organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Nitro­phen­yl)-1,3-di­thiane

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah 711 103, India
*Correspondence e-mail: hkfun@usm.my

(Received 14 January 2009; accepted 14 January 2009; online 17 January 2009)

The nitro group in the title compound, C10H11NO2S2, is almost coplanar with the benzene ring, making a dihedral angle of 3.42 (8)°. The 1,3-dithiane ring adopts a chair conformation. The crystal structure is stabilized by inter­molecular C—H⋯O and C—H⋯π [C⋯Cg = 3.4972 (10) Å] inter­actions.

Related literature

For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the calculation of ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For related literature and applications see, for example: Goswami & Maity (2008[Goswami, S. P. & Maity, A. C. (2008). Tetrahedron Lett. 49, 3092-3096.]); Fun et al. (2009[Fun, H.-K., Kia, R., Maity, A. C. & Goswami, S. (2009). Acta Cryst. E65, o173.]).

[Scheme 1]

Experimental

Crystal data
  • C10H11NO2S2

  • Mr = 241.32

  • Orthorhombic, P 21 21 21

  • a = 8.7724 (1) Å

  • b = 10.2079 (1) Å

  • c = 11.9942 (1) Å

  • V = 1074.05 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.47 mm−1

  • T = 100 (1) K

  • 0.46 × 0.22 × 0.08 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.813, Tmax = 0.964

  • 30643 measured reflections

  • 4725 independent reflections

  • 4511 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.061

  • S = 1.06

  • 4725 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2050 Friedel pairs

  • Flack parameter: 0.01 (4)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6A⋯O2i 0.93 2.59 3.3346 (12) 137
C1—H1ACg1ii 0.97 2.60 3.4972 (10) 154
Symmetry codes: (i) [-x+{\script{5\over 2}}, -y, z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, -y, z+{\script{1\over 2}}]. Cg1 is the centroid of the benzene ring.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Thioacetal protection of carbonyl groups is of paramount importance in synthetic organic chemistry and hence, the development of novel thionation reactions remains of great interest (Goswami & Maity, 2008; Fun et al., 2009). In addition, thioacetals are also utilized as masked acyl anions or masked methylene functions in carbon-carbon bond forming reactions. Herein, we report the synthesis of 2-(4-nitro-phenyl)-[1,3]-dithiane (I) from 4-nitrobenzaldehyde using boron trifluoride etherate catalyst.

Compound (I), Fig. 1, comprises a single molecule in the asymmetric unit. The nitro group is almost coplanar with the benzene ring, making a dihedral angle of 3.42 (8)°. The thiacyclohexane ring adopts a chair conformation with the ring puckering parameters (Cremer & Pople, 1975) of Q = 0.7137 (8) Å, Θ = 173.96 (7)°, and Φ = 135.6 (7)°. The crystal structure is stabilized by intermolecular C—H···O and C—H···π interactions, Table 1.

Related literature top

For hydrogen-bond motifs, see: Bernstein et al. (1995). For the calculation of ring puckering parameters, see: Cremer & Pople (1975). For related literature and applications see, for example: Goswami & Maity (2008); Fun et al. (2009). Cg1 is the centroid of the benzene ring.

Experimental top

To a stirred dichloromethane (50 mL) solution, maintained at 273 K, of 4-nitrobenzaldehyde (500 mg, 3.31 mmol) and boron trifluoride etherate (0.5 mL) was added dropwise 1,3-propanedithiol (450 mg, 4.1 mmol) over 15 min. The mixture was stirred at room temperature for 4 h and the progress of the reaction monitored by TLC. After completion of the reaction, NaHCO3 solution was added carefully at room temperature to neutralize the mixture which was then extracted with dichloromethane. The organic layer was dried (anhydrous Na2SO4) and the solvent removed under reduced pressure. The crude product was purified by column chromatography using silica gel with 10% ethyl acetate in petroleum ether as eluant to afford (I) (674 mg, 84%) as a colourless crystalline solid along with the other thiane derivatives.

Refinement top

All hydrogen atoms were positioned geometrically and refined with a riding model approximation with C—H = 0.93-0.98 Å, and with Uiso (H) = 1.2 Ueq (C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atomic numbering.
2-(4-Nitrophenyl)-1,3-dithiane top
Crystal data top
C10H11NO2S2F(000) = 504
Mr = 241.32Dx = 1.492 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 9979 reflections
a = 8.7724 (1) Åθ = 2.6–38.5°
b = 10.2079 (1) ŵ = 0.47 mm1
c = 11.9942 (1) ÅT = 100 K
V = 1074.05 (2) Å3Block, colourless
Z = 40.46 × 0.22 × 0.08 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4725 independent reflections
Radiation source: fine-focus sealed tube4511 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ϕ and ω scansθmax = 35.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1414
Tmin = 0.813, Tmax = 0.964k = 1616
30643 measured reflectionsl = 1819
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.061 w = 1/[σ2(Fo2) + (0.0321P)2 + 0.1305P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
4725 reflectionsΔρmax = 0.33 e Å3
136 parametersΔρmin = 0.25 e Å3
0 restraintsAbsolute structure: Flack (1983), 2050 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (4)
Crystal data top
C10H11NO2S2V = 1074.05 (2) Å3
Mr = 241.32Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.7724 (1) ŵ = 0.47 mm1
b = 10.2079 (1) ÅT = 100 K
c = 11.9942 (1) Å0.46 × 0.22 × 0.08 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4725 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4511 reflections with I > 2σ(I)
Tmin = 0.813, Tmax = 0.964Rint = 0.038
30643 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.061Δρmax = 0.33 e Å3
S = 1.06Δρmin = 0.25 e Å3
4725 reflectionsAbsolute structure: Flack (1983), 2050 Friedel pairs
136 parametersAbsolute structure parameter: 0.01 (4)
0 restraints
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.78978 (3)0.06239 (2)0.216265 (18)0.01399 (5)
S21.07695 (3)0.22170 (2)0.261209 (18)0.01492 (5)
O10.99728 (9)0.26901 (8)0.32568 (6)0.01819 (14)
O21.12536 (10)0.08795 (8)0.33808 (6)0.02137 (15)
N11.05536 (9)0.17161 (8)0.28383 (7)0.01391 (13)
C10.80248 (11)0.03483 (9)0.36543 (8)0.01526 (16)
H1A0.70090.01820.39410.018*
H1B0.86310.04310.37850.018*
C20.87227 (11)0.14837 (10)0.43022 (8)0.01481 (15)
H2A0.81570.22760.41350.018*
H2B0.86180.13120.50940.018*
C31.03975 (11)0.17104 (11)0.40367 (8)0.01636 (17)
H3A1.09540.09070.41820.020*
H3B1.07900.23760.45380.020*
C40.99151 (10)0.08515 (9)0.18616 (7)0.01235 (15)
H4A1.04630.00460.20550.015*
C51.01013 (10)0.11049 (9)0.06296 (7)0.01189 (14)
C61.09657 (10)0.02450 (9)0.00171 (7)0.01299 (15)
H6A1.14400.04680.03180.016*
C71.11247 (10)0.04450 (9)0.11583 (8)0.01293 (15)
H7A1.16900.01310.15930.016*
C81.04185 (10)0.15252 (9)0.16301 (7)0.01169 (14)
C90.95653 (11)0.24152 (9)0.10131 (8)0.01406 (16)
H9A0.91140.31380.13510.017*
C100.94071 (11)0.21912 (9)0.01268 (7)0.01455 (15)
H10A0.88360.27680.05580.017*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01279 (8)0.01716 (10)0.01201 (9)0.00234 (7)0.00105 (7)0.00003 (8)
S20.01512 (9)0.01748 (10)0.01216 (9)0.00450 (7)0.00056 (7)0.00083 (7)
O10.0228 (3)0.0179 (3)0.0138 (3)0.0016 (3)0.0017 (3)0.0050 (3)
O20.0286 (4)0.0219 (4)0.0136 (3)0.0056 (3)0.0052 (3)0.0013 (3)
N10.0149 (3)0.0152 (3)0.0117 (3)0.0013 (3)0.0008 (3)0.0010 (3)
C10.0167 (4)0.0169 (4)0.0121 (4)0.0023 (3)0.0021 (3)0.0002 (3)
C20.0148 (4)0.0183 (4)0.0113 (4)0.0002 (3)0.0016 (3)0.0019 (3)
C30.0147 (4)0.0236 (4)0.0108 (4)0.0019 (3)0.0012 (3)0.0010 (3)
C40.0133 (3)0.0137 (4)0.0100 (3)0.0006 (3)0.0004 (3)0.0001 (3)
C50.0127 (3)0.0127 (3)0.0103 (3)0.0002 (3)0.0003 (3)0.0006 (3)
C60.0142 (4)0.0128 (3)0.0120 (3)0.0023 (3)0.0001 (3)0.0017 (3)
C70.0130 (3)0.0134 (4)0.0124 (3)0.0009 (3)0.0007 (3)0.0006 (3)
C80.0130 (3)0.0131 (4)0.0090 (3)0.0012 (3)0.0005 (3)0.0008 (3)
C90.0169 (4)0.0130 (4)0.0123 (4)0.0025 (3)0.0000 (3)0.0015 (3)
C100.0182 (4)0.0139 (4)0.0116 (3)0.0034 (3)0.0007 (3)0.0000 (3)
Geometric parameters (Å, º) top
S1—C11.8145 (9)C3—H3B0.9700
S1—C41.8210 (9)C4—C51.5090 (12)
S2—C31.8148 (10)C4—H4A0.9800
S2—C41.8208 (9)C5—C61.3953 (13)
O1—N11.2248 (10)C5—C101.4016 (13)
O2—N11.2368 (11)C6—C71.3910 (13)
N1—C81.4670 (11)C6—H6A0.9300
C1—C21.5238 (13)C7—C81.3855 (12)
C1—H1A0.9700C7—H7A0.9300
C1—H1B0.9700C8—C91.3905 (13)
C2—C31.5210 (13)C9—C101.3930 (13)
C2—H2A0.9700C9—H9A0.9300
C2—H2B0.9700C10—H10A0.9300
C3—H3A0.9700
C1—S1—C498.95 (4)C5—C4—S1108.74 (6)
C3—S2—C499.98 (4)S2—C4—S1113.56 (5)
O1—N1—O2123.46 (8)C5—C4—H4A108.8
O1—N1—C8118.63 (8)S2—C4—H4A108.8
O2—N1—C8117.91 (8)S1—C4—H4A108.8
C2—C1—S1114.18 (6)C6—C5—C10119.65 (8)
C2—C1—H1A108.7C6—C5—C4119.69 (8)
S1—C1—H1A108.7C10—C5—C4120.66 (8)
C2—C1—H1B108.7C7—C6—C5120.61 (8)
S1—C1—H1B108.7C7—C6—H6A119.7
H1A—C1—H1B107.6C5—C6—H6A119.7
C3—C2—C1113.39 (8)C8—C7—C6118.28 (8)
C3—C2—H2A108.9C8—C7—H7A120.9
C1—C2—H2A108.9C6—C7—H7A120.9
C3—C2—H2B108.9C7—C8—C9122.91 (8)
C1—C2—H2B108.9C7—C8—N1118.23 (8)
H2A—C2—H2B107.7C9—C8—N1118.85 (8)
C2—C3—S2114.47 (6)C8—C9—C10117.95 (8)
C2—C3—H3A108.6C8—C9—H9A121.0
S2—C3—H3A108.6C10—C9—H9A121.0
C2—C3—H3B108.6C9—C10—C5120.59 (8)
S2—C3—H3B108.6C9—C10—H10A119.7
H3A—C3—H3B107.6C5—C10—H10A119.7
C5—C4—S2107.96 (6)
C4—S1—C1—C260.04 (8)C4—C5—C6—C7178.61 (8)
S1—C1—C2—C366.54 (10)C5—C6—C7—C80.73 (13)
C1—C2—C3—S264.81 (10)C6—C7—C8—C90.18 (14)
C4—S2—C3—C257.45 (8)C6—C7—C8—N1178.43 (8)
C3—S2—C4—C5179.49 (6)O1—N1—C8—C7177.77 (8)
C3—S2—C4—S158.85 (6)O2—N1—C8—C72.17 (12)
C1—S1—C4—C5179.95 (6)O1—N1—C8—C93.56 (12)
C1—S1—C4—S259.74 (6)O2—N1—C8—C9176.50 (9)
S2—C4—C5—C6117.37 (8)C7—C8—C9—C100.79 (14)
S1—C4—C5—C6119.01 (8)N1—C8—C9—C10177.81 (8)
S2—C4—C5—C1063.01 (10)C8—C9—C10—C50.50 (14)
S1—C4—C5—C1060.60 (10)C6—C5—C10—C90.38 (14)
C10—C5—C6—C71.01 (14)C4—C5—C10—C9179.24 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O2i0.932.593.3346 (12)137
C1—H1A···Cg1ii0.972.603.4972 (10)154
Symmetry codes: (i) x+5/2, y, z+1/2; (ii) x+3/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H11NO2S2
Mr241.32
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)8.7724 (1), 10.2079 (1), 11.9942 (1)
V3)1074.05 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.47
Crystal size (mm)0.46 × 0.22 × 0.08
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.813, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
30643, 4725, 4511
Rint0.038
(sin θ/λ)max1)0.807
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.061, 1.06
No. of reflections4725
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.25
Absolute structureFlack (1983), 2050 Friedel pairs
Absolute structure parameter0.01 (4)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O2i0.932.593.3346 (12)137
C1—H1A···Cg1ii0.972.603.4972 (10)154
Symmetry codes: (i) x+5/2, y, z+1/2; (ii) x+3/2, y, z+1/2.
 

Acknowledgements

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for Science Fund grant No. 305/PFIZIK/613312. ACM and SG acknowledge the DST (grant No. SR/S1/OC-13/2005), Government of India, for financial support. ACM thanks the UGC, Government of India, for a fellowship. The authors also thank the Universiti Sains Malaysia for Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Kia, R., Maity, A. C. & Goswami, S. (2009). Acta Cryst. E65, o173.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGoswami, S. P. & Maity, A. C. (2008). Tetrahedron Lett. 49, 3092–3096.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds