organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Benzoyl­amino-N-[5-(4-bromo­phen­yl)-1,3,4-thia­diazol-2-yl]ethanamide

aState Key Laboratory of Food Science and Technology, Nanchang University, 330047 Nanchang, JiangXi, People's Republic of China, and bDepartment of Pharmacy, NanChang University Medical College, 330006 Nanchang, JiangXi, People's Republic of China
*Correspondence e-mail: tugg199@yahoo.com

(Received 29 December 2008; accepted 10 January 2009; online 17 January 2009)

In the structure of the title compound, C17H13BrN4O2S, the dihedral angle between the two benzene rings is 38.5 (1)°; the angle between the 4-bromo­benzene and thia­diazole rings is 1.3 (1)°. The conformations of the N—H and C=O bonds are anti with respect to each other. The structure displays inter­molecular N—H⋯O and C—H⋯O hydrogen bonding, with both interactions leading to inversion dimers.

Related literature

For 1,3,4-thia­diazole scaffold compounds and their biological activity, see: Tu et al. (2008[Tu, G. G., Li, S. H., Huang, H. M., Li, G., Xiong, F., Mai, X., Zhu, H. W., Kuang, B. H. & Xu, W. F. (2008). Bioorg. Med. Chem. 16, 6663-6668.]). For the synthesis, see: Foroumadi et al. (1999[Foroumadi, A., Daneshtalab, M. & Shafiee, A. (1999). Arzneim. Forsch. 49, 1035-1038.]); Levy & Palmer (1942[Levy, M. & Palmer, A. H. (1942). J. Biol. Chem. 146, 493-495.]); Song et al. (1992[Song, K. S., Ishikawa, Y., Kobayashi, S., Sankawa, U. & Ebizuka, Y. (1992). Phytochemistry, 31, 823-826.]). For related structures, see: Gowda et al. (2008[Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o950.]); Li, Huang et al. (2008[Li, S.-H., Huang, H.-M., Kuang, B.-H., Tu, G.-G. & Liu, C.-M. (2008). Acta Cryst. E64, o2006.]); Li, Li et al. (2008[Li, S.-H., Li, G., Huang, H.-M., Tu, G.-G. & Liu, C.-M. (2008). Acta Cryst. E64, o1887.]).

[Scheme 1]

Experimental

Crystal data
  • C17H13BrN4O2S

  • Mr = 417.28

  • Triclinic, [P \overline 1]

  • a = 4.020 (4) Å

  • b = 13.706 (9) Å

  • c = 16.210 (5) Å

  • α = 113.334 (17)°

  • β = 94.018 (19)°

  • γ = 92.78 (2)°

  • V = 815.2 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.67 mm−1

  • T = 298 (2) K

  • 0.54 × 0.17 × 0.04 mm

Data collection
  • Bruker X8 APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.591, Tmax = 0.914

  • 4633 measured reflections

  • 2592 independent reflections

  • 1097 reflections with I > 2σ(I)

  • Rint = 0.082

Refinement
  • R[F2 > 2σ(F2)] = 0.109

  • wR(F2) = 0.281

  • S = 0.82

  • 2592 reflections

  • 227 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 1.67 e Å−3

  • Δρmin = −1.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16A⋯O2i 0.93 2.49 3.400 (5) 168
N2—H2A⋯O1ii 0.86 1.99 2.835 (5) 167
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) and publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

In our previous work, 1,3,4-thiadiazole scaffold compounds and their biological activity have been studied (Tu et al., 2008). In view of the importance of these organic materials, the title compound (Fig. 1) was synthesized (Foroumadi et al., 1999; Levy & Palmer 1942; Song et al., 1992) and its crystal structure is reported here.

In the structure of the title compound, C17H13BrN4O2S, the dihedral angle between the p-bromobenzene and thiadiazole rings is 1.3 (1)°; the angle between the two benzene rings is 38.5 (1)°. The conformations of the N—H and CO bonds are anti with respect to each other. Bond lengths and angles are in normal ranges and comparable to those in related structures (Gowda et al., 2008; Li, Huang et al., 2008; Li, Li et al., 2008). In the crystal structure, molecules are linked through intermolecular C—H···O and N—H···O hydrogen bonds, forming a three-dimensional network (Table 1, Figure 2).

Related literature top

For 1,3,4-thiadiazole scaffold compounds and their biological activity, see: Tu et al. (2008). For the synthesis, see: Foroumadi et al. (1999); Levy & Palmer (1942); Song et al. (1992). For related structures, see: Gowda et al. (2008); Li, Huang et al. (2008); Li, Li et al. (2008).

Experimental top

N,N-Dicyclohexylcarbodiimide (5.7 mmol) was added to a cooled solution of N-benzoylglycine (5.6 mmol) and N-hydroxysuccinimide (5.6 mmol) in freshly distilled dioxane (30 ml). The reaction mixture was stirred overnight at room temperature. The insoluble material was filtered off and washed with cold dioxane. 2-Amino-5-(4-bromophenyl)-1,3,4-thiadiazole (5.5 mmol) was added to the filtrate and the reaction mixture was stirred for 48 h at room temperature. The solvent was removed under reduced pressure. The residue was dissolved in EtOAc and the insoluble material was filtered off. The filtrate was washed successively with saturated Na2CO3 solution (20 ml, x 3), water (20 ml, x 1), 0.1 M HCl (20 ml, x 3) and water (20 ml, x 1). The organic layer evaporated in vacuo, and the residue was recrystallized from methanol. Colorless block-shaped single crystals of the title compound suitable for X-ray diffraction analysis precipitated after several days.Yield: 37.0%; mp: 271–273°C.

Refinement top

H atoms were positioned geometrically and refined using a riding model; Csp2—H = 0.93 Å, Csp3—H = 0.97 Å and N—H = 0.86 Å; Uĩso(H) = 1.2 Ueq(C,N). We made several attempts to obtain better quality data for this structure. However, due to poor crystal quality and possible disorder, the R and wR values are high. The maximum residual electron density occurs 1.23 Å from atom Br1, and the minimum residual electron density is located 1.29 Å from atom Br1.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: APEX2 (Bruker, 2004); software used to prepare material for publication: APEX2 (Bruker, 2004) and publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis with hydrogen bonds drawn as dashed lines.
2-Benzoylamino-N-[5-(4-bromophenyl)-1,3,4-thiadiazol-2-yl]ethanamide top
Crystal data top
C17H13BrN4O2SZ = 2
Mr = 417.28F(000) = 420.0
Triclinic, P1Dx = 1.700 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.020 (4) ÅCell parameters from 1179 reflections
b = 13.706 (9) Åθ = 2.6–23.7°
c = 16.210 (5) ŵ = 2.67 mm1
α = 113.334 (17)°T = 298 K
β = 94.018 (19)°Block, colourless
γ = 92.78 (2)°0.54 × 0.17 × 0.04 mm
V = 815.2 (10) Å3
Data collection top
Bruker X8 APEXII
diffractometer
2592 independent reflections
Radiation source: fine-focus sealed tube1097 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.082
ϕ and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 44
Tmin = 0.591, Tmax = 0.914k = 1616
4633 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.109H-atom parameters constrained
wR(F2) = 0.281 w = 1/[σ2(Fo2) + (0.1951P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.82(Δ/σ)max = 0.019
2592 reflectionsΔρmax = 1.67 e Å3
227 parametersΔρmin = 1.40 e Å3
6 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.022 (2)
Crystal data top
C17H13BrN4O2Sγ = 92.78 (2)°
Mr = 417.28V = 815.2 (10) Å3
Triclinic, P1Z = 2
a = 4.020 (4) ÅMo Kα radiation
b = 13.706 (9) ŵ = 2.67 mm1
c = 16.210 (5) ÅT = 298 K
α = 113.334 (17)°0.54 × 0.17 × 0.04 mm
β = 94.018 (19)°
Data collection top
Bruker X8 APEXII
diffractometer
2592 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1097 reflections with I > 2σ(I)
Tmin = 0.591, Tmax = 0.914Rint = 0.082
4633 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.1096 restraints
wR(F2) = 0.281H-atom parameters constrained
S = 0.82Δρmax = 1.67 e Å3
2592 reflectionsΔρmin = 1.40 e Å3
227 parameters
Special details top

Experimental. 1H-NMR (DMSO-d6): δ 4.24–4.25(d, J=5.08 Hz, 2H), 7.49–7.57 (m, 3H),7.73–7.75 (d, J=8.04 Hz, 2H), 7.89–7.91(t, J=3.60 Hz, 4H), 9.01 (s, 1H),12.91 (s, 1H). ESI-MS: m/z [M+H]+ 417.3.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.19570 (14)0.16142 (4)0.64242 (3)0.07526 (19)
S10.3284 (3)0.41677 (8)0.33059 (7)0.0550 (4)
O10.2257 (8)0.6333 (2)0.00717 (17)0.0636 (9)
O20.2253 (9)0.5689 (2)0.25867 (18)0.0687 (8)
N10.2711 (9)0.6635 (2)0.1388 (2)0.0551 (12)
H1A0.23520.70340.19310.066*
N30.5949 (10)0.2787 (3)0.1998 (2)0.0621 (13)
N40.5645 (10)0.2351 (2)0.2632 (2)0.0597 (8)
N20.4834 (9)0.4276 (2)0.1728 (2)0.0539 (8)
H2A0.57260.39920.12290.065*
C40.2078 (13)0.9136 (3)0.0368 (3)0.0711 (18)
H4B0.31080.92540.01120.085*
C50.0907 (12)0.8176 (3)0.0241 (3)0.0610 (16)
H5A0.12310.76280.03320.073*
C100.4756 (11)0.3703 (3)0.2263 (3)0.0512 (11)
C160.1797 (12)0.3039 (3)0.5556 (3)0.0632 (17)
H16A0.08380.34860.60610.076*
C150.2691 (13)0.2067 (3)0.5481 (3)0.0603 (10)
C120.3711 (10)0.2674 (3)0.4098 (2)0.0471 (9)
C140.4058 (11)0.1370 (3)0.4729 (3)0.0598 (11)
H14A0.45960.07010.46880.072*
C170.2354 (12)0.3345 (3)0.4857 (3)0.0587 (11)
H17A0.18070.40140.49000.070*
C80.4114 (12)0.5638 (3)0.1200 (3)0.0560 (15)
H8A0.64860.57230.11440.067*
H8B0.30680.51160.06270.067*
C90.3647 (11)0.5237 (3)0.1913 (2)0.0475 (10)
C110.4297 (11)0.2963 (3)0.3341 (2)0.0483 (10)
C130.4598 (12)0.1698 (3)0.4041 (3)0.0601 (16)
H13A0.55710.12530.35370.072*
C70.1970 (11)0.6938 (3)0.0722 (3)0.0521 (13)
C60.0730 (11)0.7991 (3)0.0926 (2)0.0489 (14)
C20.0154 (12)0.9776 (3)0.1919 (3)0.0601 (16)
H2B0.00741.03200.24940.072*
C30.1698 (12)0.9930 (3)0.1230 (3)0.0643 (17)
H3B0.25331.05850.13320.077*
C10.1113 (12)0.8805 (3)0.1780 (3)0.0555 (15)
H1B0.22160.87010.22590.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0941 (4)0.0888 (3)0.0604 (2)0.0226 (3)0.0361 (2)0.04206 (19)
S10.0804 (8)0.0441 (5)0.0406 (5)0.0193 (5)0.0286 (5)0.0118 (4)
O10.106 (2)0.0501 (14)0.0414 (6)0.0279 (14)0.0433 (10)0.0174 (7)
O20.1043 (12)0.0616 (16)0.0469 (7)0.0256 (13)0.0439 (6)0.0207 (9)
N10.082 (3)0.0452 (17)0.0435 (16)0.0255 (16)0.0332 (18)0.0165 (13)
N30.099 (3)0.0488 (17)0.0448 (17)0.0288 (18)0.0270 (19)0.0193 (13)
N40.1059 (15)0.0386 (15)0.0399 (8)0.0252 (12)0.0297 (7)0.0154 (8)
N20.075 (2)0.0474 (5)0.0474 (5)0.0157 (15)0.0353 (16)0.0212 (3)
C40.097 (4)0.049 (2)0.070 (3)0.025 (2)0.022 (3)0.022 (2)
C50.080 (3)0.042 (2)0.053 (2)0.012 (2)0.009 (2)0.0102 (18)
C100.073 (3)0.0390 (7)0.0442 (7)0.0091 (19)0.024 (2)0.0156 (4)
C160.080 (3)0.054 (2)0.051 (2)0.012 (2)0.034 (2)0.0102 (19)
C150.0825 (16)0.0564 (19)0.0442 (9)0.0018 (12)0.0194 (8)0.0211 (8)
C120.0546 (15)0.0498 (18)0.0351 (9)0.0036 (12)0.0172 (7)0.0131 (8)
C140.066 (2)0.066 (2)0.0600 (12)0.0136 (14)0.0282 (10)0.0337 (10)
C170.078 (2)0.050 (2)0.0448 (11)0.0131 (15)0.0261 (10)0.0109 (10)
C80.064 (3)0.061 (2)0.053 (2)0.026 (2)0.035 (2)0.0269 (16)
C90.0644 (16)0.041 (2)0.0353 (8)0.0082 (16)0.0210 (7)0.0104 (12)
C110.0753 (18)0.0407 (18)0.0336 (10)0.0106 (14)0.0223 (9)0.0165 (9)
C130.094 (3)0.042 (2)0.046 (2)0.010 (2)0.030 (2)0.0159 (16)
C70.071 (3)0.047 (2)0.0344 (7)0.0104 (19)0.0185 (14)0.0105 (9)
C60.061 (3)0.047 (2)0.0339 (18)0.0118 (19)0.030 (2)0.0067 (16)
C20.078 (3)0.043 (2)0.050 (2)0.009 (2)0.019 (2)0.0062 (18)
C30.080 (3)0.052 (2)0.065 (3)0.031 (2)0.025 (3)0.0211 (19)
C10.071 (3)0.047 (2)0.046 (2)0.016 (2)0.023 (2)0.0120 (17)
Geometric parameters (Å, º) top
Br1—C151.898 (5)C16—C171.382 (7)
S1—C101.714 (4)C16—H16A0.9300
S1—C111.741 (5)C15—C141.387 (6)
O1—C71.242 (4)C12—C131.370 (6)
O2—C91.214 (5)C12—C171.380 (5)
N1—C71.323 (6)C12—C111.461 (6)
N1—C81.430 (5)C14—C131.383 (7)
N1—H1A0.8600C14—H14A0.9300
N3—C101.285 (5)C17—H17A0.9300
N3—N41.387 (6)C8—C91.483 (7)
N4—C111.299 (5)C8—H8A0.9700
N2—C91.349 (5)C8—H8B0.9700
N2—C101.381 (6)C13—H13A0.9300
N2—H2A0.8600C7—C61.469 (6)
C4—C51.361 (7)C6—C11.383 (5)
C4—C31.382 (6)C2—C31.335 (7)
C4—H4B0.9300C2—C11.388 (6)
C5—C61.367 (7)C2—H2B0.9300
C5—H5A0.9300C3—H3B0.9300
C16—C151.359 (7)C1—H1B0.9300
C10—S1—C1186.0 (2)C16—C17—H17A119.5
C7—N1—C8119.6 (3)N1—C8—C9112.3 (3)
C7—N1—H1A120.2N1—C8—H8A109.1
C8—N1—H1A120.2C9—C8—H8A109.1
C10—N3—N4110.7 (4)N1—C8—H8B109.1
C11—N4—N3113.3 (3)C9—C8—H8B109.1
C9—N2—C10126.3 (3)H8A—C8—H8B107.9
C9—N2—H2A116.8O2—C9—N2121.9 (4)
C10—N2—H2A116.8O2—C9—C8125.0 (4)
C5—C4—C3118.3 (5)N2—C9—C8113.1 (3)
C5—C4—H4B120.9N4—C11—C12123.3 (4)
C3—C4—H4B120.9N4—C11—S1113.4 (3)
C4—C5—C6122.2 (4)C12—C11—S1123.3 (3)
C4—C5—H5A118.9C12—C13—C14120.4 (4)
C6—C5—H5A118.9C12—C13—H13A119.8
N3—C10—N2119.8 (4)C14—C13—H13A119.8
N3—C10—S1116.5 (4)O1—C7—N1120.5 (4)
N2—C10—S1123.6 (3)O1—C7—C6120.0 (4)
C15—C16—C17118.0 (4)N1—C7—C6119.4 (3)
C15—C16—H16A121.0C5—C6—C1118.3 (4)
C17—C16—H16A121.0C5—C6—C7118.5 (3)
C16—C15—C14122.6 (5)C1—C6—C7123.2 (4)
C16—C15—Br1119.4 (3)C3—C2—C1120.2 (4)
C14—C15—Br1118.0 (4)C3—C2—H2B119.9
C13—C12—C17119.7 (4)C1—C2—H2B119.9
C13—C12—C11117.6 (3)C2—C3—C4121.2 (4)
C17—C12—C11122.6 (4)C2—C3—H3B119.4
C13—C14—C15118.2 (4)C4—C3—H3B119.4
C13—C14—H14A120.9C6—C1—C2119.8 (4)
C15—C14—H14A120.9C6—C1—H1B120.1
C12—C17—C16121.0 (4)C2—C1—H1B120.1
C12—C17—H17A119.5
C10—N3—N4—C111.0 (5)C13—C12—C11—N40.9 (6)
C3—C4—C5—C62.5 (8)C17—C12—C11—N4178.3 (4)
N4—N3—C10—N2179.7 (4)C13—C12—C11—S1179.6 (3)
N4—N3—C10—S12.2 (5)C17—C12—C11—S11.2 (6)
C9—N2—C10—N3179.2 (4)C10—S1—C11—N41.5 (3)
C9—N2—C10—S13.6 (6)C10—S1—C11—C12178.9 (4)
C11—S1—C10—N32.2 (4)C17—C12—C13—C141.8 (6)
C11—S1—C10—N2179.5 (4)C11—C12—C13—C14179.0 (4)
C17—C16—C15—C141.5 (7)C15—C14—C13—C121.8 (7)
C17—C16—C15—Br1179.8 (3)C8—N1—C7—O15.2 (6)
C16—C15—C14—C131.7 (7)C8—N1—C7—C6176.1 (4)
Br1—C15—C14—C13179.9 (3)C4—C5—C6—C11.8 (7)
C13—C12—C17—C161.6 (6)C4—C5—C6—C7178.7 (5)
C11—C12—C17—C16179.2 (4)O1—C7—C6—C517.2 (7)
C15—C16—C17—C121.4 (7)N1—C7—C6—C5161.5 (4)
C7—N1—C8—C9159.0 (4)O1—C7—C6—C1163.3 (4)
C10—N2—C9—O22.3 (6)N1—C7—C6—C118.0 (7)
C10—N2—C9—C8180.0 (4)C1—C2—C3—C40.1 (8)
N1—C8—C9—O20.2 (6)C5—C4—C3—C21.6 (8)
N1—C8—C9—N2177.4 (3)C5—C6—C1—C20.0 (7)
N3—N4—C11—C12179.8 (4)C7—C6—C1—C2179.5 (4)
N3—N4—C11—S10.6 (5)C3—C2—C1—C60.9 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16A···O2i0.932.493.400 (5)168
N2—H2A···O1ii0.861.992.835 (5)167
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC17H13BrN4O2S
Mr417.28
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)4.020 (4), 13.706 (9), 16.210 (5)
α, β, γ (°)113.334 (17), 94.018 (19), 92.78 (2)
V3)815.2 (10)
Z2
Radiation typeMo Kα
µ (mm1)2.67
Crystal size (mm)0.54 × 0.17 × 0.04
Data collection
DiffractometerBruker X8 APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.591, 0.914
No. of measured, independent and
observed [I > 2σ(I)] reflections
4633, 2592, 1097
Rint0.082
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.109, 0.281, 0.82
No. of reflections2592
No. of parameters227
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.67, 1.40

Computer programs: , SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), APEX2 (Bruker, 2004) and publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16A···O2i0.932.493.400 (5)167.6
N2—H2A···O1ii0.861.992.835 (5)166.8
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z.
 

Footnotes

Additional correspondence author, e-mail: lishaohua0131@yahoo.com.cn.

Acknowledgements

The work was supported by the Science and Technology Research Project of JiangXi Provincial Educational Department (No. GJJ09076), the Science and Technology Planning Project of JiangXi Provincial Health Department (No. 20082015) and the Natural Science Foundation of JiangXi Province, China.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationForoumadi, A., Daneshtalab, M. & Shafiee, A. (1999). Arzneim. Forsch. 49, 1035–1038.  CAS Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o950.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLevy, M. & Palmer, A. H. (1942). J. Biol. Chem. 146, 493–495.  CAS Google Scholar
First citationLi, S.-H., Huang, H.-M., Kuang, B.-H., Tu, G.-G. & Liu, C.-M. (2008). Acta Cryst. E64, o2006.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLi, S.-H., Li, G., Huang, H.-M., Tu, G.-G. & Liu, C.-M. (2008). Acta Cryst. E64, o1887.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, K. S., Ishikawa, Y., Kobayashi, S., Sankawa, U. & Ebizuka, Y. (1992). Phytochemistry, 31, 823–826.  CrossRef CAS Google Scholar
First citationTu, G. G., Li, S. H., Huang, H. M., Li, G., Xiong, F., Mai, X., Zhu, H. W., Kuang, B. H. & Xu, W. F. (2008). Bioorg. Med. Chem. 16, 6663–6668.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds