organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(4-Pyridylamino)pyridinium perchlorate

aLyman Briggs College, Department of Chemistry, Michigan State University, East Lansing, MI 48825, USA
*Correspondence e-mail: laduca@msu.edu

(Received 26 January 2009; accepted 27 January 2009; online 31 January 2009)

In the title salt, C10H10N3+·ClO4, the 4-(4-pyridylamino)­pyridinium cations are linked into chains via N—H⋯N hydrogen bonding and into layers by C—H⋯π inter­actions [C⋯Cg = 3.3875 (19) Å]. Perchlorate ions are anchored to the layer motifs by N—H⋯O hydrogen bonding. The perchlorate anion was found to be disordered about a Cl—O axis, with two sites, each of equal occupancy, being resolved for the three remaining O atoms.

Related literature

For divalent metal adipate coordination polymers incorporating 4,4′-dipyridylamine as a ligand, see: Montney et al. (2007[Montney, M. R., Mallika Krishnan, S., Supkowski, R. M. & LaDuca, R. L. (2007). Inorg. Chem. 46, 7362-7370.]).

[Scheme 1]

Experimental

Crystal data
  • C10H10N3+·ClO4

  • Mr = 271.66

  • Monoclinic, P 21 /c

  • a = 7.6254 (10) Å

  • b = 15.991 (2) Å

  • c = 9.8358 (13) Å

  • β = 101.913 (1)°

  • V = 1173.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 173 (2) K

  • 0.36 × 0.24 × 0.18 mm

Data collection
  • Bruker SMART 1K diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.]) Tmin = 0.907, Tmax = 0.941

  • 12615 measured reflections

  • 2728 independent reflections

  • 2165 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.096

  • S = 1.03

  • 2728 reflections

  • 196 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯N3i 0.85 (2) 2.04 (2) 2.839 (2) 157 (2)
N2—H2N⋯O3Aii 0.85 (2) 2.17 (2) 2.873 (8) 140.2 (18)
N2—H2N⋯O4ii 0.85 (2) 2.27 (2) 3.098 (5) 166.1 (19)
Symmetry codes: (i) [x-1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2006[Bruker (2006). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalMaker (Palmer, 2007[Palmer, D. (2007). CrystalMaker. CrystalMaker Software, Bicester, Oxfordshire, England.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The dipodal tethering ligand 4,4'-dipyridylamine (dpa) has proven beneficial for the construction of divalent metal adipate coordination polymers with novel topologies (Montney et al., 2007). In an attempt to probe the effect of alkyl group substitution on coordination polymer structure by using methyladipate, colourless crystals of the title salt (I) were obtained.

The asymmetric unit of (I) comprises a Hdpa+ cation and a perchlorate ion, with three of its O atoms disordered equally over two positions (Fig. 1). The Hdpa+ cations aggregate into supramolecular chains, aligned along [201] by means of N—H···N hydrogen bonding interactions between protonated and unprotonated pyridyl rings, Table 1. These chains are organized into layers (Fig. 2), oriented parallel to the ac-plane, and connected by C—H···π interactions between pyridyl rings in neighbouring Hdpa+ cations [C1—H1···Cg(N2,C6–C10)i = 2.82 Å, C1···Cgi = 3.3875 (19) Å with angle at H1 = 119° for i = -1+x, y, z]. Supramolecular interactions are optimized by the 33.77 (8)° torsion angle between the pyridyl rings. Perchlorate anions are anchored to the layer motifs by N—H···O hydrogen bonding; the layers stack along the b-direction (Fig. 3)

Related literature top

For divalent metal adipate coordination polymers incorporating 4,4'-dipyridylamine as a ligand, see: Montney et al. (2007).

Experimental top

All chemicals were obtained commercially. Cadmium perchlorate hydrate (20 mg, 0.064 mmol) and methyladipic acid (10 mg, 0.064 mmol) were dissolved in water (1.5 ml) in a glass vial. A 0.75 ml aliquot of a 1:1 water:ethanol mixture was carefully layered onto the aqueous solution, followed by an ethanolic solution (1.5 ml) of 4,4'-dipyridylamine (22 mg, 0.12 mmol). Colourless blocks of the title salt formed after 2 weeks.

Refinement top

All H atoms bound to C atoms were placed in calculated positions, with C—H = 0.95 Å and refined in riding mode with Uiso = 1.2Ueq(C). The H atoms bound to N atoms were found via a Fourier difference map, restrained with N—H = 0.85 (2) Å, and refined with Uiso = 1.2Ueq(N). The perchlorate was disordered about a Cl—O axis with two sites, each of equal occupancy, being resolved for the three remaining O atoms. All atoms of the disordered model were refined anisotropcially.

Computing details top

Data collection: SMART (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (Palmer, 2007); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing 50% probability ellipsoids and atom numbering scheme. H atom positions are shown as grey sticks. Only one of the disordered set of perchlorate positions is shown. Colour code: green Cl, light blue N, red O, black C.
[Figure 2] Fig. 2. A layer of [C10H10N3]+ cations in (I). The N—H···N interactions are depicted as dashed lines.
[Figure 3] Fig. 3. Stacking diagram for (I), viewed slightly offset from the b-direction.
4-(4-Pyridylamino)pyridinium perchlorate top
Crystal data top
C10H10N3+·ClO4F(000) = 560
Mr = 271.66Dx = 1.538 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 12615 reflections
a = 7.6254 (10) Åθ = 2.5–28.3°
b = 15.991 (2) ŵ = 0.34 mm1
c = 9.8358 (13) ÅT = 173 K
β = 101.913 (1)°Block, colourless
V = 1173.5 (3) Å30.36 × 0.24 × 0.18 mm
Z = 4
Data collection top
Bruker SMART 1K
diffractometer
2728 independent reflections
Radiation source: fine-focus sealed tube2165 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω scansθmax = 28.3°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
h = 99
Tmin = 0.907, Tmax = 0.941k = 2020
12615 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0377P)2 + 0.7438P]
where P = (Fo2 + 2Fc2)/3
2728 reflections(Δ/σ)max < 0.001
196 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C10H10N3+·ClO4V = 1173.5 (3) Å3
Mr = 271.66Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.6254 (10) ŵ = 0.34 mm1
b = 15.991 (2) ÅT = 173 K
c = 9.8358 (13) Å0.36 × 0.24 × 0.18 mm
β = 101.913 (1)°
Data collection top
Bruker SMART 1K
diffractometer
2728 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
2165 reflections with I > 2σ(I)
Tmin = 0.907, Tmax = 0.941Rint = 0.039
12615 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.39 e Å3
2728 reflectionsΔρmin = 0.32 e Å3
196 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.21340 (6)0.43473 (3)0.70621 (5)0.03353 (14)
O20.2109 (9)0.5174 (3)0.6429 (5)0.0405 (12)0.50
O30.3562 (15)0.4011 (7)0.6502 (10)0.057 (2)0.50
O40.2567 (7)0.4511 (3)0.8496 (4)0.0676 (13)0.50
O2A0.2135 (9)0.4032 (7)0.8406 (6)0.169 (4)0.50
O3A0.2109 (10)0.5200 (5)0.6966 (10)0.124 (4)0.50
O4A0.3645 (17)0.3918 (7)0.6858 (13)0.095 (4)0.50
O10.0503 (2)0.39806 (10)0.6382 (2)0.0597 (5)
N10.0749 (2)0.35317 (10)0.28489 (16)0.0309 (3)
H1N0.011 (3)0.3422 (13)0.325 (2)0.037*
N20.52241 (19)0.38493 (9)0.11764 (16)0.0280 (3)
H2N0.579 (3)0.4301 (13)0.141 (2)0.034*
N30.8017 (2)0.22960 (10)0.10972 (16)0.0318 (3)
C10.1057 (2)0.29873 (11)0.18885 (19)0.0309 (4)
H10.02530.25340.16280.037*
C20.2499 (2)0.30704 (11)0.12757 (19)0.0287 (4)
H20.26790.26870.05790.034*
C30.3713 (2)0.37270 (10)0.16845 (17)0.0245 (3)
C40.3305 (2)0.43069 (11)0.26600 (18)0.0290 (4)
H40.40600.47770.29260.035*
C50.1831 (2)0.41920 (12)0.32180 (19)0.0321 (4)
H50.15650.45830.38750.039*
C60.6948 (2)0.19706 (12)0.03119 (19)0.0296 (4)
H60.68560.13790.02750.036*
C70.7192 (2)0.36562 (11)0.04063 (19)0.0303 (4)
H70.73120.42460.04610.036*
C80.6077 (2)0.33074 (10)0.04003 (17)0.0247 (3)
C90.5971 (2)0.24396 (11)0.04488 (18)0.0272 (4)
H90.52400.21750.09950.033*
C100.8118 (2)0.31334 (12)0.11227 (19)0.0335 (4)
H100.88730.33810.16670.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0299 (2)0.0328 (2)0.0376 (3)0.00006 (18)0.00622 (17)0.00398 (18)
O20.049 (2)0.022 (2)0.055 (2)0.0091 (17)0.0214 (18)0.0102 (17)
O30.044 (4)0.071 (5)0.065 (3)0.011 (3)0.034 (3)0.009 (2)
O40.107 (4)0.063 (3)0.0306 (18)0.023 (2)0.010 (2)0.0062 (17)
O2A0.115 (5)0.327 (12)0.050 (3)0.121 (7)0.018 (3)0.064 (5)
O3A0.037 (3)0.037 (3)0.279 (11)0.005 (2)0.006 (5)0.067 (5)
O4A0.047 (4)0.045 (3)0.183 (11)0.022 (3)0.002 (5)0.033 (6)
O10.0370 (8)0.0382 (8)0.0990 (14)0.0130 (7)0.0028 (8)0.0019 (9)
N10.0262 (7)0.0354 (8)0.0359 (8)0.0032 (6)0.0175 (6)0.0061 (7)
N20.0236 (7)0.0258 (7)0.0379 (8)0.0042 (6)0.0140 (6)0.0066 (6)
N30.0298 (8)0.0373 (9)0.0313 (8)0.0015 (6)0.0133 (6)0.0035 (6)
C10.0249 (8)0.0270 (9)0.0427 (10)0.0002 (7)0.0112 (8)0.0035 (8)
C20.0255 (8)0.0281 (9)0.0350 (9)0.0008 (7)0.0115 (7)0.0041 (7)
C30.0222 (8)0.0256 (8)0.0271 (8)0.0029 (6)0.0084 (6)0.0030 (7)
C40.0269 (8)0.0273 (9)0.0339 (9)0.0007 (7)0.0091 (7)0.0042 (7)
C50.0304 (9)0.0366 (10)0.0316 (9)0.0079 (8)0.0114 (7)0.0014 (8)
C60.0256 (8)0.0289 (9)0.0357 (9)0.0009 (7)0.0095 (7)0.0036 (7)
C70.0286 (9)0.0290 (9)0.0360 (9)0.0008 (7)0.0129 (7)0.0030 (7)
C80.0199 (7)0.0298 (9)0.0252 (8)0.0001 (6)0.0067 (6)0.0025 (7)
C90.0227 (8)0.0293 (9)0.0323 (9)0.0021 (7)0.0118 (7)0.0007 (7)
C100.0311 (9)0.0410 (11)0.0331 (9)0.0016 (8)0.0175 (8)0.0015 (8)
Geometric parameters (Å, º) top
Cl1—O3A1.366 (7)C1—H10.9500
Cl1—O4A1.391 (11)C2—C31.402 (2)
Cl1—O41.405 (4)C2—H20.9500
Cl1—O11.4125 (15)C3—C41.414 (2)
Cl1—O2A1.414 (5)C4—C51.362 (2)
Cl1—O31.423 (8)C4—H40.9500
Cl1—O21.459 (5)C5—H50.9500
N1—C11.341 (2)C6—C91.381 (2)
N1—C51.343 (2)C6—H60.9500
N1—H1N0.85 (2)C7—C101.378 (2)
N2—C31.362 (2)C7—C81.394 (2)
N2—C81.400 (2)C7—H70.9500
N2—H2N0.85 (2)C8—C91.391 (2)
N3—C61.338 (2)C9—H90.9500
N3—C101.342 (2)C10—H100.9500
C1—C21.366 (2)
O3A—Cl1—O4A118.9 (6)N2—C3—C2124.10 (15)
O3A—Cl1—O1112.5 (3)N2—C3—C4118.42 (16)
O4A—Cl1—O1113.7 (5)C2—C3—C4117.46 (15)
O4—Cl1—O1123.6 (2)C5—C4—C3120.02 (17)
O3A—Cl1—O2A114.7 (6)C5—C4—H4120.0
O4A—Cl1—O2A96.8 (7)C3—C4—H4120.0
O1—Cl1—O2A97.2 (2)N1—C5—C4120.63 (17)
O4—Cl1—O3114.8 (5)N1—C5—H5119.7
O1—Cl1—O3109.2 (5)C4—C5—H5119.7
O4—Cl1—O2103.9 (3)N3—C6—C9124.21 (17)
O1—Cl1—O2103.9 (3)N3—C6—H6117.9
O3—Cl1—O296.9 (5)C9—C6—H6117.9
C1—N1—C5120.91 (15)C10—C7—C8119.04 (16)
C1—N1—H1N117.0 (14)C10—C7—H7120.5
C5—N1—H1N121.9 (14)C8—C7—H7120.5
C3—N2—C8129.38 (15)C9—C8—C7117.72 (15)
C3—N2—H2N116.3 (14)C9—C8—N2124.18 (15)
C8—N2—H2N114.1 (14)C7—C8—N2117.97 (15)
C6—N3—C10116.29 (15)C6—C9—C8118.78 (15)
N1—C1—C2121.48 (17)C6—C9—H9120.6
N1—C1—H1119.3C8—C9—H9120.6
C2—C1—H1119.3N3—C10—C7123.95 (16)
C1—C2—C3119.35 (16)N3—C10—H10118.0
C1—C2—H2120.3C7—C10—H10118.0
C3—C2—H2120.3
C5—N1—C1—C21.6 (3)C10—N3—C6—C90.1 (3)
N1—C1—C2—C31.7 (3)C10—C7—C8—C90.6 (3)
C8—N2—C3—C213.5 (3)C10—C7—C8—N2176.70 (16)
C8—N2—C3—C4168.15 (17)C3—N2—C8—C926.6 (3)
C1—C2—C3—N2177.63 (17)C3—N2—C8—C7157.57 (18)
C1—C2—C3—C44.0 (3)N3—C6—C9—C80.5 (3)
N2—C3—C4—C5178.24 (16)C7—C8—C9—C60.8 (3)
C2—C3—C4—C53.3 (3)N2—C8—C9—C6176.68 (16)
C1—N1—C5—C42.4 (3)C6—N3—C10—C70.4 (3)
C3—C4—C5—N10.2 (3)C8—C7—C10—N30.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N3i0.85 (2)2.04 (2)2.839 (2)157 (2)
N2—H2N···O3Aii0.85 (2)2.17 (2)2.873 (8)140.2 (18)
N2—H2N···O4ii0.85 (2)2.27 (2)3.098 (5)166.1 (19)
Symmetry codes: (i) x1, y+1/2, z+1/2; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC10H10N3+·ClO4
Mr271.66
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)7.6254 (10), 15.991 (2), 9.8358 (13)
β (°) 101.913 (1)
V3)1173.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.36 × 0.24 × 0.18
Data collection
DiffractometerBruker SMART 1K
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.907, 0.941
No. of measured, independent and
observed [I > 2σ(I)] reflections
12615, 2728, 2165
Rint0.039
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.096, 1.03
No. of reflections2728
No. of parameters196
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.32

Computer programs: SMART (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalMaker (Palmer, 2007).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N3i0.85 (2)2.04 (2)2.839 (2)157 (2)
N2—H2N···O3Aii0.85 (2)2.17 (2)2.873 (8)140.2 (18)
N2—H2N···O4ii0.85 (2)2.27 (2)3.098 (5)166.1 (19)
Symmetry codes: (i) x1, y+1/2, z+1/2; (ii) x+1, y+1, z+1.
 

Acknowledgements

The authors gratefully acknowledge the donors of the American Chemical Society Petroleum Research Fund for funding this work.

References

First citationBruker (2006). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMontney, M. R., Mallika Krishnan, S., Supkowski, R. M. & LaDuca, R. L. (2007). Inorg. Chem. 46, 7362–7370.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPalmer, D. (2007). CrystalMaker. CrystalMaker Software, Bicester, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds