organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hemi(4,4′-bipyridinium) hexa­fluorido­phosphate bis­­(4-amino­benzoic acid) 4,4′-bi­pyridine monohydrate

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China, and bKey Laboratory of Electrochemical Technology on Energy Storage and Power Generation in Guangdong Universities, Guangzhou 510631, People's Republic of China
*Correspondence e-mail: zrh321@yahoo.com.cn

(Received 11 December 2008; accepted 25 December 2008; online 10 January 2009)

In the title compound, 0.5C10H10N22+·PF6·C10H8N2·2C7H7NO2·H2O, the cation is located on a center of symmetry. The crystal structure is determined by a complex three-dimensional network of inter­molecular O—H⋯O, O—H⋯N, N—H⋯N and N—H⋯F hydrogen bonds. ππ stacking inter­actions between neighboring pyridyl rings are also present; the centroid–centroid distance is 3.643 (5) Å. The hexa­fluoridophosphate anion is disordered over two positions with site-occupancy factors of ca 0.6 and 0.4.

Related literature

For the use of 4-amino­benzoic acid and 4,4′-bipyridine for the construction of three-dimensional network motifs, see: Hu et al. (2003[Hu, D. H., Huang, W., Gou, S. H., Fang, J. L. & Fun, H. K. (2003). Polyhedron, 22, 2661-2667.]); Yang et al. (2004[Yang, G. P., Wang, Z. Y. & Chen, J. T. (2004). J. Mol. Struct. 707, 223-229.]).

[Scheme 1]

Experimental

Crystal data
  • 0.5C10H10N22+·PF6·C10H8N2·2C7H7NO2·H2O

  • Mr = 672.54

  • Triclinic, [P \overline 1]

  • a = 10.1032 (2) Å

  • b = 10.1142 (2) Å

  • c = 16.8906 (3) Å

  • α = 92.557 (1)°

  • β = 98.063 (1)°

  • γ = 117.346 (1)°

  • V = 1506.23 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 296 (2) K

  • 0.18 × 0.15 × 0.14 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: none

  • 22618 measured reflections

  • 7121 independent reflections

  • 3129 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.205

  • S = 1.02

  • 7121 reflections

  • 454 parameters

  • 43 restraints

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H2W⋯O4i 0.89 1.87 2.751 (3) 169
O1W—H1W⋯O2ii 0.79 2.01 2.799 (3) 174
O3—H3A⋯N3iii 0.82 1.87 2.686 (3) 174
O1—H1⋯O1Wiv 0.82 1.80 2.617 (3) 173
N1—H1B⋯F3 0.86 2.57 3.324 (4) 147
N5—H27⋯N4 0.86 1.84 2.700 (4) 176
Symmetry codes: (i) x-1, y, z; (ii) -x, -y+1, -z+1; (iii) x+1, y, z-1; (iv) x, y, z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Hydrogen-bonding interactions between ligands are specific and directional. In this context, 4-aminobenzoic acid and 4,4'-bipyridine are excellent candidates for the construction of three-dimensional network motifs, which form regular hydrogen bonds, functioning as both hydrogen-bond donor and acceptor (Hu et al., 2003; Yang et al., 2004). Recently, we obtained the title compound under hydrothermal conditions and report its crystal structure here.

In the title compound (Fig. 1), all bond lengths and angles are unexceptional. The 4,4'-bipyridinium cation, which is located on a center of symmetry, is, on both sides, a hydrogen bond donor to unprotonated molecules of 4,4'-bipyridine. These are, in turn, hydrogen bond acceptors for one of the two independent molecules of 4-aminobenzoic acid. Thus the two 4-aminobenzoic acid molecules, the 4,4'-bipyridine and 4,4'-bipyridinium cation are connected by hydrogen bonding interactions to form a linear centrosymmetric chain. Further each of these chains is connected with each of two other chains by O—H···O hydrogen bonds (Table 1), via the interstitial solvent water molecules and the other independent 4-aminobenzoic acid molecules, forming, in effect, infinite chains with each repeating unit of five molecules offset against the next unit by the width of the connecting (C7NH7O2)2.(H2O)2 unit. π-π stacking interactions (the centroid-centroid distance between neighboring pyridyl rings is 3.643 Å) connect these chains to produce a three-dimensional network motif (Fig. 2).

Related literature top

For the use of 4-aminobenzoic acid and 4,4'-bipyridine for the construction of three-dimensional network motifs, see: Hu et al. (2003); Yang et al. (2004).

Experimental top

4-Aminobenzoic acid (1 mmol, 0.137 g), 4,4'-bipyridine (1 mmol, 0.156 g) and sodium hexafluoridophosphate (1 mmol, 0.162 g) were dissolved in hot water with stirring. Colorless single crystals were obtained at room temperature by slow evaporation of the solvent over a period of several days.

Refinement top

The disordered perchlorate ion was refined over two sites, with refined occupancies of 0.625 (8) and 0.375 (9). The P···F and F···F distances were restrained to be 1.48 (1) and 2.10 (3) Å, respectively. Water H atoms were located in a difference Fourier map and refined with distance restraints of O—H = 0.86 Å and H···H = 1.39 Å. The H atom bound to the N5 nitrogen atom in the cation and the carboxylic H atoms were refined with distance restraints of N—H = 0.90 Å and O—H = 0.90 Å, respectively. All other H atoms were placed at calculated positions and treated as riding on the parent atoms, with C—H = 0.93 Å, N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C, N).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: APEX2 (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure showing the atomic-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms are shown as spheres of arbitrary radius. Symmetry code: (i) 2 - x, -y, 1 - z.
[Figure 2] Fig. 2. A view of the three-dimensional supramolecular network. Hydrogen bonds are shown as dashed lines.
Hemi(4,4'-bipyridinium) hexafluoridophosphate bis(4-aminobenzoic acid) 4,4'-bipyridine monohydrate top
Crystal data top
0.5C10H10N22+·PF6·C10H8N2·2C7H7NO2·H2OZ = 2
Mr = 672.54F(000) = 694
Triclinic, P1Dx = 1.483 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.1032 (2) ÅCell parameters from 2023 reflections
b = 10.1142 (2) Åθ = 2.4–19.5°
c = 16.8906 (3) ŵ = 0.18 mm1
α = 92.557 (1)°T = 296 K
β = 98.063 (1)°Block, colourless
γ = 117.346 (1)°0.18 × 0.15 × 0.14 mm
V = 1506.23 (5) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
3129 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.057
Graphite monochromatorθmax = 27.9°, θmin = 2.3°
ϕ and ω scansh = 1313
22618 measured reflectionsk = 1313
7121 independent reflectionsl = 2022
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.205 w = 1/[σ2(Fo2) + (0.0875P)2 + 0.1722P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.006
7121 reflectionsΔρmax = 0.29 e Å3
454 parametersΔρmin = 0.34 e Å3
43 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.009 (2)
Crystal data top
0.5C10H10N22+·PF6·C10H8N2·2C7H7NO2·H2Oγ = 117.346 (1)°
Mr = 672.54V = 1506.23 (5) Å3
Triclinic, P1Z = 2
a = 10.1032 (2) ÅMo Kα radiation
b = 10.1142 (2) ŵ = 0.18 mm1
c = 16.8906 (3) ÅT = 296 K
α = 92.557 (1)°0.18 × 0.15 × 0.14 mm
β = 98.063 (1)°
Data collection top
Bruker APEXII area-detector
diffractometer
3129 reflections with I > 2σ(I)
22618 measured reflectionsRint = 0.057
7121 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06643 restraints
wR(F2) = 0.205H-atom parameters constrained
S = 1.02Δρmax = 0.29 e Å3
7121 reflectionsΔρmin = 0.34 e Å3
454 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.4034 (4)0.5337 (4)0.7188 (2)0.0650 (9)
C20.4778 (4)0.5250 (4)0.7922 (2)0.0656 (9)
H20.57400.53310.79600.079*
C30.4122 (4)0.5047 (4)0.8589 (2)0.0602 (9)
H30.46450.49910.90750.072*
C40.2682 (3)0.4922 (3)0.8557 (2)0.0523 (8)
C50.1957 (4)0.4726 (3)0.9266 (2)0.0576 (8)
C60.1930 (4)0.4994 (3)0.7822 (2)0.0590 (8)
H60.09610.48960.77830.071*
C70.2589 (4)0.5208 (4)0.7152 (2)0.0646 (9)
H70.20680.52670.66660.077*
C80.8336 (4)0.1574 (4)0.3481 (2)0.0662 (9)
H80.84820.24310.37900.079*
C90.9268 (4)0.1700 (4)0.2940 (2)0.0627 (9)
H91.00270.26420.28800.075*
C100.9095 (3)0.0437 (3)0.24786 (18)0.0503 (7)
C111.0119 (4)0.0620 (4)0.19048 (19)0.0555 (8)
C120.7954 (3)0.0956 (4)0.25815 (19)0.0545 (8)
H120.78250.18150.22830.065*
C130.7011 (4)0.1079 (4)0.31200 (19)0.0579 (8)
H130.62540.20220.31800.070*
C140.7174 (4)0.0183 (4)0.35751 (19)0.0578 (8)
N30.1693 (3)0.0235 (3)1.04268 (16)0.0592 (7)
C160.2657 (5)0.1119 (4)1.0271 (2)0.0754 (11)
H160.26930.19531.05490.090*
C170.3601 (4)0.1349 (4)0.9723 (2)0.0682 (10)
H170.42460.23210.96340.082*
C180.3597 (3)0.0145 (3)0.93018 (17)0.0464 (7)
C190.2589 (3)0.1253 (4)0.9462 (2)0.0606 (9)
H190.25220.21090.91920.073*
C200.1679 (4)0.1388 (4)1.0023 (2)0.0650 (9)
H200.10180.23461.01220.078*
C210.4624 (3)0.0328 (3)0.87181 (17)0.0452 (7)
C220.5692 (4)0.1715 (4)0.8566 (2)0.0641 (9)
H220.57930.25850.88390.077*
C230.6600 (4)0.1817 (4)0.8017 (2)0.0662 (9)
H230.73020.27650.79250.079*
N40.6522 (3)0.0623 (3)0.76098 (15)0.0576 (7)
C250.5513 (5)0.0691 (4)0.7747 (2)0.0791 (11)
H250.54320.15400.74600.095*
C260.4564 (4)0.0888 (4)0.8291 (2)0.0734 (11)
H260.38770.18520.83690.088*
N50.8058 (3)0.0432 (3)0.64624 (16)0.0600 (7)
H270.75880.05380.68270.072*
C280.9248 (4)0.1591 (4)0.6303 (2)0.0761 (11)
H280.95720.25280.65860.091*
C291.0029 (4)0.1461 (4)0.5730 (2)0.0719 (10)
H291.08650.23060.56280.086*
C300.9587 (3)0.0097 (3)0.53068 (17)0.0481 (7)
C310.8329 (5)0.1090 (4)0.5490 (3)0.0920 (14)
H310.79770.20440.52200.110*
C320.7592 (5)0.0883 (5)0.6064 (3)0.0932 (13)
H320.67360.17000.61720.112*
F30.4396 (3)0.6418 (3)0.46460 (18)0.1343 (10)
F60.0964 (3)0.5330 (3)0.3961 (2)0.1465 (12)
N10.4710 (4)0.5607 (4)0.6526 (2)0.0960 (11)
H1A0.56170.57270.65600.115*
H1B0.42300.56580.60760.115*
N20.6215 (3)0.0068 (4)0.41031 (18)0.0812 (9)
H2A0.54990.07970.41560.097*
H2B0.63310.08600.43800.097*
O10.2766 (3)0.4659 (3)0.99380 (15)0.0756 (7)
H10.23090.45891.03120.113*
O20.0709 (3)0.4645 (3)0.92571 (15)0.0767 (7)
O30.9955 (3)0.0651 (3)0.15538 (15)0.0728 (7)
H3A1.04650.04760.11970.109*
O41.1065 (3)0.1827 (3)0.17604 (15)0.0772 (7)
P0.26740 (12)0.58756 (12)0.43141 (7)0.0774 (4)
O1W0.1528 (2)0.4502 (3)0.12153 (13)0.0703 (7)
H1W0.08620.47080.11100.105*
H2W0.12550.36040.13730.105*
F10.2698 (15)0.7215 (12)0.4737 (9)0.129 (5)0.375 (11)
F20.2105 (13)0.4994 (17)0.5008 (6)0.125 (5)0.375 (11)
F40.2560 (8)0.4439 (8)0.3880 (8)0.090 (4)0.375 (11)
F50.3176 (16)0.6648 (13)0.3621 (5)0.139 (5)0.375 (11)
F1'0.3113 (7)0.7452 (10)0.4047 (10)0.192 (6)0.625 (11)
F4'0.2424 (12)0.4441 (8)0.4616 (10)0.222 (6)0.625 (11)
F5'0.2826 (14)0.534 (2)0.3497 (4)0.239 (7)0.625 (11)
F2'0.2667 (13)0.6511 (18)0.5141 (5)0.217 (5)0.625 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.070 (2)0.051 (2)0.073 (2)0.0229 (18)0.030 (2)0.0092 (17)
C20.056 (2)0.062 (2)0.084 (3)0.0283 (18)0.0231 (19)0.0113 (19)
C30.0564 (19)0.055 (2)0.070 (2)0.0254 (16)0.0149 (17)0.0129 (17)
C40.0520 (18)0.0403 (18)0.064 (2)0.0199 (15)0.0164 (16)0.0088 (15)
C50.059 (2)0.0442 (19)0.069 (2)0.0215 (16)0.0211 (18)0.0112 (16)
C60.0518 (18)0.051 (2)0.070 (2)0.0217 (16)0.0105 (17)0.0028 (17)
C70.068 (2)0.057 (2)0.067 (2)0.0268 (18)0.0146 (18)0.0086 (17)
C80.071 (2)0.056 (2)0.072 (2)0.0297 (19)0.0200 (19)0.0035 (18)
C90.062 (2)0.049 (2)0.072 (2)0.0206 (17)0.0181 (18)0.0064 (17)
C100.0495 (17)0.051 (2)0.0510 (18)0.0224 (15)0.0134 (14)0.0095 (15)
C110.0519 (18)0.061 (2)0.055 (2)0.0264 (18)0.0116 (16)0.0127 (17)
C120.0565 (19)0.0490 (19)0.057 (2)0.0225 (16)0.0166 (16)0.0052 (15)
C130.0565 (19)0.049 (2)0.061 (2)0.0174 (16)0.0175 (16)0.0089 (16)
C140.0563 (19)0.062 (2)0.056 (2)0.0272 (18)0.0155 (16)0.0050 (17)
N30.0575 (16)0.069 (2)0.0549 (17)0.0288 (15)0.0229 (13)0.0115 (15)
C160.099 (3)0.066 (3)0.080 (3)0.045 (2)0.045 (2)0.014 (2)
C170.085 (3)0.048 (2)0.080 (2)0.0299 (19)0.045 (2)0.0172 (18)
C180.0454 (16)0.0493 (19)0.0436 (17)0.0213 (15)0.0086 (13)0.0071 (14)
C190.0590 (19)0.046 (2)0.070 (2)0.0144 (16)0.0276 (17)0.0035 (16)
C200.056 (2)0.061 (2)0.068 (2)0.0151 (17)0.0243 (17)0.0088 (18)
C210.0466 (16)0.0461 (18)0.0424 (17)0.0200 (14)0.0114 (13)0.0086 (13)
C220.072 (2)0.047 (2)0.068 (2)0.0196 (17)0.0305 (18)0.0026 (16)
C230.067 (2)0.053 (2)0.068 (2)0.0147 (17)0.0289 (18)0.0063 (18)
N40.0616 (16)0.0588 (18)0.0543 (17)0.0268 (15)0.0213 (13)0.0086 (14)
C250.105 (3)0.052 (2)0.089 (3)0.034 (2)0.053 (2)0.008 (2)
C260.089 (3)0.042 (2)0.088 (3)0.0195 (18)0.054 (2)0.0121 (18)
N50.0648 (18)0.070 (2)0.0529 (16)0.0334 (16)0.0259 (14)0.0092 (15)
C280.069 (2)0.063 (2)0.087 (3)0.021 (2)0.030 (2)0.011 (2)
C290.060 (2)0.056 (2)0.085 (3)0.0109 (17)0.0320 (19)0.0064 (19)
C300.0546 (18)0.0451 (18)0.0462 (17)0.0219 (15)0.0172 (14)0.0127 (15)
C310.122 (3)0.048 (2)0.104 (3)0.023 (2)0.078 (3)0.008 (2)
C320.110 (3)0.060 (3)0.104 (3)0.022 (2)0.069 (3)0.013 (2)
F30.0937 (19)0.140 (3)0.145 (3)0.0434 (17)0.0065 (17)0.0012 (19)
F60.0795 (18)0.118 (2)0.226 (4)0.0400 (16)0.007 (2)0.001 (2)
N10.104 (3)0.109 (3)0.090 (3)0.052 (2)0.051 (2)0.029 (2)
N20.079 (2)0.077 (2)0.085 (2)0.0292 (17)0.0385 (18)0.0015 (17)
O10.0770 (17)0.0873 (18)0.0663 (16)0.0383 (15)0.0222 (13)0.0198 (14)
O20.0705 (16)0.0926 (19)0.0860 (18)0.0477 (15)0.0338 (14)0.0260 (14)
O30.0778 (17)0.0681 (17)0.0758 (17)0.0300 (13)0.0393 (13)0.0101 (13)
O40.0750 (16)0.0637 (17)0.0926 (19)0.0245 (14)0.0391 (14)0.0237 (14)
P0.0796 (7)0.0646 (7)0.0843 (8)0.0286 (6)0.0226 (6)0.0093 (6)
O1W0.0699 (15)0.0638 (15)0.0736 (16)0.0265 (12)0.0180 (12)0.0168 (12)
F10.171 (7)0.073 (6)0.130 (8)0.054 (5)0.012 (6)0.041 (5)
F20.122 (6)0.140 (9)0.098 (6)0.035 (6)0.057 (4)0.047 (6)
F40.067 (4)0.062 (5)0.135 (8)0.031 (3)0.009 (5)0.014 (4)
F50.193 (8)0.108 (8)0.080 (6)0.026 (6)0.071 (5)0.038 (5)
F1'0.100 (4)0.124 (7)0.341 (14)0.033 (4)0.045 (6)0.138 (8)
F4'0.223 (9)0.082 (5)0.352 (18)0.066 (5)0.023 (10)0.089 (8)
F5'0.241 (11)0.45 (2)0.085 (5)0.228 (14)0.006 (5)0.058 (9)
F2'0.294 (11)0.263 (14)0.141 (7)0.164 (11)0.081 (7)0.032 (8)
Geometric parameters (Å, º) top
C1—N11.364 (4)C19—C201.380 (4)
C1—C21.387 (5)C19—H190.9300
C1—C71.396 (5)C20—H200.9300
C2—C31.361 (5)C21—C261.370 (4)
C2—H20.9300C21—C221.385 (4)
C3—C41.394 (4)C22—C231.368 (4)
C3—H30.9300C22—H220.9300
C4—C61.385 (4)C23—N41.327 (4)
C4—C51.465 (4)C23—H230.9300
C5—O21.223 (4)N4—C251.306 (4)
C5—O11.325 (4)C25—C261.376 (5)
C6—C71.368 (4)C25—H250.9300
C6—H60.9300C26—H260.9300
C7—H70.9300N5—C321.304 (4)
C8—C91.372 (5)N5—C281.310 (4)
C8—C141.392 (5)N5—H270.8600
C8—H80.9300C28—C291.369 (5)
C9—C101.391 (4)C28—H280.9300
C9—H90.9300C29—C301.367 (4)
C10—C121.389 (4)C29—H290.9300
C10—C111.472 (4)C30—C311.377 (5)
C11—O41.218 (4)C30—C30i1.477 (6)
C11—O31.318 (4)C31—C321.366 (5)
C12—C131.376 (4)C31—H310.9300
C12—H120.9300C32—H320.9300
C13—C141.390 (4)F3—P1.570 (3)
C13—H130.9300F6—P1.566 (3)
C14—N21.377 (4)N1—H1A0.8600
N3—C201.317 (4)N1—H1B0.8600
N3—C161.331 (4)N2—H2A0.8600
C16—C171.373 (5)N2—H2B0.8600
C16—H160.9300O1—H10.8200
C17—C181.381 (4)O3—H3A0.8200
C17—H170.9300O1W—H1W0.7910
C18—C191.378 (4)O1W—H2W0.8864
C18—C211.487 (4)
N1—C1—C2121.3 (3)C19—C18—C21121.5 (3)
N1—C1—C7120.6 (4)C17—C18—C21122.6 (3)
C2—C1—C7118.0 (3)C18—C19—C20120.2 (3)
C3—C2—C1121.1 (3)C18—C19—H19119.9
C3—C2—H2119.5C20—C19—H19119.9
C1—C2—H2119.5N3—C20—C19123.7 (3)
C2—C3—C4121.2 (3)N3—C20—H20118.1
C2—C3—H3119.4C19—C20—H20118.2
C4—C3—H3119.4C26—C21—C22115.6 (3)
C6—C4—C3117.9 (3)C26—C21—C18121.4 (3)
C6—C4—C5119.7 (3)C22—C21—C18123.0 (3)
C3—C4—C5122.4 (3)C23—C22—C21120.5 (3)
O2—C5—O1121.4 (3)C23—C22—H22119.7
O2—C5—C4123.7 (3)C21—C22—H22119.7
O1—C5—C4115.0 (3)N4—C23—C22122.8 (3)
C7—C6—C4121.1 (3)N4—C23—H23118.6
C7—C6—H6119.5C22—C23—H23118.6
C4—C6—H6119.5C25—N4—C23117.1 (3)
C6—C7—C1120.8 (3)N4—C25—C26123.6 (3)
C6—C7—H7119.6N4—C25—H25118.2
C1—C7—H7119.6C26—C25—H25118.2
C9—C8—C14120.9 (3)C21—C26—C25120.4 (3)
C9—C8—H8119.5C21—C26—H26119.8
C14—C8—H8119.5C25—C26—H26119.8
C8—C9—C10120.9 (3)C32—N5—C28119.5 (3)
C8—C9—H9119.5C32—N5—H27120.3
C10—C9—H9119.5C28—N5—H27120.3
C12—C10—C9118.3 (3)N5—C28—C29121.8 (3)
C12—C10—C11122.5 (3)N5—C28—H28119.1
C9—C10—C11119.2 (3)C29—C28—H28119.1
O4—C11—O3121.3 (3)C30—C29—C28120.5 (3)
O4—C11—C10124.2 (3)C30—C29—H29119.8
O3—C11—C10114.5 (3)C28—C29—H29119.8
C13—C12—C10120.8 (3)C29—C30—C31115.9 (3)
C13—C12—H12119.6C29—C30—C30i122.2 (3)
C10—C12—H12119.6C31—C30—C30i121.8 (4)
C12—C13—C14121.0 (3)C32—C31—C30120.7 (4)
C12—C13—H13119.5C32—C31—H31119.6
C14—C13—H13119.5C30—C31—H31119.6
N2—C14—C13121.2 (3)N5—C32—C31121.6 (4)
N2—C14—C8120.7 (3)N5—C32—H32119.2
C13—C14—C8118.1 (3)C31—C32—H32119.2
C20—N3—C16116.4 (3)C1—N1—H1A120.0
N3—C16—C17123.5 (3)C1—N1—H1B120.0
N3—C16—H16118.3H1A—N1—H1B120.0
C17—C16—H16118.3C14—N2—H2A120.0
C16—C17—C18120.3 (3)C14—N2—H2B120.0
C16—C17—H17119.9H2A—N2—H2B120.0
C18—C17—H17119.9F6—P—F3178.6 (2)
C19—C18—C17115.9 (3)H1W—O1W—H2W115.1
Symmetry code: (i) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W···O4ii0.891.872.751 (3)169
O1W—H1W···O2iii0.792.012.799 (3)174
O3—H3A···N3iv0.821.872.686 (3)174
O1—H1···O1Wv0.821.802.617 (3)173
N1—H1B···F30.862.573.324 (4)147
N5—H27···N40.861.842.700 (4)176
Symmetry codes: (ii) x1, y, z; (iii) x, y+1, z+1; (iv) x+1, y, z1; (v) x, y, z+1.

Experimental details

Crystal data
Chemical formula0.5C10H10N22+·PF6·C10H8N2·2C7H7NO2·H2O
Mr672.54
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)10.1032 (2), 10.1142 (2), 16.8906 (3)
α, β, γ (°)92.557 (1), 98.063 (1), 117.346 (1)
V3)1506.23 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.18 × 0.15 × 0.14
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
22618, 7121, 3129
Rint0.057
(sin θ/λ)max1)0.659
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.205, 1.02
No. of reflections7121
No. of parameters454
No. of restraints43
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.34

Computer programs: APEX2 (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W···O4i0.891.872.751 (3)169.4
O1W—H1W···O2ii0.792.012.799 (3)173.5
O3—H3A···N3iii0.821.872.686 (3)173.5
O1—H1···O1Wiv0.821.802.617 (3)172.8
N1—H1B···F30.862.573.324 (4)146.7
N5—H27···N40.861.842.700 (4)176.0
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z+1; (iii) x+1, y, z1; (iv) x, y, z+1.
 

Acknowledgements

The authors acknowledge South China Normal University for supporting this work.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHu, D. H., Huang, W., Gou, S. H., Fang, J. L. & Fun, H. K. (2003). Polyhedron, 22, 2661–2667.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, G. P., Wang, Z. Y. & Chen, J. T. (2004). J. Mol. Struct. 707, 223–229.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds