4)0.060 (4)0.046 (4)0.003 (4)0.009 (3)0.003 (3)
C200.051 (3)0.048 (3)0.033 (3)0.006 (3)0.003 (3)0.004 (3)
C210.063 (4)0.064 (4)0.041 (3)0.003 (3)0.010 (3)0.011 (3)
C220.072 (5)0.077 (5)0.050 (4)0.019 (4)0.023 (3)0.019 (4)
C230.072 (4)0.087 (5)0.036 (3)0.023 (4)0.010 (3)0.004 (4)
C240.053 (4)0.062 (4)0.037 (3)0.021 (3)0.005 (3)0.004 (3)
C250.071 (5)0.080 (5)0.053 (4)0.017 (4)0.004 (4)0.015 (4)
C260.065 (5)0.065 (5)0.070 (5)0.006 (4)0.009 (4)0.020 (4)
C270.067 (5)0.060 (4)0.071 (5)0.007 (4)0.013 (4)0.006 (4)
C280.046 (3)0.055 (4)0.035 (3)0.013 (3)0.008 (3)0.006 (3)
C290.067 (4)0.040 (3)0.048 (3)0.001 (3)0.005 (3)0.002 (3)
C300.058 (4)0.036 (3)0.045 (3)0.003 (3)0.004 (3)0.010 (3)
C310.058 (4)0.044 (3)0.042 (3)0.004 (3)0.010 (3)0.007 (3)
C320.064 (4)0.045 (3)0.040 (3)0.001 (3)0.013 (3)0.002 (3)
C330.054 (4)0.055 (4)0.045 (4)0.001 (3)0.005 (3)0.001 (3)
C340.047 (3)0.039 (3)0.049 (4)0.005 (3)0.011 (3)0.000 (3)
C350.060 (4)0.056 (4)0.057 (4)0.011 (3)0.007 (3)0.009 (3)
C360.079 (5)0.080 (5)0.057 (4)0.018 (4)0.023 (4)0.004 (4)
C370.071 (5)0.050 (4)0.075 (5)0.005 (4)0.005 (4)0.008 (4)
C380.062 (4)0.060 (4)0.059 (4)0.002 (4)0.012 (3)0.000 (3)
Geometric parameters (Å, º) top
N1—C81.314 (7)C12—H12A0.9700
N1—C91.361 (6)C12—H12B0.9700
N2—C131.373 (8)C14—C151.451 (8)
N2—N31.368 (6)C14—H140.9300
N2—H20.8600C15—C191.378 (8)
N3—C141.277 (7)C15—C161.391 (8)
N4—C181.314 (9)C16—C171.378 (9)
N4—C171.335 (9)C16—H160.9300
N5—C271.306 (8)C17—H170.9300
N5—C281.381 (7)C18—C191.382 (9)
N6—C321.349 (7)C18—H180.9300
N6—N71.371 (6)C19—H190.9300
N6—H60.8600C20—C211.368 (7)
N7—C331.278 (7)C20—C281.425 (8)
N8—C371.317 (8)C21—C221.398 (8)
N8—C361.339 (9)C21—H210.9300
O1—C11.359 (6)C22—C231.364 (9)
O1—C101.438 (6)C22—H220.9300
O2—C131.224 (7)C23—C241.411 (8)
O3—C201.354 (6)C23—H230.9300
O3—C291.445 (7)C24—C251.389 (9)
O4—C321.212 (7)C24—C281.421 (7)
O5—H390.8500C25—C261.377 (9)
O5—H400.8499C25—H250.9300
C1—C21.373 (7)C26—C271.410 (9)
C1—C91.429 (7)C26—H260.9300
C2—C31.400 (8)C27—H270.9300
C2—H10.9300C29—C301.518 (7)
C3—C41.342 (9)C29—H29A0.9700
C3—H30.9300C29—H29B0.9700
C4—C51.414 (8)C30—C311.524 (8)
C4—H40.9300C30—H30A0.9700
C5—C61.402 (8)C30—H30B0.9700
C5—C91.417 (7)C31—C321.507 (8)
C6—C71.343 (9)C31—H31A0.9700
C6—H50.9300C31—H31B0.9700
C7—C81.402 (9)C33—C341.460 (8)
C7—H70.9300C33—H330.9300
C8—H80.9300C34—C381.386 (8)
C10—C111.521 (7)C34—C351.389 (8)
C10—H10A0.9700C35—C361.373 (8)
C10—H10B0.9700C35—H350.9300
C11—C121.506 (8)C36—H360.9300
C11—H11A0.9700C37—C381.370 (9)
C11—H11B0.9700C37—H370.9300
C12—C131.509 (7)C38—H380.9300
C8—N1—C9118.0 (5)C16—C17—H17118.0
C13—N2—N3119.3 (5)N4—C18—C19125.2 (7)
C13—N2—H2120.4N4—C18—H18117.4
N3—N2—H2120.4C19—C18—H18117.4
C14—N3—N2116.1 (5)C15—C19—C18118.6 (6)
C18—N4—C17115.7 (6)C15—C19—H19120.7
C27—N5—C28117.0 (5)C18—C19—H19120.7
C32—N6—N7121.2 (4)O3—C20—C21125.0 (5)
C32—N6—H6119.4O3—C20—C28115.0 (5)
N7—N6—H6119.4C21—C20—C28119.9 (5)
C33—N7—N6116.2 (5)C20—C21—C22121.0 (6)
C37—N8—C36114.6 (6)C20—C21—H21119.5
C1—O1—C10117.2 (4)C22—C21—H21119.5
C20—O3—C29116.7 (4)C23—C22—C21120.5 (6)
H39—O5—H40106.4C23—C22—H22119.8
O1—C1—C2124.6 (5)C21—C22—H22119.8
O1—C1—C9115.8 (4)C22—C23—C24120.6 (6)
C2—C1—C9119.5 (5)C22—C23—H23119.7
C1—C2—C3120.2 (6)C24—C23—H23119.7
C1—C2—H1119.9C25—C24—C23122.8 (6)
C3—C2—H1119.9C25—C24—C28117.8 (6)
C4—C3—C2121.4 (5)C23—C24—C28119.3 (6)
C4—C3—H3119.3C24—C25—C26120.2 (6)
C2—C3—H3119.3C24—C25—H25119.9
C3—C4—C5121.1 (6)C26—C25—H25119.9
C3—C4—H4119.5C25—C26—C27117.7 (7)
C5—C4—H4119.5C25—C26—H26121.2
C6—C5—C9117.8 (5)C27—C26—H26121.2
C6—C5—C4123.8 (6)N5—C27—C26125.2 (7)
C9—C5—C4118.4 (5)N5—C27—H27117.4
C7—C6—C5120.0 (6)C26—C27—H27117.4
C7—C6—H5120.0N5—C28—C24122.2 (6)
C5—C6—H5120.0N5—C28—C20119.1 (5)
C6—C7—C8118.8 (6)C24—C28—C20118.7 (5)
C6—C7—H7120.6O3—C29—C30106.6 (4)
C8—C7—H7120.6O3—C29—H29A110.4
N1—C8—C7123.9 (6)C30—C29—H29A110.4
N1—C8—H8118.1O3—C29—H29B110.4
C7—C8—H8118.1C30—C29—H29B110.4
N1—C9—C5121.5 (5)H29A—C29—H29B108.6
N1—C9—C1119.2 (5)C31—C30—C29111.8 (5)
C5—C9—C1119.4 (5)C31—C30—H30A109.2
O1—C10—C11107.2 (4)C29—C30—H30A109.2
O1—C10—H10A110.3C31—C30—H30B109.2
C11—C10—H10A110.3C29—C30—H30B109.2
O1—C10—H10B110.3H30A—C30—H30B107.9
C11—C10—H10B110.3C32—C31—C30112.0 (5)
H10A—C10—H10B108.5C32—C31—H31A109.2
C12—C11—C10111.7 (5)C30—C31—H31A109.2
C12—C11—H11A109.3C32—C31—H31B109.2
C10—C11—H11A109.3C30—C31—H31B109.2
C12—C11—H11B109.3H31A—C31—H31B107.9
C10—C11—H11B109.3O4—C32—N6119.7 (5)
H11A—C11—H11B107.9O4—C32—C31123.8 (6)
C11—C12—C13113.1 (5)N6—C32—C31116.5 (5)
C11—C12—H12A109.0N7—C33—C34120.0 (5)
C13—C12—H12A109.0N7—C33—H33120.0
C11—C12—H12B109.0C34—C33—H33120.0
C13—C12—H12B109.0C38—C34—C35116.0 (5)
H12A—C12—H12B107.8C38—C34—C33120.6 (5)
O2—C13—N2120.0 (5)C35—C34—C33123.4 (5)
O2—C13—C12123.5 (6)C36—C35—C34119.9 (6)
N2—C13—C12116.5 (5)C36—C35—H35120.0
N3—C14—C15120.5 (5)C34—C35—H35120.0
N3—C14—H14119.8N8—C36—C35124.3 (6)
C15—C14—H14119.8N8—C36—H36117.9
C19—C15—C16117.3 (6)C35—C36—H36117.9
C19—C15—C14122.7 (5)N8—C37—C38126.1 (6)
C16—C15—C14120.0 (5)N8—C37—H37117.0
C17—C16—C15119.1 (6)C38—C37—H37117.0
C17—C16—H16120.5C37—C38—C34119.0 (6)
C15—C16—H16120.5C37—C38—H38120.5
N4—C17—C16124.0 (7)C34—C38—H38120.5
N4—C17—H17118.0
C13—N2—N3—C14178.6 (5)N4—C18—C19—C151.3 (11)
C32—N6—N7—C33179.8 (5)C29—O3—C20—C211.9 (8)
C10—O1—C1—C24.5 (8)C29—O3—C20—C28176.6 (5)
C10—O1—C1—C9176.7 (5)O3—C20—C21—C22179.2 (6)
O1—C1—C2—C3179.5 (5)C28—C20—C21—C222.3 (8)
C9—C1—C2—C30.7 (8)C20—C21—C22—C231.9 (9)
C1—C2—C3—C40.4 (9)C21—C22—C23—C240.9 (9)
C2—C3—C4—C50.8 (9)C22—C23—C24—C25178.9 (6)
C3—C4—C5—C6178.7 (6)C22—C23—C24—C280.3 (9)
C3—C4—C5—C90.1 (9)C23—C24—C25—C26179.4 (6)
C9—C5—C6—C70.8 (9)C28—C24—C25—C260.9 (9)
C4—C5—C6—C7179.6 (6)C24—C25—C26—C271.0 (10)
C5—C6—C7—C81.5 (10)C28—N5—C27—C260.3 (9)
C9—N1—C8—C70.1 (9)C25—C26—C27—N51.7 (11)
C6—C7—C8—N11.3 (11)C27—N5—C28—C241.7 (8)
C8—N1—C9—C50.7 (8)C27—N5—C28—C20179.9 (6)
C8—N1—C9—C1179.8 (5)C25—C24—C28—N52.3 (8)
C6—C5—C9—N10.4 (8)C23—C24—C28—N5179.1 (5)
C4—C5—C9—N1178.5 (5)C25—C24—C28—C20179.3 (5)
C6—C5—C9—C1179.9 (5)C23—C24—C28—C200.7 (8)
C4—C5—C9—C11.0 (8)O3—C20—C28—N51.2 (7)
O1—C1—C9—N10.8 (7)C21—C20—C28—N5179.9 (5)
C2—C1—C9—N1178.1 (5)O3—C20—C28—C24179.6 (5)
O1—C1—C9—C5179.7 (5)C21—C20—C28—C241.7 (8)
C2—C1—C9—C51.4 (8)C20—O3—C29—C30177.7 (5)
C1—O1—C10—C11179.5 (5)O3—C29—C30—C3164.3 (6)
O1—C10—C11—C1263.8 (6)C29—C30—C31—C32177.2 (5)
C10—C11—C12—C13173.9 (5)N7—N6—C32—O4176.0 (5)
N3—N2—C13—O2176.0 (5)N7—N6—C32—C315.4 (8)
N3—N2—C13—C124.5 (8)C30—C31—C32—O40.4 (8)
C11—C12—C13—O21.8 (8)C30—C31—C32—N6179.0 (5)
C11—C12—C13—N2177.7 (5)N6—N7—C33—C34180.0 (5)
N2—N3—C14—C15178.6 (5)N7—C33—C34—C38175.0 (6)
N3—C14—C15—C193.4 (9)N7—C33—C34—C355.0 (9)
N3—C14—C15—C16177.0 (6)C38—C34—C35—C360.5 (9)
C19—C15—C16—C170.2 (9)C33—C34—C35—C36179.5 (6)
C14—C15—C16—C17179.8 (5)C37—N8—C36—C350.9 (11)
C18—N4—C17—C161.3 (11)C34—C35—C36—N80.5 (11)
C15—C16—C17—N41.2 (10)C36—N8—C37—C381.4 (10)
C17—N4—C18—C190.0 (11)N8—C37—C38—C341.5 (10)
C16—C15—C19—C181.4 (9)C35—C34—C38—C370.9 (9)
C14—C15—C19—C18179.1 (6)C33—C34—C38—C37179.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C31—H31B···O30.972.552.908 (7)102
C22—H22···O4i0.932.513.224 (7)134
C12—H12B···O10.972.522.900 (7)103
C7—H7···N8ii0.932.553.466 (9)167
C3—H3···O2iii0.932.523.353 (7)150
C2—H1···N4iv0.932.553.390 (9)150
O5—H39···O4v0.852.172.964 (10)156
N6—H6···N1iii0.862.102.934 (6)163
N2—H2···N5i0.862.253.077 (7)161
Symmetry codes: (i) x, y, z1; (ii) x+3, y1/2, z+2; (iii) x, y, z+1; (iv) x+1, y+1/2, z+1; (v) x+1, y+1/2, z+2.

Experimental details

Crystal data
Chemical formulaC19H18N4O2·0.25H2O
Mr1355.51
Crystal system, space groupMonoclinic, P21
Temperature (K)295
a, b, c (Å)8.8816 (13), 17.420 (2), 11.3624 (17)
β (°) 100.765 (3)
V3)1727.0 (4)
Z1
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.32 × 0.26 × 0.22
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.972, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
9142, 3169, 1927
Rint0.050
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.162, 1.01
No. of reflections3169
No. of parameters460
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.21
Absolute structureNd

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H22···O4i0.932.513.224 (7)134
C7—H7···N8ii0.932.553.466 (9)167
C3—H3···O2iii0.932.523.353 (7)150
C2—H1···N4iv0.932.553.390 (9)150
O5—H39···O4v0.852.172.964 (10)156
N6—H6···N1iii0.862.102.934 (6)163
N2—H2···N5i0.862.253.077 (7)161
Symmetry codes: (i) x, y, z1; (ii) x+3, y1/2, z+2; (iii) x, y, z+1; (iv) x+1, y+1/2, z+1; (v) x+1, y+1/2, z+2.
 

Acknowledgements

This work was supported by grants from Qinzhou University Foundation and the Young Key Teacher's Plan of Guangxi Zhuang Autonomous Region of the People's Republic of China [grant Nos. 2008XJKY-10B and 2008(30)].

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCai, Y. P., Zhang, L., Shi, J. L., Zhang, H. X. & Kang, B. S. (2003). Chin. J. Struct. Chem. 22, 587–590.  Google Scholar
First citationChen, C. L., Goforth, A. M., Smith, M. D., Gemmill, W. R., Su, C. Y. & Loye, H. C. (2005). J. Cluster Sci., 16, 477–487.  Web of Science CSD CrossRef CAS Google Scholar
First citationKarmakar, A., Sarma, R. J. & Baruah, J. B. (2007). CrystEngComm, 9, 379–389.  Web of Science CSD CrossRef CAS Google Scholar
First citationPark, K. M., Moon, S. T., Kang, Y. J., Kim, H. J., Seo, J. & Lee, S. S. (2006). Inorg. Chem. Commun. 9, 671–674.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, H., Meng, S.-M., Fan, Y.-Q. & Yang, G.-C. (2008). Acta Cryst. E64, o2114.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZheng, Z.-B., Li, J.-K., Sun, Y.-F. & Wu, R.-T. (2008). Acta Cryst. E64, o297.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZheng, Z.-B., Li, J.-K., Wu, R.-T. & Sun, Y.-F. (2006). Acta Cryst. E62, o4611–o4612.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZheng, Z.-B., Wu, R.-T., Li, J.-K. & Lu, J.-R. (2007). Acta Cryst. E63, o3284.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds