inorganic compounds
Holmium dodecaiodidoiron-octahedro-hexaholmium, {FeHo6}I12Ho
aInstitut für Anorganische Chemie, Universität zu Köln, Greinstrasse 6, D-50939 Köln, Germany
*Correspondence e-mail: gerd.meyer@uni-koeln.de
Single crystals of {FeHo6}I12Ho were obtained during the reaction of HoI3 with metallic holmium and iron in a sealed tantalum container. The consists of isolated holmium clusters encapsulating a single Fe atom, {FeHo6} ( symmetry). The rare earth metal atoms are surrounded by 12 edge-capping and six terminal iodide ligands that either connect the clusters to each other directly or via HoI6 octahedra ( symmetry).
Related literature
Reduced rare earth metal halides without and with metal clusters have been reviewed several times, see, for example: Corbett (1973, 1996, 2000, 2006); Hughbanks & Corbett (1988); Meyer (1988, 2007); Meyer & Wickleder (2000); Simon (1981); Simon et al. (1991); Wiglusz et al. (2007). For the synthesis of the starting material HoI3, see: Meyer (1991). Isotypic structures have been reported by Hohnstedt (1993), {CHo6}I12Ho, and Palasyuk et al. (2006), {FePr6}I12Pr.
Experimental
Crystal data
|
Data collection: X-AREA (Stoe & Cie, 2001); cell X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536809001640/wm2215sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809001640/wm2215Isup2.hkl
Black, almost cubic crystals of {FeHo6}I12Ho were obtained by the reaction of HoI3 (200 mg) with holmium powder (84 mg, Chempur, 99.9%) and iron powder (10 mg, Merck, p.a.) in a tantalum container at 1273 K for 200 h. HoI3 had been synthesized from stoichiometric amounts of holmium and iodine, followed by
in high vacuum for purification (Meyer, 1991). Due to air and moisture sensitivity of both reagents and products, all handlings were carried out in an argon-filled (M. Braun, Garching, Germany).The displacement parameter for the Fe atom was refined isotropically. The highest peak (2.36 e Å-3) in the final difference Fourier map is 1.20 Å from atom Ho1 and the deepest hole (-2.44 e Å-3) is 2.40 Å from the same atom.
Data collection: X-AREA (Stoe & Cie, 2001); cell
X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).FeHo7I12 | Dx = 6.323 Mg m−3 |
Mr = 2733.16 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, R3 | Cell parameters from 1775 reflections |
Hall symbol: -R 3 | θ = 1.9–28.2° |
a = 15.2973 (17) Å | µ = 32.43 mm−1 |
c = 10.6252 (16) Å | T = 293 K |
V = 2153.3 (5) Å3 | Cubic, black |
Z = 3 | 0.2 × 0.2 × 0.2 mm |
F(000) = 3393 |
Stoe IPDS-II diffractometer | 1166 independent reflections |
Radiation source: fine-focus sealed tube | 861 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.115 |
ω scans | θmax = 28.1°, θmin = 2.5° |
Absorption correction: numerical [X-RED (Stoe & Cie, 2001) and X-SHAPE (Stoe & Cie, 1999)] | h = −20→19 |
Tmin = 0.027, Tmax = 0.071 | k = −19→20 |
6920 measured reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | w = 1/[σ2(Fo2) + (0.047P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.096 | (Δ/σ)max = 0.001 |
S = 0.97 | Δρmax = 2.36 e Å−3 |
1166 reflections | Δρmin = −2.44 e Å−3 |
32 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.00035 (3) |
FeHo7I12 | Z = 3 |
Mr = 2733.16 | Mo Kα radiation |
Trigonal, R3 | µ = 32.43 mm−1 |
a = 15.2973 (17) Å | T = 293 K |
c = 10.6252 (16) Å | 0.2 × 0.2 × 0.2 mm |
V = 2153.3 (5) Å3 |
Stoe IPDS-II diffractometer | 1166 independent reflections |
Absorption correction: numerical [X-RED (Stoe & Cie, 2001) and X-SHAPE (Stoe & Cie, 1999)] | 861 reflections with I > 2σ(I) |
Tmin = 0.027, Tmax = 0.071 | Rint = 0.115 |
6920 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 32 parameters |
wR(F2) = 0.096 | 0 restraints |
S = 0.97 | Δρmax = 2.36 e Å−3 |
1166 reflections | Δρmin = −2.44 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ho1 | 1.15739 (5) | 0.04355 (5) | 0.63807 (6) | 0.0153 (2) | |
Ho2 | 1.0000 | 0.0000 | 1.0000 | 0.0213 (4) | |
I1 | 1.05135 (6) | −0.13025 (7) | 0.83941 (7) | 0.0190 (2) | |
I2 | 1.31674 (7) | 0.23705 (7) | 0.50663 (8) | 0.0242 (3) | |
Fe1 | 1.0000 | 0.0000 | 0.5000 | 0.0132 (9)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ho1 | 0.0155 (3) | 0.0161 (3) | 0.0147 (3) | 0.0083 (3) | −0.0004 (2) | −0.0002 (2) |
Ho2 | 0.0223 (5) | 0.0223 (5) | 0.0194 (7) | 0.0111 (3) | 0.000 | 0.000 |
I1 | 0.0202 (5) | 0.0195 (5) | 0.0183 (4) | 0.0106 (4) | −0.0006 (3) | 0.0010 (3) |
I2 | 0.0167 (5) | 0.0233 (5) | 0.0260 (5) | 0.0050 (4) | −0.0030 (3) | 0.0060 (3) |
Ho1—Fe1 | 2.6056 (7) | Ho2—I1vii | 3.0106 (9) |
Ho1—I2 | 3.0722 (11) | Ho2—I1 | 3.0106 (9) |
Ho1—I2i | 3.1144 (11) | Ho2—I1ii | 3.0106 (9) |
Ho1—I1 | 3.1565 (11) | Ho2—I1viii | 3.0106 (9) |
Ho1—I1ii | 3.1758 (11) | I1—Ho1v | 3.1758 (11) |
Ho1—I2iii | 3.3116 (11) | I2—Ho1iv | 3.1144 (11) |
Ho1—Ho1i | 3.6394 (11) | I2—Ho1iii | 3.3116 (11) |
Ho1—Ho1iv | 3.6394 (11) | Fe1—Ho1ix | 2.6056 (7) |
Ho1—Ho1v | 3.7297 (12) | Fe1—Ho1iv | 2.6056 (7) |
Ho1—Ho1ii | 3.7297 (12) | Fe1—Ho1ii | 2.6056 (7) |
Ho2—I1v | 3.0106 (9) | Fe1—Ho1i | 2.6056 (7) |
Ho2—I1vi | 3.0106 (9) | Fe1—Ho1v | 2.6056 (7) |
Fe1—Ho1—I2 | 100.19 (3) | I2iii—Ho1—Ho1ii | 133.68 (2) |
Fe1—Ho1—I2i | 99.12 (3) | Ho1i—Ho1—Ho1ii | 90.0 |
I2—Ho1—I2i | 89.813 (17) | Ho1iv—Ho1—Ho1ii | 59.176 (12) |
Fe1—Ho1—I1 | 98.41 (3) | Ho1v—Ho1—Ho1ii | 60.0 |
I2—Ho1—I1 | 161.02 (3) | I1v—Ho2—I1vi | 180.0 |
I2i—Ho1—I1 | 90.95 (3) | I1v—Ho2—I1vii | 88.96 (2) |
Fe1—Ho1—I1ii | 97.93 (3) | I1vi—Ho2—I1vii | 91.04 (2) |
I2—Ho1—I1ii | 88.28 (3) | I1v—Ho2—I1 | 91.04 (2) |
I2i—Ho1—I1ii | 162.91 (3) | I1vi—Ho2—I1 | 88.96 (2) |
I1—Ho1—I1ii | 85.44 (4) | I1vii—Ho2—I1 | 180.0 |
Fe1—Ho1—I2iii | 177.02 (3) | I1v—Ho2—I1ii | 91.04 (2) |
I2—Ho1—I2iii | 81.94 (3) | I1vi—Ho2—I1ii | 88.96 (2) |
I2i—Ho1—I2iii | 82.92 (3) | I1vii—Ho2—I1ii | 88.96 (2) |
I1—Ho1—I2iii | 79.33 (3) | I1—Ho2—I1ii | 91.04 (2) |
I1ii—Ho1—I2iii | 80.00 (3) | I1v—Ho2—I1viii | 88.96 (2) |
Fe1—Ho1—Ho1i | 45.702 (10) | I1vi—Ho2—I1viii | 91.04 (2) |
I2—Ho1—Ho1i | 99.07 (3) | I1vii—Ho2—I1viii | 91.04 (2) |
I2i—Ho1—Ho1i | 53.43 (2) | I1—Ho2—I1viii | 88.96 (2) |
I1—Ho1—Ho1i | 96.59 (2) | I1ii—Ho2—I1viii | 180.00 (3) |
I1ii—Ho1—Ho1i | 143.57 (2) | Ho2—I1—Ho1 | 91.20 (3) |
I2iii—Ho1—Ho1i | 136.24 (3) | Ho2—I1—Ho1v | 90.83 (3) |
Fe1—Ho1—Ho1iv | 45.702 (10) | Ho1—I1—Ho1v | 72.17 (3) |
I2—Ho1—Ho1iv | 54.50 (2) | Ho1—I2—Ho1iv | 72.07 (3) |
I2i—Ho1—Ho1iv | 96.45 (3) | Ho1—I2—Ho1iii | 98.06 (3) |
I1—Ho1—Ho1iv | 144.05 (2) | Ho1iv—I2—Ho1iii | 170.08 (3) |
I1ii—Ho1—Ho1iv | 96.25 (2) | Ho1ix—Fe1—Ho1 | 180.00 (2) |
I2iii—Ho1—Ho1iv | 136.44 (2) | Ho1ix—Fe1—Ho1iv | 91.403 (19) |
Ho1i—Ho1—Ho1iv | 61.65 (2) | Ho1—Fe1—Ho1iv | 88.597 (19) |
Fe1—Ho1—Ho1v | 44.298 (10) | Ho1ix—Fe1—Ho1ii | 88.597 (19) |
I2—Ho1—Ho1v | 144.47 (2) | Ho1—Fe1—Ho1ii | 91.403 (19) |
I2i—Ho1—Ho1v | 96.42 (3) | Ho1iv—Fe1—Ho1ii | 88.597 (19) |
I1—Ho1—Ho1v | 54.16 (2) | Ho1ix—Fe1—Ho1i | 91.403 (19) |
I1ii—Ho1—Ho1v | 94.97 (2) | Ho1—Fe1—Ho1i | 88.597 (19) |
I2iii—Ho1—Ho1v | 133.49 (2) | Ho1iv—Fe1—Ho1i | 91.403 (19) |
Ho1i—Ho1—Ho1v | 59.176 (12) | Ho1ii—Fe1—Ho1i | 180.0 |
Ho1iv—Ho1—Ho1v | 90.0 | Ho1ix—Fe1—Ho1v | 88.597 (19) |
Fe1—Ho1—Ho1ii | 44.298 (10) | Ho1—Fe1—Ho1v | 91.403 (19) |
I2—Ho1—Ho1ii | 95.36 (3) | Ho1iv—Fe1—Ho1v | 180.00 (3) |
I2i—Ho1—Ho1ii | 143.40 (2) | Ho1ii—Fe1—Ho1v | 91.404 (19) |
I1—Ho1—Ho1ii | 95.30 (2) | Ho1i—Fe1—Ho1v | 88.597 (19) |
I1ii—Ho1—Ho1ii | 53.68 (2) |
Symmetry codes: (i) y+1, −x+y+1, −z+1; (ii) −y+1, x−y−1, z; (iii) −x+8/3, −y+1/3, −z+4/3; (iv) x−y, x−1, −z+1; (v) −x+y+2, −x+1, z; (vi) x−y, x−1, −z+2; (vii) −x+2, −y, −z+2; (viii) y+1, −x+y+1, −z+2; (ix) −x+2, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | FeHo7I12 |
Mr | 2733.16 |
Crystal system, space group | Trigonal, R3 |
Temperature (K) | 293 |
a, c (Å) | 15.2973 (17), 10.6252 (16) |
V (Å3) | 2153.3 (5) |
Z | 3 |
Radiation type | Mo Kα |
µ (mm−1) | 32.43 |
Crystal size (mm) | 0.2 × 0.2 × 0.2 |
Data collection | |
Diffractometer | Stoe IPDS-II diffractometer |
Absorption correction | Numerical [X-RED (Stoe & Cie, 2001) and X-SHAPE (Stoe & Cie, 1999)] |
Tmin, Tmax | 0.027, 0.071 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6920, 1166, 861 |
Rint | 0.115 |
(sin θ/λ)max (Å−1) | 0.663 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.096, 0.97 |
No. of reflections | 1166 |
No. of parameters | 32 |
Δρmax, Δρmin (e Å−3) | 2.36, −2.44 |
Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2005).
Acknowledgements
This work was supported by the Deutsche Forschungsgemeinschaft (DFG), SFB 608 (Complex transition metal compounds with spin and charge
and disorder) and the Fonds der Chemischen Industrie.References
Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Corbett, J. D. (1973). Rev. Chim. Miner. 10, 239–257. CAS Google Scholar
Corbett, J. D. (1996). J. Chem. Soc. Dalton Trans. pp. 575–587. CrossRef Web of Science Google Scholar
Corbett, J. D. (2000). Inorg. Chem. 39, 5178–5191. Web of Science CrossRef PubMed CAS Google Scholar
Corbett, J. D. (2006). J. Alloys Compds, 418, 1–20. Web of Science CrossRef CAS Google Scholar
Hohnstedt, C. (1993). Dissertation, Universität Hannover, Germany. Google Scholar
Hughbanks, T. & Corbett, J. D. (1988). Inorg. Chem. 27, 2022–2026. CrossRef CAS Web of Science Google Scholar
Meyer, G. (1988). Chem. Rev. 88, 93–107. CrossRef CAS Web of Science Google Scholar
Meyer, G. (1991). Synthesis of Lanthanide and Actinide Compounds, edited by G. Meyer & L. R. Morss, pp. 135–144. Kluwer: Dordrecht. Google Scholar
Meyer, G. (2007). Z. Anorg. Allg. Chem. 633, 2537–2552. Web of Science CrossRef CAS Google Scholar
Meyer, G. & Wickleder, M. S. (2000). Handbook on the Physics and Chemistry of Rare Earths, Vol. 28, edited by K. A. Gscheidner Jr. & L. Eyring, pp. 53–129. Elsevier: Amsterdam. Google Scholar
Palasyuk, A., Pantenburg, I. & Meyer, G. (2006). Acta Cryst. E62, i61–i63. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Simon, A. (1981). Angew. Chem. Int. Ed. Engl. 20, 1–22. CrossRef Web of Science Google Scholar
Simon, A., Mattausch, Hj., Miller, G. J., Bauhofer, W. & Kremer, R. (1991). Handbook on the Physics and Chemistry of Rare Earths, Vol. 15, edited by K. A. Gschneidner Jr. & L. Eyring, pp. 191–285. Elsevier: Amsterdam. Google Scholar
Stoe & Cie (1999). X-SHAPE. Stoe & Cie, Darmstadt, Germany. Google Scholar
Stoe & Cie (2001). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany. Google Scholar
Wiglusz, R., Pantenburg, I. & Meyer, G. (2007). Z. Anorg. Allg. Chem. 633, 1317–1319. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Rare earth cluster compounds of the general formula {Z(RE)6}I12RE, where Z is an interstitial transition metal or main group element and RE is a rare earth element, have been well explored by Hughbanks and Corbett (1988) for RE = Sc, Y, Pr and Gd. Additionally, compounds of the formula {Z(RE)6}I12+yAx, where A is an alkali metal (Rb or Cs) with x = 1–4 and y = 0–1 and Z = C, C2, are known for the rare earth elements Pr and Er that were compiled and studied by Meyer & Wickleder (2000) and Wiglusz et al. (2007). With {FeHo6}I12Ho we were able to extend the knowledge of this structure type to the element holmium, where only {CHo6}I12Ho had been synthesized previously by Hohnstedt (1993). Other reviews of reduced rare earth metal halides without and with metal clusters were given, for example, by Corbett (1973, 1996, 2000, 2006), Meyer (1988, 2007), Meyer & Wickleder (2000), Simon (1981) and Simon et al. (1991).
The structure of {FeHo6}I12Ho is isotypic with {FePr6}I12Pr (Palasyuk et al., 2006) and consists of isolated {FeHo6} clusters, i.e. the metal atoms are not shared with other clusters. The {FeHo6} cluster core is surrounded by twelve edge-capping and six terminal iodide ligands that either connect the clusters to each other directly or via HoI6 octahedra (Fig. 1). In {FeHo6}I12Ho, the {FeHo6} octahedra have 3 symmetry, only slightly deviating from ideal octahedral symmetry. The Ho—Ho distances range from 3.6394 (11) to 3.7297 (12) Å. The Ho—I distances vary between 3.0106 (9) and 3.3116 (12) Å.