organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Bis(4-bromo­benzyl­­idene)bi­phenyl-2,2′-di­amine

aDepartment of Chemistry, Alzahra University, Vanak, Tehran, Iran, bSchool of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: dehganpour_farasha@yahoo.com

(Received 7 January 2009; accepted 8 January 2009; online 14 January 2009)

The complete molecule of the title Schiff base, C26H18Br2N2, is generated by crystallographic twofold symmetry. The aromatic rings of the biphenyl­ene portion of the mol­ecule are twisted, as shown by the dihedral of 61.8 (1)° formed between them.

Related literature

There are relatively few crystallographic reports of Schiff bases formed by condensing biphenyl-2,2′-diamine with aldehydes or ketones. See: Alajarín et al. (2007[Alajarín, M., Bonillo, B., Sánchez-Andrada, P., Vidal, Á. & Bautista, D. (2007). J. Org. Chem. 72, 5863-5866.]); Coxall et al. (2003[Coxall, R. A., Lindoy, L. F., Miller, H. A., Parkin, A., Parsons, S., Tasker, P. A. & White, D. J. (2003). Dalton Trans. pp. 55-64.]); Cunningham et al. (2004[Cunningham, D., Gilligan, K., Hannon, M., Kelly, K., McArdle, P. & O'Malley, A. (2004). Organometallics, 23, 984-994.]); Finder et al. (1973[Finder, C. J., Newton, M. G. & Allinger, N. L. (1973). J. Chem. Soc. Perkin Trans. 2, pp. 1929-1932.]); Pruszynski et al. (1992[Pruszynski, P., Leffek, K. T., Borecka, B. & Cameron, T. S. (1992). Acta Cryst. C48, 1638-1641.]).

[Scheme 1]

Experimental

Crystal data
  • C26H18Br2N2

  • Mr = 518.24

  • Orthorhombic, A b a 2

  • a = 15.9691 (10) Å

  • b = 8.3482 (5) Å

  • c = 16.7767 (11) Å

  • V = 2236.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.64 mm−1

  • T = 295 (2) K

  • 0.28 × 0.25 × 0.19 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.429, Tmax = 0.545 (expected range = 0.394–0.501)

  • 10424 measured reflections

  • 2542 independent reflections

  • 1333 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.116

  • S = 0.98

  • 2542 reflections

  • 136 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.36 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1209 Friedel pairs

  • Flack parameter: −0.013 (15)

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

There are relatively few crystallographic reports of Schiff bases formed by condensing biphenyl-2,2'-diamine with aldehydes or ketones. See: Alajarín et al. (2007); Coxall et al. (2003); Cunningham et al. (2004); Finder et al. (1973); Pruszynski et al. (1992).

Experimental top

Biphenyl-2,2'-diamine (5 mmol) and 4-bromobenzaldehyde (10 mmol) were dissolved in ethanol (50 ml). The solution was heated for 5 h; the solid that separated from the cooled solution was collected and recrystallized from chloroform; a second recrystallization was effected with ethanol. The yield as 90%. Analysis found: C 60.20, H 3.54, N 5.43; C26H18Br2N2 requires: C 60.26, H 3.50, N 5.41.

Refinement top

Carbon-bound H atoms were placed in calculated positions [C—H 0.93 Å and Uiso(H) 1.2–1.5Ueq(C)] and were included in the refinement in the riding-model approximation.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001); displacement ellipsoids are drawn at the 50% probability level, and H atoms as spheres of arbitrary radius. (Symmetry code: i = 2 - x, 3 - y, z).
N,N'-Bis(4-bromobenzylidene)biphenyl-2,2'-diamine top
Crystal data top
C26H18Br2N2F(000) = 1032
Mr = 518.24Dx = 1.539 Mg m3
Orthorhombic, Aba2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: A 2 -2acCell parameters from 5898 reflections
a = 15.9691 (10) Åθ = 3.0–27.4°
b = 8.3482 (5) ŵ = 3.64 mm1
c = 16.7767 (11) ÅT = 295 K
V = 2236.6 (2) Å3Cuboid, light yellow
Z = 40.28 × 0.25 × 0.19 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2542 independent reflections
Radiation source: fine-focus sealed tube1333 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 10.000 pixels mm-1θmax = 27.4°, θmin = 3.0°
ω scansh = 1820
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1010
Tmin = 0.429, Tmax = 0.545l = 2121
10424 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0547P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max = 0.001
2542 reflectionsΔρmax = 0.28 e Å3
136 parametersΔρmin = 0.36 e Å3
1 restraintAbsolute structure: Flack (1983), 1209 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.013 (15)
Crystal data top
C26H18Br2N2V = 2236.6 (2) Å3
Mr = 518.24Z = 4
Orthorhombic, Aba2Mo Kα radiation
a = 15.9691 (10) ŵ = 3.64 mm1
b = 8.3482 (5) ÅT = 295 K
c = 16.7767 (11) Å0.28 × 0.25 × 0.19 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2542 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1333 reflections with I > 2σ(I)
Tmin = 0.429, Tmax = 0.545Rint = 0.040
10424 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.116Δρmax = 0.28 e Å3
S = 0.98Δρmin = 0.36 e Å3
2542 reflectionsAbsolute structure: Flack (1983), 1209 Friedel pairs
136 parametersAbsolute structure parameter: 0.013 (15)
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.89090 (4)0.63217 (6)0.50003 (6)0.1058 (3)
N10.8979 (2)1.3119 (4)0.7320 (3)0.0604 (9)
C10.8877 (2)1.4642 (5)0.7689 (3)0.0555 (10)
C20.9576 (2)1.5394 (4)0.8036 (2)0.0537 (9)
C30.9461 (3)1.6846 (5)0.8415 (3)0.0650 (11)
H30.99201.73710.86360.078*
C40.8672 (3)1.7534 (6)0.8471 (4)0.0676 (13)
H40.86051.85140.87270.081*
C50.7989 (3)1.6768 (5)0.8150 (3)0.0685 (12)
H50.74591.72140.82050.082*
C60.8087 (2)1.5347 (5)0.7748 (3)0.0656 (12)
H60.76261.48540.75140.079*
C70.8654 (3)1.2832 (7)0.6649 (3)0.0633 (12)
H70.83811.36630.63870.076*
C80.8685 (3)1.1275 (5)0.6264 (3)0.0597 (11)
C90.8443 (3)1.1094 (5)0.5480 (3)0.0818 (14)
H90.82361.19730.52020.098*
C100.8505 (3)0.9629 (6)0.5101 (4)0.0891 (14)
H100.83460.95180.45700.107*
C110.8805 (3)0.8339 (6)0.5523 (3)0.0714 (13)
C120.9015 (3)0.8464 (5)0.6305 (3)0.0703 (13)
H120.91950.75660.65850.084*
C130.8961 (2)0.9926 (5)0.6683 (3)0.0646 (11)
H130.91081.00160.72170.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1445 (6)0.0704 (3)0.1026 (5)0.0098 (2)0.0284 (5)0.0131 (4)
N10.058 (2)0.0512 (18)0.072 (3)0.0048 (15)0.0000 (19)0.0029 (19)
C10.050 (3)0.058 (2)0.058 (3)0.0000 (18)0.0025 (18)0.009 (2)
C20.054 (2)0.052 (2)0.056 (2)0.0007 (16)0.0007 (19)0.0069 (19)
C30.063 (3)0.064 (2)0.067 (3)0.001 (2)0.005 (2)0.004 (2)
C40.081 (4)0.057 (3)0.065 (3)0.004 (2)0.002 (3)0.002 (2)
C50.059 (3)0.064 (2)0.082 (3)0.017 (2)0.008 (2)0.008 (2)
C60.052 (3)0.065 (3)0.080 (3)0.0025 (19)0.000 (2)0.014 (2)
C70.066 (3)0.066 (3)0.058 (3)0.000 (2)0.007 (2)0.010 (2)
C80.062 (2)0.065 (3)0.052 (3)0.0084 (18)0.002 (2)0.001 (2)
C90.111 (4)0.068 (3)0.066 (3)0.004 (3)0.020 (3)0.002 (2)
C100.127 (4)0.075 (3)0.066 (3)0.001 (3)0.024 (4)0.010 (3)
C110.065 (3)0.084 (3)0.065 (3)0.006 (2)0.008 (2)0.004 (3)
C120.070 (3)0.058 (2)0.083 (4)0.0047 (19)0.004 (3)0.015 (2)
C130.074 (3)0.060 (3)0.059 (3)0.001 (2)0.008 (2)0.006 (2)
Geometric parameters (Å, º) top
Br1—C111.906 (5)C6—H60.9300
N1—C71.262 (6)C7—C81.452 (7)
N1—C11.424 (6)C7—H70.9300
C1—C61.395 (5)C8—C91.378 (7)
C1—C21.407 (6)C8—C131.399 (6)
C2—C31.381 (6)C9—C101.383 (6)
C2—C2i1.506 (7)C9—H90.9300
C3—C41.389 (6)C10—C111.376 (7)
C3—H30.9300C10—H100.9300
C4—C51.373 (7)C11—C121.358 (8)
C4—H40.9300C12—C131.378 (6)
C5—C61.374 (6)C12—H120.9300
C5—H50.9300C13—H130.9300
C7—N1—C1120.7 (4)N1—C7—H7118.2
C6—C1—C2120.0 (4)C8—C7—H7118.2
C6—C1—N1120.8 (4)C9—C8—C13118.6 (4)
C2—C1—N1119.2 (3)C9—C8—C7120.9 (4)
C3—C2—C1118.5 (4)C13—C8—C7120.5 (5)
C3—C2—C2i120.2 (4)C8—C9—C10121.1 (4)
C1—C2—C2i121.2 (4)C8—C9—H9119.5
C2—C3—C4121.0 (4)C10—C9—H9119.5
C2—C3—H3119.5C9—C10—C11118.7 (5)
C4—C3—H3119.5C9—C10—H10120.7
C5—C4—C3120.1 (4)C11—C10—H10120.7
C5—C4—H4120.0C12—C11—C10121.6 (5)
C3—C4—H4120.0C12—C11—Br1119.4 (4)
C6—C5—C4120.3 (4)C10—C11—Br1119.0 (4)
C6—C5—H5119.8C11—C12—C13119.8 (5)
C4—C5—H5119.8C11—C12—H12120.1
C5—C6—C1120.1 (4)C13—C12—H12120.1
C5—C6—H6119.9C12—C13—C8120.1 (5)
C1—C6—H6119.9C12—C13—H13119.9
N1—C7—C8123.6 (5)C8—C13—H13119.9
C7—N1—C1—C648.5 (6)C1—N1—C7—C8175.6 (4)
C7—N1—C1—C2135.0 (5)N1—C7—C8—C9169.2 (5)
C6—C1—C2—C31.4 (6)N1—C7—C8—C1310.8 (7)
N1—C1—C2—C3177.9 (4)C13—C8—C9—C102.8 (8)
C6—C1—C2—C2i175.4 (3)C7—C8—C9—C10177.2 (5)
N1—C1—C2—C2i1.1 (5)C8—C9—C10—C110.6 (8)
C1—C2—C3—C41.6 (6)C9—C10—C11—C122.1 (7)
C2i—C2—C3—C4175.3 (4)C9—C10—C11—Br1179.0 (4)
C2—C3—C4—C50.2 (8)C10—C11—C12—C132.7 (7)
C3—C4—C5—C62.2 (8)Br1—C11—C12—C13178.5 (3)
C4—C5—C6—C12.4 (7)C11—C12—C13—C80.4 (7)
C2—C1—C6—C50.6 (7)C9—C8—C13—C122.2 (7)
N1—C1—C6—C5175.9 (4)C7—C8—C13—C12177.8 (4)
Symmetry code: (i) x+2, y+3, z.

Experimental details

Crystal data
Chemical formulaC26H18Br2N2
Mr518.24
Crystal system, space groupOrthorhombic, Aba2
Temperature (K)295
a, b, c (Å)15.9691 (10), 8.3482 (5), 16.7767 (11)
V3)2236.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)3.64
Crystal size (mm)0.28 × 0.25 × 0.19
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.429, 0.545
No. of measured, independent and
observed [I > 2σ(I)] reflections
10424, 2542, 1333
Rint0.040
(sin θ/λ)max1)0.647
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.116, 0.98
No. of reflections2542
No. of parameters136
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.36
Absolute structureFlack (1983), 1209 Friedel pairs
Absolute structure parameter0.013 (15)

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

 

Acknowledgements

We thank the Alzahra University Research Council and Natural Resources, and the University of Malaya for supporting this study.

References

First citationAlajarín, M., Bonillo, B., Sánchez-Andrada, P., Vidal, Á. & Bautista, D. (2007). J. Org. Chem. 72, 5863–5866.  Web of Science PubMed Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationCoxall, R. A., Lindoy, L. F., Miller, H. A., Parkin, A., Parsons, S., Tasker, P. A. & White, D. J. (2003). Dalton Trans. pp. 55–64.  Web of Science CSD CrossRef Google Scholar
First citationCunningham, D., Gilligan, K., Hannon, M., Kelly, K., McArdle, P. & O'Malley, A. (2004). Organometallics, 23, 984–994.  Web of Science CSD CrossRef CAS Google Scholar
First citationFinder, C. J., Newton, M. G. & Allinger, N. L. (1973). J. Chem. Soc. Perkin Trans. 2, pp. 1929–1932.  CrossRef Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationPruszynski, P., Leffek, K. T., Borecka, B. & Cameron, T. S. (1992). Acta Cryst. C48, 1638–1641.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds