organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 4-but­­oxy-3-meth­oxy­benzoate

aCollege of Science, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: wanghaibo@njut.edu.cn

(Received 13 January 2009; accepted 24 January 2009; online 31 January 2009)

The title compound, C13H18O4, is an inter­mediate product in the synthesis of quinazoline derivatives. Crystal structure analysis shows that the benzene–butoxy Car—O—C—C torsion angle is 175.3 (2)° and that the benzene–methoxycarbonyl Car—C—O—C torsion angle is 175.2 (2)°. Torsion angles close to 180° indicate that the molecule is almost planar.

Related literature

For general background, see: Knesl et al. (2006[Knesl, P., Roeseling, D. & Jordis, U. (2006). Molecules, 11, 286-297.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C13H18O4

  • Mr = 238.27

  • Triclinic, [P \overline 1]

  • a = 7.9660 (16) Å

  • b = 9.1630 (18) Å

  • c = 10.143 (2) Å

  • α = 64.80 (2)°

  • β = 70.96 (3)°

  • γ = 79.26 (3)°

  • V = 632.3 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 (2) K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.973, Tmax = 0.991

  • 2474 measured reflections

  • 2294 independent reflections

  • 1567 reflections with I > 2σ(I)

  • Rint = 0.067

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.168

  • S = 1.00

  • 2294 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

As part of our ongoing studies on quinazoline derivatives (Knesl et al., 2006), we report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Ring A (C4–C9) is, of course, planar.

Related literature top

For general background, see: Knesl et al. (2006). For bond-length data, see: Allen et al. (1987).

Experimental top

For the preparation of the title compound, methyl 3-methoxy-4-hydroxybenzoate (55 mmol), 1-bromobutane (110 mmol) and potassium carbonate (165 mmol) were mixed with DMF (60 ml), and then the mixture was heated to reflux for 2 h. Reaction progress was monitored by TLC. After cooling and filtration, the title compound was obtained (yield 92%, m.p. 317 K). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethyl acetate solution.

Refinement top

H atoms were positioned geometrically, with C—H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme.
Methyl 4-butoxy-3-methoxybenzoate top
Crystal data top
C13H18O4Z = 2
Mr = 238.27F(000) = 256
Triclinic, P1Dx = 1.252 Mg m3
Hall symbol: -P 1Melting point: 317 K
a = 7.9660 (16) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.1630 (18) ÅCell parameters from 25 reflections
c = 10.143 (2) Åθ = 9–12°
α = 64.80 (2)°µ = 0.09 mm1
β = 70.96 (3)°T = 293 K
γ = 79.26 (3)°Block, colourless
V = 632.3 (2) Å30.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1567 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.067
Graphite monochromatorθmax = 25.3°, θmin = 2.3°
ω/2θ scansh = 09
Absorption correction: ψ scan
(North et al., 1968)
k = 1011
Tmin = 0.973, Tmax = 0.991l = 1112
2474 measured reflections3 standard reflections every 200 reflections
2294 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.07P)2 + 0.43P]
where P = (Fo2 + 2Fc2)/3
2294 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C13H18O4γ = 79.26 (3)°
Mr = 238.27V = 632.3 (2) Å3
Triclinic, P1Z = 2
a = 7.9660 (16) ÅMo Kα radiation
b = 9.1630 (18) ŵ = 0.09 mm1
c = 10.143 (2) ÅT = 293 K
α = 64.80 (2)°0.30 × 0.20 × 0.10 mm
β = 70.96 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1567 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.067
Tmin = 0.973, Tmax = 0.9913 standard reflections every 200 reflections
2474 measured reflections intensity decay: 1%
2294 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.168H-atom parameters constrained
S = 1.00Δρmax = 0.18 e Å3
2294 reflectionsΔρmin = 0.21 e Å3
154 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3147 (2)0.6241 (2)0.05115 (19)0.0488 (5)
O20.0656 (2)0.4271 (2)0.15700 (19)0.0516 (5)
O30.0117 (3)0.1304 (3)0.7289 (2)0.0733 (7)
O40.1887 (2)0.2708 (2)0.75552 (19)0.0570 (5)
C10.6296 (5)1.0667 (4)0.4050 (3)0.0749 (10)
H1A0.71581.14380.43580.112*
H1B0.52011.12260.42450.112*
H1C0.67320.99900.46120.112*
C20.5977 (4)0.9645 (4)0.2387 (3)0.0606 (8)
H2A0.55691.03480.18380.073*
H2B0.71010.91170.22040.073*
C30.4645 (3)0.8369 (3)0.1746 (3)0.0473 (6)
H3A0.34930.88840.18650.057*
H3B0.50160.76750.23050.057*
C40.4487 (4)0.7377 (3)0.0111 (3)0.0493 (7)
H4A0.56190.68060.00020.059*
H4B0.41890.80780.04380.059*
C50.2767 (3)0.5331 (3)0.2032 (3)0.0410 (6)
C60.3595 (3)0.5399 (3)0.3000 (3)0.0495 (7)
H6A0.45040.60980.26220.059*
C70.3085 (3)0.4438 (3)0.4524 (3)0.0477 (6)
H7A0.36390.45050.51720.057*
C80.1752 (3)0.3373 (3)0.5099 (3)0.0443 (6)
C90.0934 (3)0.3285 (3)0.4133 (3)0.0438 (6)
H9A0.00510.25590.45160.053*
C100.1400 (3)0.4256 (3)0.2606 (3)0.0401 (6)
C110.0929 (4)0.3439 (4)0.2120 (3)0.0564 (8)
H11A0.13140.35420.12780.085*
H11B0.18410.38950.27490.085*
H11C0.07030.23170.27020.085*
C120.1161 (3)0.2332 (3)0.6753 (3)0.0468 (6)
C130.1295 (4)0.1866 (4)0.9164 (3)0.0661 (8)
H13A0.18900.22390.96380.099*
H13B0.15620.07290.94250.099*
H13C0.00340.20660.95110.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0478 (10)0.0490 (11)0.0479 (10)0.0110 (8)0.0085 (8)0.0176 (8)
O20.0480 (10)0.0598 (12)0.0497 (10)0.0140 (9)0.0114 (8)0.0211 (9)
O30.0858 (16)0.0749 (15)0.0559 (12)0.0289 (13)0.0188 (11)0.0135 (11)
O40.0592 (12)0.0667 (13)0.0460 (10)0.0054 (10)0.0141 (9)0.0226 (9)
C10.076 (2)0.065 (2)0.066 (2)0.0173 (18)0.0084 (16)0.0119 (16)
C20.0603 (18)0.0566 (18)0.0607 (17)0.0145 (15)0.0097 (14)0.0198 (14)
C30.0466 (15)0.0402 (15)0.0547 (15)0.0003 (12)0.0074 (11)0.0241 (12)
C40.0486 (15)0.0425 (15)0.0589 (16)0.0092 (12)0.0099 (12)0.0228 (12)
C50.0390 (13)0.0368 (13)0.0485 (13)0.0017 (11)0.0093 (10)0.0215 (11)
C60.0443 (15)0.0510 (16)0.0575 (16)0.0088 (12)0.0119 (12)0.0245 (13)
C70.0444 (15)0.0497 (16)0.0563 (15)0.0033 (12)0.0201 (12)0.0254 (12)
C80.0394 (13)0.0425 (14)0.0528 (15)0.0072 (11)0.0137 (11)0.0236 (12)
C90.0403 (14)0.0397 (14)0.0536 (15)0.0013 (11)0.0115 (11)0.0228 (11)
C100.0361 (13)0.0417 (14)0.0498 (14)0.0055 (11)0.0125 (10)0.0274 (11)
C110.0539 (17)0.0673 (19)0.0517 (15)0.0164 (15)0.0143 (12)0.0217 (14)
C120.0418 (14)0.0487 (16)0.0534 (15)0.0075 (12)0.0184 (12)0.0235 (12)
C130.0680 (19)0.079 (2)0.0490 (16)0.0016 (17)0.0149 (14)0.0253 (15)
Geometric parameters (Å, º) top
O1—C51.364 (3)C4—H4B0.9700
O1—C41.427 (3)C5—C61.375 (3)
O2—C101.359 (3)C5—C101.411 (3)
O2—C111.423 (3)C6—C71.376 (4)
O3—C121.198 (3)C6—H6A0.9300
O4—C121.317 (3)C7—C81.385 (3)
O4—C131.429 (3)C7—H7A0.9300
C1—C21.501 (4)C8—C91.376 (3)
C1—H1A0.9600C8—C121.495 (4)
C1—H1B0.9600C9—C101.379 (3)
C1—H1C0.9600C9—H9A0.9300
C2—C31.510 (4)C11—H11A0.9600
C2—H2A0.9700C11—H11B0.9600
C2—H2B0.9700C11—H11C0.9600
C3—C41.488 (4)C13—H13A0.9600
C3—H3A0.9700C13—H13B0.9600
C3—H3B0.9700C13—H13C0.9600
C4—H4A0.9700
C5—O1—C4116.99 (19)C5—C6—C7120.4 (2)
C10—O2—C11117.84 (19)C5—C6—H6A119.8
C12—O4—C13116.2 (2)C7—C6—H6A119.8
C2—C1—H1A109.5C6—C7—C8120.5 (2)
C2—C1—H1B109.5C6—C7—H7A119.8
H1A—C1—H1B109.5C8—C7—H7A119.8
C2—C1—H1C109.5C9—C8—C7119.4 (2)
H1A—C1—H1C109.5C9—C8—C12119.2 (2)
H1B—C1—H1C109.5C7—C8—C12121.4 (2)
C1—C2—C3115.2 (3)C8—C9—C10121.2 (2)
C1—C2—H2A108.5C8—C9—H9A119.4
C3—C2—H2A108.5C10—C9—H9A119.4
C1—C2—H2B108.5O2—C10—C9125.5 (2)
C3—C2—H2B108.5O2—C10—C5115.7 (2)
H2A—C2—H2B107.5C9—C10—C5118.9 (2)
C4—C3—C2111.0 (2)O2—C11—H11A109.5
C4—C3—H3A109.4O2—C11—H11B109.5
C2—C3—H3A109.4H11A—C11—H11B109.5
C4—C3—H3B109.4O2—C11—H11C109.5
C2—C3—H3B109.4H11A—C11—H11C109.5
H3A—C3—H3B108.0H11B—C11—H11C109.5
O1—C4—C3110.7 (2)O3—C12—O4124.0 (2)
O1—C4—H4A109.5O3—C12—C8123.9 (2)
C3—C4—H4A109.5O4—C12—C8112.0 (2)
O1—C4—H4B109.5O4—C13—H13A109.5
C3—C4—H4B109.5O4—C13—H13B109.5
H4A—C4—H4B108.1H13A—C13—H13B109.5
O1—C5—C6125.3 (2)O4—C13—H13C109.5
O1—C5—C10115.1 (2)H13A—C13—H13C109.5
C6—C5—C10119.7 (2)H13B—C13—H13C109.5
C1—C2—C3—C4177.4 (3)C11—O2—C10—C5168.8 (2)
C5—O1—C4—C3175.3 (2)C8—C9—C10—O2179.1 (2)
C2—C3—C4—O1176.4 (2)C8—C9—C10—C51.3 (4)
C4—O1—C5—C61.4 (4)O1—C5—C10—O20.2 (3)
C4—O1—C5—C10178.3 (2)C6—C5—C10—O2179.9 (2)
O1—C5—C6—C7179.0 (2)O1—C5—C10—C9179.8 (2)
C10—C5—C6—C70.7 (4)C6—C5—C10—C90.4 (4)
C5—C6—C7—C81.0 (4)C13—O4—C12—O33.1 (4)
C6—C7—C8—C90.2 (4)C13—O4—C12—C8175.2 (2)
C6—C7—C8—C12179.3 (2)C9—C8—C12—O37.1 (4)
C7—C8—C9—C100.9 (4)C7—C8—C12—O3173.9 (3)
C12—C8—C9—C10178.1 (2)C9—C8—C12—O4171.2 (2)
C11—O2—C10—C911.6 (4)C7—C8—C12—O47.8 (4)

Experimental details

Crystal data
Chemical formulaC13H18O4
Mr238.27
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.9660 (16), 9.1630 (18), 10.143 (2)
α, β, γ (°)64.80 (2), 70.96 (3), 79.26 (3)
V3)632.3 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.973, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
2474, 2294, 1567
Rint0.067
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.168, 1.00
No. of reflections2294
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.21

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2003).

 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKnesl, P., Roeseling, D. & Jordis, U. (2006). Molecules, 11, 286–297.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds