metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages m215-m216

Poly[ethane-1,2-di­ammonium tetra-μ-chlorido-cadmate(II)]

aDepartment of Chemistry, Faculty of Sciences, University Mohammed 1st, Po Box 717, 60000 Oujda, Morocco, and bInstitute of Physics, Na Slovance 2, 182 21 Praha 8, Czech Republic
*Correspondence e-mail: belbali@fso.ump.ma

(Received 17 December 2008; accepted 15 January 2009; online 23 January 2009)

The framework of the title compound, {(NH3CH2CH2NH3)[CdCl4]}n, is built upon layers parallel to (100) made up from corner-sharing [CdCl6] octa­hedra. NH3CH2CH2NH32+ cations are situated between the layers and are linked to the layers via an N—H⋯Cl hydrogen-bonding network. The Cd atom is located on an inversion centre and the coordination environment is described as highly distorted octa­hedral.

Related literature

Isotypic structures have been reported by Berg & Sotofte (1976[Berg, R. W. & Sotofte, I. (1976). Acta Chem. Scand. Ser. A, 30, 843-844.]), (NH3CH2CH2NH3)[PdCl4]; Birrell & Zaslow (1972[Birrell, G. B. & Zaslow, B. (1972). J. Inorg. Nucl. Chem. 34, 1751.]), (NH3CH2CH2NH3)[CuCl4]; Tichý et al. (1978[Tichý, K., Beneš, J., Hälg, W. & Arend, H. (1978). Acta Cryst. B34, 2970-2981.]), (NH3CH2CH2NH3)[MnCl4]; Skaarup & Berg (1978[Skaarup, S. & Berg, R. W. (1978). J. Solid State Chem. 26, 59-67.]), (NH3CH2CH2NH3)[NiCl4]. For the structures of related compounds, see: Woode et al. (1987[Woode, M. K., Bryan, R. F. & Bekoe, D. A. (1987). Acta Cryst. C43, 2324-2327.]), CdCl2.CH5N2S·H2O; Furmanova et al. (1996[Furmanova, N. G., Sulaimankulova, D. K., Resnyanskii, V. F. & Sulaimankulov, K. S. (1996). Kristallografiya, 41, 669-672.]), CdCl2·CO(NH2)2; Wang et al. (1993[Wang, B.-G., Cao, Y., Zhang, H.-F. & Ye, C. (1993). Rengong Jingti Xuebao 22, 341-344.]), CdCl2·NH2NHCONH2; Cavalca et al. (1960[Cavalca, L., Nardelli, M. & Fava, G. (1960). Acta Cryst. 13, 594-600.]), CdCl2.2(C2H5N3O2). For crystallographic background, see: Becker & Coppens (1974[Becker, P. J. & Coppens, P. (1974). Acta Cryst. A30, 129-147.]).

[Scheme 1]

Experimental

Crystal data
  • (C2H10N2)[CdCl4]

  • Mr = 316.3

  • Monoclinic, P 21 /c

  • a = 8.6205 (5) Å

  • b = 7.3425 (8) Å

  • c = 7.2937 (7) Å

  • β = 92.791 (6)°

  • V = 461.11 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.45 mm−1

  • T = 298 K

  • 0.27 × 0.13 × 0.08 mm

Data collection
  • Oxford Diffraction Gemini diffractometer with Atlas CCD detector

  • Absorption correction: analytical [implemented in CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]), according to Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.605, Tmax = 0.841

  • 6603 measured reflections

  • 960 independent reflections

  • 899 reflections with I > 3σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.010

  • wR(F2) = 0.027

  • S = 1.08

  • 960 reflections

  • 44 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—Cl1 2.6427 (5)
Cd1—Cl1i 2.6471 (5)
Cd1—Cl2 2.5585 (4)
Symmetry code: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H3⋯Cl1ii 0.87 2.35 3.2123 (14) 173
N1—H4⋯Cl2iii 0.87 2.46 3.2824 (15) 157
N1—H5⋯Cl2 0.87 2.34 3.2075 (12) 172
Symmetry codes: (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2005[Oxford Diffraction (2005). CrysAlis CCD. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: JANA2006 (Petříček et al., 2007[Petříček, V., Dušek, M. & Palatinus, L. (2007). JANA2006. Institute of Physics, Praha, Czech Republic.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: JANA2006.

Supporting information


Comment top

Crystals of the new title compound (NH3CH2CH2NH3)[CdCl4] were obtained as a side product during the preparation of a phosphate in solution. We report here on its crystal structure. Compounds including cadmium chloride and an organic moiety are frequently found in the form CdCl2.X, where X is the organic moiety, for example: CdCl2.CH5N2S.H2O (Woode et al., 1987), CdCl2.CO(NH2)2 (Furmanova et al., 1996), CdCl2.NH2NHCONH2 (Wang et al., 1993), or CdCl2.2(C2H5N3O2) (Cavalca et al., 1960). The title compound, however, contains cadmium in the anionic part of the crystal structure and is isotypic with (NH3CH2CH2NH3)[PdCl4] (Berg & Sotofte, 1976), (NH3CH2CH2NH3)[CuCl4] (Birrell & Zaslow, 1972), (NH3CH2CH2NH3)[MnCl4] (Tichý et al., 1978) and (NH3CH2CH2NH3)[NiCl4] (Skaarup & Berg, 1978).

Fig. 1 shows [CdCl6] octahedra and the 1,2-ethanediammonium cation connected via hydrogen bonds N1-H3···Cl1, N1-H4···Cl2 and N1-H5···Cl2. All chloride ligands of the CdCl6 octahedron participate in hydrogen bonding, as well as all hydrogens that are attached to N1.

Packing of (NH3CH2CH2NH3)[CdCl4] viewed along a (Fig. 2) shows a layer of corner sharing [CdCl6] octahedra and the neighbouring layer of 1,2-ethanediammonium cations. The minimal Cd—Cd distance within a layer is 5.1747 (8) Å.

The interlayer space is large enough to allow minimal distorsions of the 1,2-ethanediammonium cation molecule, the angles and distances of which have usual values as reported in known compounds containing this cation.

Related literature top

Isotypic structures have been reported by Berg & Sotofte (1976), (NH3CH2CH2NH3)[PdCl4]; Birrell & Zaslow (1972), (NH3CH2CH2NH3)[CuCl4]; Tichý et al. (1978), (NH3CH2CH2NH3)[MnCl4]; and Skaarup & Berg (1978), (NH3CH2CH2NH3)[NiCl4]. For the structures of related compounds, see: Woode et al. (1987), CdCl2.CH5N2S.H2O ; Furmanova et al. (1996), CdCl2.CO(NH2)2; Wang et al. (1993), CdCl2.NH2NHCONH2; Cavalca et al. (1960), CdCl2.2(C2H5N3O2). For crystallographic background, see: Becker & Coppens (1974).

Experimental top

Crystals of the title compound were obtained by mixing solutions of K4P2O7 (10 ml, 0.1M), CdCl2 (10 ml, 0.1M) and three drops of isopropylamine, (CH3)2(CH)NH3. The pH of the resulting solution was controlled with hydrochloric acid (pH = 2.5), stirred for 30 min, and then left to stand at ambient temperatures. After 5 d, colourless crystals appeared that were filtred off and washed with a solution of ethanol-water (80/20). Under the given reaction conditions isopropylamine will not convert into ethylenediamine (en), as evidenced by the structure analysis. Therefore it is most likely that the two supply bottles with isopropylamine and ethylenediamine were confused for synthesis.

Refinement top

All hydrogen atoms were discernible from difference Fourier maps and could be refined to a reasonable geometry. In the last refinement cycles they were nevertheless kept in ideal positions with N—H and C—H distances restrained to 0.87 Å and 0.96 Å, respectively, and with Uiso(H) = 1.2×Ueq of the respective parent atom.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2005); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2006 (Petříček et al., 2007); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006 (Petříček et al., 2007).

Figures top
[Figure 1] Fig. 1. Part of the structure of (NH3CH2CH2NH3)[CdCl4]. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are represented by dashed lines. [Symmetry codes: (i) 1 - x, 1- y, 2 - z; (ii) x, 0.5 - y, 0.5 + z; (iii) 2 - x, -0.5 + y, 1.5 - z; (iv) 2 - x, -y, 2 - z; (v) 2 - x, 0.5 + y, 1.5 - z]
[Figure 2] Fig. 2. Packing of (NH3CH2CH2NH3)[CdCl4] viewed along a. Color code: Pink balls (Cd), green balls (Cl), grey balls (C), blue balls (N), black balls (H).
Poly[ethane-1,2-diammonium tetra-µ-chlorido-cadmate(II)] top
Crystal data top
(C2H10N2)[CdCl4]F(000) = 304
Mr = 316.3Dx = 2.278 (1) Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5814 reflections
a = 8.6205 (5) Åθ = 2.8–26.5°
b = 7.3425 (8) ŵ = 3.45 mm1
c = 7.2937 (7) ÅT = 298 K
β = 92.791 (6)°Irregular shape, colourless
V = 461.11 (7) Å30.27 × 0.13 × 0.08 mm
Z = 2
Data collection top
Oxford Diffraction Gemini
diffractometer with Atlas CCD detector
960 independent reflections
Radiation source: X-ray tube899 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 20.7491 pixels mm-1θmax = 26.5°, θmin = 3.6°
Rotation method data acquisition using ω scansh = 1010
Absorption correction: analytical
[implemented in CrysAlis RED (Oxford Diffraction, 2008), according to Clark & Reid (1995)]
k = 99
Tmin = 0.605, Tmax = 0.841l = 99
6603 measured reflections
Refinement top
Refinement on F2H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.010Weighting scheme based on measured s.u.'s w = 1/[σ2(I) + 0.0004I2]
wR(F2) = 0.027(Δ/σ)max = 0.014
S = 1.08Δρmax = 0.13 e Å3
960 reflectionsΔρmin = 0.13 e Å3
44 parametersExtinction correction: B-C type 1 Lorentzian isotropic (Becker & Coppens, 1974)
0 restraintsExtinction coefficient: 1620 (80)
20 constraints
Crystal data top
(C2H10N2)[CdCl4]V = 461.11 (7) Å3
Mr = 316.3Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.6205 (5) ŵ = 3.45 mm1
b = 7.3425 (8) ÅT = 298 K
c = 7.2937 (7) Å0.27 × 0.13 × 0.08 mm
β = 92.791 (6)°
Data collection top
Oxford Diffraction Gemini
diffractometer with Atlas CCD detector
960 independent reflections
Absorption correction: analytical
[implemented in CrysAlis RED (Oxford Diffraction, 2008), according to Clark & Reid (1995)]
899 reflections with I > 3σ(I)
Tmin = 0.605, Tmax = 0.841Rint = 0.023
6603 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0100 restraints
wR(F2) = 0.027H-atom parameters constrained
S = 1.08Δρmax = 0.13 e Å3
960 reflectionsΔρmin = 0.13 e Å3
44 parameters
Special details top

Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement.

The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd11010.01781 (5)
Cl11.03989 (4)0.20870 (4)0.71088 (4)0.02864 (10)
Cl20.70621 (4)0.05039 (5)0.96946 (5)0.02895 (10)
N10.71742 (15)0.48402 (15)1.0216 (2)0.0310 (4)
C10.56378 (15)0.55139 (19)0.95400 (19)0.0286 (4)
H30.7897030.539950.9643350.0372*
H40.7296650.5049141.1388520.0372*
H50.7234460.3674981.0015610.0372*
H10.552530.5343680.8235270.0344*
H20.5555340.6789590.9806770.0344*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.01855 (9)0.01728 (9)0.01754 (9)0.00042 (4)0.00020 (5)0.00048 (4)
Cl10.03678 (18)0.02466 (16)0.02474 (16)0.00197 (13)0.00416 (13)0.00987 (12)
Cl20.01873 (15)0.03278 (18)0.03532 (19)0.00157 (13)0.00114 (13)0.00058 (15)
N10.0225 (7)0.0334 (7)0.0369 (7)0.0008 (4)0.0004 (5)0.0011 (5)
C10.0237 (7)0.0291 (6)0.0331 (7)0.0005 (6)0.0017 (6)0.0080 (6)
Geometric parameters (Å, º) top
Cd1—Cl12.6427 (5)N1—H30.87
Cd1—Cl1i2.6471 (5)N1—H40.87
Cd1—Cl1ii2.6427 (5)N1—H50.87
Cd1—Cl1iii2.6471 (5)C1—C1iv1.5169 (19)
Cd1—Cl22.5585 (4)C1—H10.96
Cd1—Cl2ii2.5585 (4)C1—H20.96
N1—C11.4760 (18)
Cl1—Cd1—Cl1i91.326 (12)Cl2—Cd1—Cl2ii180
Cl1—Cd1—Cl1ii180Cd1—Cl1—Cd1v156.050 (14)
Cl1—Cd1—Cl1iii88.674 (12)C1—N1—H3109.471
Cl1—Cd1—Cl290.766 (12)C1—N1—H4109.4712
Cl1—Cd1—Cl2ii89.234 (12)C1—N1—H5109.4713
Cl1i—Cd1—Cl1ii88.674 (12)H3—N1—H4109.4717
Cl1i—Cd1—Cl1iii180H3—N1—H5109.471
Cl1i—Cd1—Cl288.066 (11)H4—N1—H5109.4711
Cl1i—Cd1—Cl2ii91.934 (11)N1—C1—C1iv110.09 (11)
Cl1ii—Cd1—Cl1iii91.326 (12)N1—C1—H1109.4717
Cl1ii—Cd1—Cl289.234 (12)N1—C1—H2109.4714
Cl1ii—Cd1—Cl2ii90.766 (12)C1iv—C1—H1109.4709
Cl1iii—Cd1—Cl291.934 (11)C1iv—C1—H2109.4709
Cl1iii—Cd1—Cl2ii88.066 (11)H1—C1—H2108.8487
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x+2, y, z+2; (iii) x, y+1/2, z+1/2; (iv) x+1, y+1, z+2; (v) x+2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H3···Cl1v0.872.353.2123 (14)173
N1—H4···Cl2iii0.872.463.2824 (15)157
N1—H5···Cl20.872.343.2075 (12)172
Symmetry codes: (iii) x, y+1/2, z+1/2; (v) x+2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula(C2H10N2)[CdCl4]
Mr316.3
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)8.6205 (5), 7.3425 (8), 7.2937 (7)
β (°) 92.791 (6)
V3)461.11 (7)
Z2
Radiation typeMo Kα
µ (mm1)3.45
Crystal size (mm)0.27 × 0.13 × 0.08
Data collection
DiffractometerOxford Diffraction Gemini
diffractometer with Atlas CCD detector
Absorption correctionAnalytical
[implemented in CrysAlis RED (Oxford Diffraction, 2008), according to Clark & Reid (1995)]
Tmin, Tmax0.605, 0.841
No. of measured, independent and
observed [I > 3σ(I)] reflections
6603, 960, 899
Rint0.023
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.010, 0.027, 1.08
No. of reflections960
No. of parameters44
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.13

Computer programs: CrysAlis CCD (Oxford Diffraction, 2005), CrysAlis RED (Oxford Diffraction, 2008), SIR2002 (Burla et al., 2003), JANA2006 (Petříček et al., 2007), DIAMOND (Brandenburg & Putz, 2005).

Selected bond lengths (Å) top
Cd1—Cl12.6427 (5)Cd1—Cl22.5585 (4)
Cd1—Cl1i2.6471 (5)
Symmetry code: (i) x+2, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H3···Cl1ii0.872.353.2123 (14)173
N1—H4···Cl2iii0.872.463.2824 (15)157
N1—H5···Cl20.872.343.2075 (12)172
Symmetry codes: (ii) x+2, y+1/2, z+3/2; (iii) x, y+1/2, z+1/2.
 

Acknowledgements

We acknowledge the Grant Agency of the Czech Republic (grant No 202/07/J007). BEB thanks Dr R. Essehli for his kind collaboration.

References

First citationBecker, P. J. & Coppens, P. (1974). Acta Cryst. A30, 129–147.  CrossRef IUCr Journals Web of Science Google Scholar
First citationBerg, R. W. & Sotofte, I. (1976). Acta Chem. Scand. Ser. A, 30, 843–844.  CrossRef Web of Science Google Scholar
First citationBirrell, G. B. & Zaslow, B. (1972). J. Inorg. Nucl. Chem. 34, 1751.  CSD CrossRef Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationCavalca, L., Nardelli, M. & Fava, G. (1960). Acta Cryst. 13, 594–600.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFurmanova, N. G., Sulaimankulova, D. K., Resnyanskii, V. F. & Sulaimankulov, K. S. (1996). Kristallografiya, 41, 669–672.  CAS Google Scholar
First citationOxford Diffraction (2005). CrysAlis CCD. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationOxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2007). JANA2006. Institute of Physics, Praha, Czech Republic.  Google Scholar
First citationSkaarup, S. & Berg, R. W. (1978). J. Solid State Chem. 26, 59–67.  CSD CrossRef CAS Web of Science Google Scholar
First citationTichý, K., Beneš, J., Hälg, W. & Arend, H. (1978). Acta Cryst. B34, 2970–2981.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationWang, B.-G., Cao, Y., Zhang, H.-F. & Ye, C. (1993). Rengong Jingti Xuebao 22, 341–344.  CAS Google Scholar
First citationWoode, M. K., Bryan, R. F. & Bekoe, D. A. (1987). Acta Cryst. C43, 2324–2327.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages m215-m216
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds