inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Rietveld refinement of a natural cobaltian mansfieldite from synchrotron data

aMuseo di Storia Naturale – Sezione di Mineralogia, Universitá di Firenze, via La Pira 4, 50121 Firenze, Italy, and bDipartimento di Scienze della Terra, Universitá di Firenze, via La Pira 4, 50121 Firenze, Italy
*Correspondence e-mail: matteo.zoppi@unifi.it

(Received 3 December 2008; accepted 29 December 2008; online 10 January 2009)

A structural refinement of a natural sample of a Co-bearing mansfieldite, AlAsO4·2H2O [aluminium orthoarsenate(V) dihydrate], has been performed based on synchrotron powder diffraction data, with 5% of the octa­hedral Al sites replaced by Co. Mansfieldite is the aluminium analogue and an isotype of the mineral scorodite (FeAsO4·2H2O), with which it forms a solid solution. The framework structure is based on AsO4 tetra­hedra sharing their vertices with AlO4(H2O)2 octa­hedra. Three of the four H atoms belonging to the two water mol­ecules in cis positions take part in O—H⋯O hydrogen bonding.

Related literature

Mansfieldite (AlAsO4·2H2O) was first described by Allen et al. (1948[Allen, V. T., Fahey, J. J. & Axelrod, J. M. (1948). Am. Mineral. 33, 122-134.]) and the synthetic analogue was structurally charac­terised by Harrison (2000[Harrison, W. T. A. (2000). Acta Cryst. C56, e421.]). For the structures of isotypic minerals and synthetic compounds, see: Botelho et al. (1994[Botelho, N. F., Roger, G., d'Yvoire, F., Moëlo, Y. & Volfinger, M. (1994). Eur. J. Mineral. 6, 245-254.]), Tang et al. (2001[Tang, X., Gentiletti, M. J. & Lachgar, A. (2001). J. Chem. Crystallogr. 31, 45-50.]) (yanomamite, InAsO4·2H2O); Kniep et al. (1977[Kniep, R., Mootz, D. & Vegas, A. (1977). Acta Cryst. B33, 263-265.]) (variscite, AlPO4·2H2O); Hawthorne (1976[Hawthorne, F. C. (1976). Acta Cryst. B32, 2891-2892.]), Kitahama et al. (1975[Kitahama, K., Kiriyama, R. & Baba, Y. (1975). Acta Cryst. B31, 322-324.]), Xu et al. (2007[Xu, Y., Zhou, G.-P. & Zheng, X.-F. (2007). Acta Cryst. E63, i67-i69.]) (scorodite, FeAsO4·2H2O); Taxer & Bartl (2004[Taxer, K. & Bartl, H. (2004). Cryst. Res. Technol. 39, 1080-1088.]) (strengite, FePO4·2H2O); Loiseau et al. (1998[Loiseau, T., Paulet, C. & Ferey, G. (1998). C. R. Acad. Sci. Ser. IIc Chim. 1, 667-674.]) (synthetic GaPO4·2H2O); Mooney-Slater (1961[Mooney-Slater, R. C. L. (1961). Acta Cryst. 14, 1140-1146.]) (synthetic InPO4·2H2O and TlPO4·2H2O).

Experimental

Crystal data
  • AlAsO4·2H2O

  • Mr = 203.53

  • Orthorhombic, P b c a

  • a = 8.79263 (11) Å

  • b = 9.79795 (10) Å

  • c = 10.08393 (11) Å

  • V = 868.73 (2) Å3

  • Z = 8

  • Synchrotron radiation

  • λ = 0.68780 Å

  • μ = 7.25 mm−1

  • T = 298 K

  • Specimen shape: flat sheet

  • 5.0 × 5.0 × 0.4 mm

  • Particle morphology: powder, light pink

Data collection
  • ESRF BM08 beamline

  • Specimen mounted in transmission mode

  • Scan method: fixed

  • Absorption correction: for a cylinder mounted on the φ axis Tmin = 0.072, Tmax = 0.095

  • 2θmin = 6.0, 2θmax = 53.0°

  • Increment in 2θ = 0.01°

Refinement
  • Rp = 0.039

  • Rwp = 0.050

  • Rexp = 0.039

  • RB = 0.034

  • S = 1.31

  • Excluded region(s): none

  • Profile function: CW pseudo-Voigt

  • 60 parameters

  • No restraints

  • H-atom parameters not refined

  • Preferred orientation correction: Spherical harmonics ODF

Table 1
Selected bond lengths (Å)

Al1—O1 1.908 (4)
Al1—O2i 1.906 (4)
Al1—O3ii 1.850 (4)
Al1—O4iii 1.848 (4)
Al1—O5w 1.914 (4)
Al1—O6w 1.988 (4)
As2—O1 1.676 (3)
As2—O2 1.654 (3)
As2—O3 1.704 (4)
As2—O4 1.682 (4)
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) -x, -y, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5w—H51⋯O4i 0.83 1.78 2.607 (5) 168 (1)
O5w—H52⋯O1iv 0.71 2.03 2.614 (5) 161 (1)
O6w—H62⋯O3 0.93 1.71 2.587 (5) 156 (1)
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x+{\script{3\over 2}}, y, -z+{\script{3\over 2}}].

Data collection: local image plate reading software; cell refinement: GSAS (Larson & Von Dreele, 2004[Larson, A. C. & Von Dreele, R. B. (2004). GSAS. Report No. LAUR86-748. Los Alamos National Laboratory, New Mexico, USA.]) and EXPGUI (Toby, 2001[Toby, B. H. (2001). J. Appl. Cryst. 34, 210-213.]); data reduction: FIT2D (Hammersley, 1997[Hammersley, A. P. (1997). FIT2D. Internal Report No. ESRF97HA02T. ESRF, Grenoble, France.]); program(s) used to solve structure: atomic coordinates from Harrison (2000[Harrison, W. T. A. (2000). Acta Cryst. C56, e421.]); program(s) used to refine structure: GSAS and EXPGUI; molecular graphics: VICS (Izumi & Dilanian, 2005[Izumi, F. & Dilanian, R. A. (2005). IUCr Commission on Powder Diffraction Newsletter, No. 32, pp. 59-63.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

The mineral mansfieldite belongs to the general group of hydrous arsenates, a structure subgroup of variscite (AlPO4.2H2O), and has been known since the discovery of Allen et al. (1948). It is of white to pale gray colour and has a vitreous luster. It often develops encrustations, crust-like or rounded aggregates on the matrix, and individual crystals are rarely observed. While the structural data of synthetic mansfieldite were reported recently by Harrison (2000), no data regarding natural samples have been provided in literature up to now, probably because of the rare occurrence of crystalline material suitable for structural investigations. Rietveld refinement of a natural sample of a Co-bearing mansfieldite has now been carried out using synchrotron powder diffraction data (Fig. 1).

Mansfieldite crystallizes in the Pbca space group and is isostructural with the the arsenate minerals scorodite [FeAsO4.2H2O] (Xu et al., 2007; Hawthorne, 1976; Kitahama et al., 1975), yanomamite [InAsO4.2H2O] (Tang et al., 2001; Botelho et al., 1994), TlAsO4.2H2O (Mooney-Slater, 1961), and the phosphate minerals variscite [AlPO4.2H2O] (Kniep et al., 1977), strengite [FePO4.2H2O] (Taxer & Bartl, 2004), InPO4.2H2O (Tang et al., 2001; Mooney-Slater, 1961), GaPO4.2H2O (Loiseau et al., 1998) and TlPO4.2H2O (Mooney-Slater, 1961). Correspondingly to the mentioned arsenates, the structure of mansfieldite is composed of AsO4 tetrahedra and AlO4(H2O)2 octahedra, each tetrahedron being connected to four octahedra and each octahedron being connected to four tetrahedra, as shown in Fig. 2. The interatomic distances Al—O and As—O resulting from the refinement of the structure are reported in Table 1. The two water molecules are located in cis position, but the O atoms O5W and O6W do not participate in the linkage with the As—O4 tetrahedra, while three of the hydrogen atoms (H1, H2 and H3) take part in D—H···A bonds that link O5W to O4, O5W to O1, and O6W to O3, respectively (Table 2). Such a structure framework displays channels along b. With respect to the synthetic mansfieldite (Harrison, 2000), the natural sample shows a slightly smaller unit cell volume, which is the effect of slightly smaller octahedral (9.110 versus 9.187 Å3) and tetrahedral (2.428 versus 2.450 Å3) volumes. Also the distortion index of both the polyhedra, 0.019 and 0.008 for the octahedral and tetrahedral site, respectively, is larger than that calculated for the synthetic material, viz. 0.014 and 0.002. A slight distortion of the structure is probably due to the small amount of incorporated Co and other elements present in the structure of the natural sample. Bond valence calculations show slightly overbonded values of 3.036 and 5.079 valence units for the cation in the octahedral site and in the tetrahedral site, respectively. The isotropic thermal parameters for O5W and O6W, 0.0182 (12) and 0.0164 (12) Å2, respectively, are slightly larger than those of the other oxygen atoms and reveal a certain degree of disorder of the water molecules along the channels, since they are not taking part in the metal-oxygen-metal chains of the structure.

Related literature top

Mansfieldite (AlAsO4.2H2O) was first described by Allen et al. (1948) and the synthetic analogue structurally characterised by Harrison (2000). For the structures of isotypic minerals and synthetic compounds, see: Botelho et al. (1994); Tang et al. (2001) (yanomamite, InAsO4.2H2O); Kniep et al. (1977) (variscite, AlPO4.2H2O); Hawthorne (1976); Kitahama et al. (1975); Xu et al. (2007) (scorodite, FeAsO4.2H2O); Taxer & Bartl (2004) (strengite, FePO4.2H2O); Loiseau et al. (1998) (synthetic GaPO4.2H2O); Mooney-Slater (1961) (synthetic InPO4.2H2O and TlPO4.2H2O).

Experimental top

The specimen used in this study is from the locality of Mt. Cobalt, Cloncurry District, Queensland, Australia. Preliminarily, some transparent single crystals were selected from massive, light purple coloured, mansfieldite associated with smolianinovite [(Co,Ni,Mg,Ca)3(Fe3+,Al)2(AsO4)4.11H2O]. The average elemental chemical composition, determined using electron microprobe analyses, yielded the empirical chemical formula, calculated on a total of two cations per formula unit, (Al0.944Co3+0.046Cu2+0.005 Fe3+0.003 Zn2+0.002)Σ=1 (As0.972Al0.022P0.006)Σ=1O3.975.2H2O resulting in the simplified formula AlAsO4.2H2O. The excess Al resulting from the calculation has been arbitrarily assigned to the tetrahedral site. X-ray data collections of some single crystals, with a CCD equipped diffractometer, revealed that all the samples were actually polycrystalline aggregates and showed irregular and broadened spots typical of materials with high mosaicity. Refinements from single-crystal X-ray diffraction data yielded, in the best case, a not satisfactorily RF index of 6.54%. Fragments of pure mansfieldite were then ground and used for synchrotron X-ray data collection.

Refinement top

Structural data were refined employing the Rietveld method and starting from the atomic coordinates provided by Harrison (2000), except for the H atom parameters that were not refined but included in the model. The site occupancies were assigned according to the composition of the idealised chemical formula (Al0.95Co3+0.05)AsO4.2H2O, with 5% Co at the octahedral Al sites.

Computing details top

Data collection: local image plate reading software; cell refinement: GSAS (Larson & Von Dreele, 2004) and EXPGUI (Toby, 2001); data reduction: FIT2D (Hammersley, 1997); program(s) used to solve structure: atomic coordinates from Harrison (2000); program(s) used to refine structure: GSAS (Larson & Von Dreele, 2004) and EXPGUI (Toby, 2001); molecular graphics: VICS (Izumi & Dilanian, 2005); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. The observed, calculated, background and difference X-ray diffraction profile for natural mansfieldite. Bragg reflection positions are shown at the bottom.
[Figure 2] Fig. 2. The crystal structure of mansfieldite, viewed along the b axis. The unit cell is outlined and the hydrogen bonds are represented by dashed lines.
aluminium orthoarsenate(V) dihydrate top
Crystal data top
AlAsO4·2H2OF(000) = 789
Mr = 203.53Dx = 3.112 Mg m3
Orthorhombic, PbcaSynchrotron radiation, λ = 0.68780 Å
Hall symbol: -P 2ac 2abµ = 7.25 mm1
a = 8.79263 (11) ÅT = 298 K
b = 9.79795 (10) ÅParticle morphology: powder
c = 10.08393 (11) Ålight pink
V = 868.73 (2) Å3flat sheet, 5.0 × 5.0 mm
Z = 8
Data collection top
ESRF BM08 Beamline
diffractometer
Absorption correction: for a cylinder mounted on the ϕ axis
Debye-Scherrer, Term (= MU.r/wave) = 2.4540. Correction is not refined.
Data collection mode: transmissionTmin = 0.072, Tmax = 0.095
Scan method: Stationary detector
Refinement top
Refinement on InetExcluded region(s): none
Least-squares matrix: fullProfile function: CW Pseudo-Voigt
Rp = 0.03960 parameters
Rwp = 0.050no restraints
Rexp = 0.039H-atom parameters not refined
RBragg = 0.034 w = 1/[Yi]
R(F2) = 0.03400(Δ/σ)max = 0.01
χ2 = 1.716Background function: GSAS Background function number 1 with 14 terms. Shifted Chebyshev function of 1st kind
? data pointsPreferred orientation correction: Spherical Harmonics ODF
Crystal data top
AlAsO4·2H2OV = 868.73 (2) Å3
Mr = 203.53Z = 8
Orthorhombic, PbcaSynchrotron radiation, λ = 0.68780 Å
a = 8.79263 (11) ŵ = 7.25 mm1
b = 9.79795 (10) ÅT = 298 K
c = 10.08393 (11) Åflat sheet, 5.0 × 5.0 mm
Data collection top
ESRF BM08 Beamline
diffractometer
Absorption correction: for a cylinder mounted on the ϕ axis
Debye-Scherrer, Term (= MU.r/wave) = 2.4540. Correction is not refined.
Data collection mode: transmissionTmin = 0.072, Tmax = 0.095
Scan method: Stationary detector
Refinement top
Rp = 0.039χ2 = 1.716
Rwp = 0.050? data points
Rexp = 0.03960 parameters
RBragg = 0.034no restraints
R(F2) = 0.03400H-atom parameters not refined
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Al10.1478 (3)0.18068 (16)0.12682 (18)0.0087 (5)*0.95
Co10.1478 (3)0.18068 (16)0.12682 (18)0.0087 (5)*0.05
As20.03632 (9)0.13857 (6)0.15042 (6)0.00875 (18)*
O10.0106 (4)0.0308 (3)0.1440 (3)0.0055 (8)*
O20.0003 (5)0.1986 (3)0.3005 (3)0.0077 (12)*
O30.2208 (5)0.1729 (4)0.1105 (3)0.0086 (12)*
O40.0815 (5)0.2171 (3)0.0434 (4)0.0063 (11)*
O5w0.2296 (5)0.1244 (4)0.2939 (3)0.0182 (12)*
O6w0.3186 (4)0.0696 (4)0.0559 (3)0.0164 (12)*
H510.190.170.3540.08*
H520.3090.1140.3010.036*
H610.3470.0930.010.033*
H620.2950.0230.0530.047*
Geometric parameters (Å, º) top
Al1—O11.908 (4)As2—O41.682 (4)
Al1—O2i1.906 (4)O5W—H510.8295
Al1—O3ii1.850 (4)O5W—H520.709
Al1—O4iii1.848 (4)O6W—H610.746
Al1—O5w1.914 (4)O6W—H620.931
Al1—O6w1.988 (4)O1—H52iv2.028
As2—O11.676 (3)O3—H621.709
As2—O21.654 (3)O4—H51v1.790
As2—O31.704 (4)
O1—Al1—O2vi90.64 (19)O1—As2—O3108.35 (18)
O1—Al1—O3ii179.4743 (18)O1—As2—O4110.18 (18)
O1—Al1—O4iii91.93 (18)O2—As2—O3109.2 (2)
O1—Al1—O5w86.31 (15)O2—As2—O4107.83 (19)
O1—Al1—O6w95.09 (18)O3—As2—O4110.13 (18)
O2vi—Al1—O3ii88.84 (18)Al1—O1—As2132.9 (2)
O2vi—Al1—O4iii91.28 (18)Al1vii—O2—As2134.7 (2)
O2vi—Al1—O5w95.56 (17)Al1viii—O3—As2136.6 (2)
O2vi—Al1—O6w173.9 (2)Al1iii—O4—As2134.6 (2)
O3ii—Al1—O4iii87.99 (19)Al1—O5w—H51109.3 (3)
O3ii—Al1—O5w93.84 (18)Al1—O5w—H52120.0 (3)
O3ii—Al1—O6w85.4 (2)H51—O5w—H52114.6
O4iii—Al1—O5w172.94 (19)Al1—O6w—H61113.9 (4)
O4iii—Al1—O6w90.54 (17)Al1—O6w—H62112.1 (3)
O5w—Al1—O6w82.82 (17)H61—O6w—H62110.3
O1—As2—O2111.20 (17)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z; (iii) x, y, z; (iv) x1/2, y, z+1/2; (v) x, y1/2, z+1/2; (vi) x, y+3/2, z+3/2; (vii) x1, y+1/2, z+1/2; (viii) x+1/2, y1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5w—H51···O4i0.831.782.607 (5)168 (1)
O5w—H52···O1ix0.712.032.614 (5)161 (1)
O6w—H62···O30.931.712.587 (5)156 (1)
Symmetry codes: (i) x, y+1/2, z+1/2; (ix) x+3/2, y, z+3/2.

Experimental details

Crystal data
Chemical formulaAlAsO4·2H2O
Mr203.53
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)8.79263 (11), 9.79795 (10), 10.08393 (11)
V3)868.73 (2)
Z8
Radiation typeSynchrotron, λ = 0.68780 Å
µ (mm1)7.25
Specimen shape, size (mm)Flat sheet, 5.0 × 5.0
Data collection
DiffractometerESRF BM08 Beamline
diffractometer
Specimen mounting?
Data collection modeTransmission
Scan methodStationary detector
Absorption correctionFor a cylinder mounted on the ϕ axis
Debye-Scherrer, Term (= MU.r/wave) = 2.4540. Correction is not refined.
Tmin, Tmax0.072, 0.095
2θ values (°)2θfixed = ?
Refinement
R factors and goodness of fitRp = 0.039, Rwp = 0.050, Rexp = 0.039, RBragg = 0.034, R(F2) = 0.03400, χ2 = 1.716
No. of data points?
No. of parameters60
No. of restraintsno
H-atom treatmentH-atom parameters not refined

Computer programs: local image plate reading software, GSAS (Larson & Von Dreele, 2004) and EXPGUI (Toby, 2001), FIT2D (Hammersley, 1997), atomic coordinates from Harrison (2000), VICS (Izumi & Dilanian, 2005), publCIF (Westrip, 2009).

Selected bond lengths (Å) top
Al1—O11.908 (4)Al1—O6w1.988 (4)
Al1—O2i1.906 (4)As2—O11.676 (3)
Al1—O3ii1.850 (4)As2—O21.654 (3)
Al1—O4iii1.848 (4)As2—O31.704 (4)
Al1—O5w1.914 (4)As2—O41.682 (4)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z; (iii) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5w—H51···O4i0.82951.7842.607 (5)168.19 (28)
O5w—H52···O1iv0.7092.0282.614 (5)160.98 (27)
O6w—H62···O30.9311.7092.587 (5)155.80 (26)
Symmetry codes: (i) x, y+1/2, z+1/2; (iv) x+3/2, y, z+3/2.
 

Acknowledgements

This work was funded by the research grant No. 21403(296) of the University of Florence. We thank Steve Sorrel for supplying the specimen.

References

First citationAllen, V. T., Fahey, J. J. & Axelrod, J. M. (1948). Am. Mineral. 33, 122–134.  CAS Google Scholar
First citationBotelho, N. F., Roger, G., d'Yvoire, F., Moëlo, Y. & Volfinger, M. (1994). Eur. J. Mineral. 6, 245–254.  CAS Google Scholar
First citationHammersley, A. P. (1997). FIT2D. Internal Report No. ESRF97HA02T. ESRF, Grenoble, France.  Google Scholar
First citationHarrison, W. T. A. (2000). Acta Cryst. C56, e421.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHawthorne, F. C. (1976). Acta Cryst. B32, 2891–2892.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationIzumi, F. & Dilanian, R. A. (2005). IUCr Commission on Powder Diffraction Newsletter, No. 32, pp. 59–63.  Google Scholar
First citationKitahama, K., Kiriyama, R. & Baba, Y. (1975). Acta Cryst. B31, 322–324.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationKniep, R., Mootz, D. & Vegas, A. (1977). Acta Cryst. B33, 263–265.  CrossRef CAS IUCr Journals Google Scholar
First citationLarson, A. C. & Von Dreele, R. B. (2004). GSAS. Report No. LAUR86-748. Los Alamos National Laboratory, New Mexico, USA.  Google Scholar
First citationLoiseau, T., Paulet, C. & Ferey, G. (1998). C. R. Acad. Sci. Ser. IIc Chim. 1, 667–674.  CAS Google Scholar
First citationMooney-Slater, R. C. L. (1961). Acta Cryst. 14, 1140–1146.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationTang, X., Gentiletti, M. J. & Lachgar, A. (2001). J. Chem. Crystallogr. 31, 45–50.  Web of Science CrossRef CAS Google Scholar
First citationTaxer, K. & Bartl, H. (2004). Cryst. Res. Technol. 39, 1080–1088.  Web of Science CrossRef CAS Google Scholar
First citationToby, B. H. (2001). J. Appl. Cryst. 34, 210–213.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar
First citationXu, Y., Zhou, G.-P. & Zheng, X.-F. (2007). Acta Cryst. E63, i67–i69.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds