organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(5-Hydr­­oxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)ethanone: a new monoclinic polymorph

aDepartment of Chemistry, Islamia University, Bahawalpur, Pakistan, bDepartment of Chemistry, Government College of Education, Afzalpur, Azad Jammu & Kashmir, Pakistan, cMaterials Chemistry Laboratory, Department of Chemistry, GC University, Lahore, Pakistan, and dInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2009 Neuchâtel, Switzerland
*Correspondence e-mail: mnachemist@hotmail.com

(Received 9 January 2009; accepted 12 January 2009; online 17 January 2009)

The title compound, C12H12N2O2, crystallized in the monolinic space group P21/n, with two independent mol­ecules (A and B) in the asymmetric unit. This is in contrast to the first monoclinic polymorph reported [Cingolani et al. (2002[Cingolani, A., Effendy, Marchetti, F., Pettinari, C., Skelton, B. W. & White, A. H. (2002). Inorg. Chem. 41, 1151-1161.]). Inorg. Chem. 41, 1151–116], which crystallized in the space group C2/c with one independent mol­ecule per asymmetric unit. The dihedral angles between the two rings differ slightly; in mol­ecule A it is 4.90 (11)° and in mol­ecule B it is 16.05 (13)°. In both mol­ecules, there is an intra­molecular O—H⋯O hydrogen bond involving the hydroxyl substituent and the carbonyl O atom of the adjacent acetyl group. In the crystal structure, mol­ecules A and B are linked via a C—H⋯N inter­action. There are also some weak C—H⋯π inter­actions involving the phenyl ring of mol­ecule A and H atoms of the acetyl groups of both mol­ecules.

Related literature

For early literature on pyrazoles, see: Knorr (1883[Knorr, L. (1883). Ber. Dtsch. Chem. Ges. 16, 2593-2596.]). For information on the pharamceutical properties of pyrazoles, see: Grimmett (1970[Grimmett, M. R. (1970). Adv. Heterocycl. Chem. 12, 103-183.]). For the monoclinic C2/c polymorph of the title compound, see: Cingolani et al. (2002[Cingolani, A., Effendy, Marchetti, F., Pettinari, C., Skelton, B. W. & White, A. H. (2002). Inorg. Chem. 41, 1151-1161.]).

[Scheme 1]

Experimental

Crystal data
  • C12H12N2O2

  • Mr = 216.24

  • Monoclinic, P 21 /n

  • a = 13.8735 (7) Å

  • b = 9.2037 (4) Å

  • c = 18.3702 (8) Å

  • β = 110.100 (2)°

  • V = 2202.78 (18) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 (2) K

  • 0.34 × 0.22 × 0.16 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: none

  • 24519 measured reflections

  • 5500 independent reflections

  • 2656 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.149

  • S = 0.97

  • 5500 reflections

  • 292 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O2 0.82 1.85 2.546 (2) 142
O21—H21O⋯O22 0.82 1.83 2.531 (3) 142
C8—H8⋯N22i 0.93 2.56 3.489 (3) 177
C13—H13CCg2ii 0.96 2.66 3.533 (3) 150
C33—H33BCg2ii 0.96 2.98 3.774 (3) 141
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z+1. Cg2 is the centroid of the C6–C11 ring.

Data collection: APEX2 (Bruker, 2002[Bruker (2002). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The history of pyrazoles began already in the late nineteenth century (Knorr, 1883). Pyrazole is isomeric with the biologically important imidazole ring system but, unlike imidazole, has fewer natural derivatives. The ring system is very stable and inert, and interest in such compounds stemmed from their applications as drugs, dyes and as anesthetics. They are also used as antioxidants in fuels but their major applications have been in the pharmaceutical (Grimmett, 1970) and agricultural industries. In view of the importance of pyrazole derivatives we have planned a systematic study of such compounds, and describe here the crystal structure of a new polymorph of the title compound.

It crystallized in the monoclinic space group P21/n, with two independent molecules (A and B) per asymmetric unit (Fig. 1). This is in contrast to an earlier reported monoclinic polymorph, (Cingolani et al., 2002), which crystallized in the space group C2/c with one independent molecule per asymmetric unit. The bond distances and angles in both polymorphs are very similar. The dihedral angles between the two rings differ slightly; in molecule A it is 4.90 (11)° and in molecule B it is 16.05 (13)°. The corresponding value in the other polymorph is 5.33 (10)°.

In both molecules (A and B), there is an intramolecular O—H···O hydrogen bond involving the hydroxyl substituent and the carbonyl O atom of the adjacent acetyl group (Table 1); this feature is also present in the C2/c polymorph. In the crystal structure, molecules A and B are linked via a C—H···N interaction (Fig. 2 and Table 1). There are also some weak C—H···π interactions involving the phenyl ring (centroid Cg2) of molecule A and some H atoms of the acetyl groups of both molecules (Table 1).

Related literature top

For early literature on pyrazoles, see: Knorr (1883). For information on the pharamceutical properties of pyrazoles, see: Grimmett (1970). For the monoclinic C2/c polymorph, see: Cingolani et al. (2002). Cg2 is the centroid of the C6–C11 ring.

Experimental top

1-Phenyl-3-methyl-5-pyrazolone (7.5 g) was dissolved by heating in tetrahydrofuran (80 ml). Calcium hydroxide (12 g) was added and acetyl chloride (4 ml) was then added dropwise over a period of 1 min. The temperature increased during the first few minutes and the reaction mixture became a thick paste. This mixture was then refluxed for 30 min. The calcium complex of the title compound that had formed in the flask was decomposed by pouring the mixture into a dilute solution of HCl (100 ml). A dark brownish-red organic layer was obtained which was extracted using dichloromethane. The solvent was then removed by vacuum distillation and the solid obtained was washed with a little water and THF. Crystals of the title compound, suitable for X-ray analysis, were obtained by recrystallization from methanol/water (1:1, v:v).

Refinement top

The H atoms were included in calculated positions and treated as riding atoms: O—H = 0.83 Å, C—H = 0.93 - 0.96 Å with Uiso(H) = kUeq(parent atom), where k = 1.2 for aromatic H and 1.5 for all other H atoms. Methyl group C34 undergoes considerable thermal motion but splitting the atom did not improve the situation.

Computing details top

Data collection: APEX2 (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the two independent molecules (A and B), showing the displacement ellipsoids drawn at the 50% probability level and the intramolecular O—H···O hydrogen bonds as dashed lines. Hydrogen atoms are represented as spheres of arbitrary radius.
[Figure 2] Fig. 2. A view along the b axis of the crystal packing, showing the intramolecular O—H···H hydrogen bonds and the intermolecular C—H···N interactions as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
1-(5-Hydroxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)ethanone top
Crystal data top
C12H12N2O2F(000) = 912
Mr = 216.24Dx = 1.304 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4106 reflections
a = 13.8735 (7) Åθ = 2.3–22.4°
b = 9.2037 (4) ŵ = 0.09 mm1
c = 18.3702 (8) ÅT = 296 K
β = 110.100 (2)°Block, colorless
V = 2202.78 (18) Å30.34 × 0.22 × 0.16 mm
Z = 8
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2656 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.047
Graphite monochromatorθmax = 28.6°, θmin = 2.4°
ϕ and ω scansh = 1818
24519 measured reflectionsk = 1212
5500 independent reflectionsl = 2424
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.149 w = 1/[σ2(Fo2) + (0.0571P)2 + 0.4951P]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max = 0.001
5500 reflectionsΔρmax = 0.18 e Å3
292 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0059 (9)
Crystal data top
C12H12N2O2V = 2202.78 (18) Å3
Mr = 216.24Z = 8
Monoclinic, P21/nMo Kα radiation
a = 13.8735 (7) ŵ = 0.09 mm1
b = 9.2037 (4) ÅT = 296 K
c = 18.3702 (8) Å0.34 × 0.22 × 0.16 mm
β = 110.100 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2656 reflections with I > 2σ(I)
24519 measured reflectionsRint = 0.047
5500 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.149H-atom parameters constrained
S = 0.97Δρmax = 0.18 e Å3
5500 reflectionsΔρmin = 0.14 e Å3
292 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.66613 (12)0.62373 (18)0.03281 (8)0.0712 (6)
O20.53649 (13)0.8021 (2)0.11913 (9)0.0837 (7)
N10.62925 (12)0.57325 (17)0.08026 (8)0.0485 (5)
N20.55538 (12)0.61513 (18)0.11211 (9)0.0540 (6)
C30.49372 (15)0.7059 (2)0.06310 (11)0.0526 (6)
C40.52380 (15)0.7271 (2)0.00295 (10)0.0512 (7)
C50.61166 (15)0.6395 (2)0.01114 (10)0.0514 (7)
C60.70789 (14)0.4754 (2)0.12184 (10)0.0480 (6)
C70.77805 (16)0.4233 (3)0.09027 (12)0.0651 (8)
C80.85362 (18)0.3279 (3)0.13225 (13)0.0744 (9)
C90.85957 (17)0.2840 (3)0.20516 (12)0.0668 (8)
C100.78986 (16)0.3365 (2)0.23610 (11)0.0617 (7)
C110.71414 (15)0.4321 (2)0.19540 (10)0.0547 (7)
C120.48768 (17)0.8096 (2)0.07168 (12)0.0612 (7)
C130.39531 (18)0.9041 (3)0.09255 (13)0.0753 (9)
C140.40749 (17)0.7731 (3)0.08202 (13)0.0771 (9)
O210.23044 (14)0.0334 (2)0.01074 (9)0.0987 (8)
O220.18315 (17)0.1293 (3)0.12625 (11)0.1230 (10)
N210.11930 (13)0.1209 (2)0.07053 (9)0.0632 (7)
N220.03141 (16)0.2078 (3)0.04976 (11)0.0871 (9)
C230.01369 (18)0.2479 (3)0.02204 (13)0.0760 (9)
C240.08731 (16)0.1905 (2)0.05120 (11)0.0617 (8)
C250.15261 (17)0.1086 (2)0.01064 (12)0.0622 (8)
C260.15670 (17)0.0590 (2)0.14600 (11)0.0591 (7)
C270.2554 (2)0.0047 (3)0.17540 (14)0.0830 (10)
C280.2890 (2)0.0560 (3)0.24905 (15)0.0940 (11)
C290.2273 (2)0.0600 (3)0.29305 (14)0.0882 (10)
C300.1312 (2)0.0014 (3)0.26406 (14)0.0818 (10)
C310.09504 (19)0.0573 (3)0.19051 (12)0.0706 (8)
C320.1070 (2)0.2010 (3)0.12067 (13)0.0786 (10)
C330.0467 (2)0.2899 (3)0.18792 (13)0.0988 (11)
C340.0776 (2)0.3424 (4)0.06259 (17)0.1267 (14)
H1O0.642800.675000.071400.1070*
H70.774500.452300.040900.0780*
H80.900900.292900.110900.0890*
H90.910400.219500.233100.0800*
H100.793600.307100.285500.0740*
H110.667500.467300.217300.0660*
H13A0.387200.953600.140300.1130*
H13B0.403300.974200.052200.1130*
H13C0.335700.845600.098600.1130*
H14A0.343900.752800.041200.1160*
H14B0.417500.876300.087200.1160*
H14C0.405600.733600.129900.1160*
H21O0.238800.042500.031100.1480*
H270.298600.008800.146400.1000*
H280.354800.094700.268800.1130*
H290.250400.102000.342100.1060*
H300.089500.001200.294300.0980*
H310.029100.095600.171200.0850*
H33A0.066300.266300.231800.1480*
H33B0.059600.391100.175600.1480*
H33C0.025100.270200.200000.1480*
H34A0.114100.363300.027900.1910*
H34B0.122200.292500.107400.1910*
H34C0.054600.431500.078300.1910*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0762 (10)0.0911 (12)0.0547 (8)0.0196 (9)0.0331 (8)0.0127 (8)
O20.0920 (12)0.1028 (14)0.0569 (9)0.0153 (10)0.0262 (9)0.0176 (8)
N10.0489 (9)0.0560 (10)0.0417 (8)0.0082 (8)0.0170 (7)0.0040 (7)
N20.0520 (10)0.0624 (11)0.0501 (9)0.0100 (9)0.0207 (8)0.0060 (8)
C30.0503 (11)0.0557 (12)0.0498 (10)0.0059 (10)0.0145 (9)0.0072 (10)
C40.0511 (12)0.0513 (12)0.0461 (10)0.0036 (10)0.0101 (9)0.0066 (9)
C50.0543 (12)0.0567 (12)0.0429 (10)0.0004 (10)0.0165 (9)0.0060 (9)
C60.0478 (11)0.0500 (11)0.0460 (10)0.0046 (9)0.0157 (9)0.0041 (9)
C70.0678 (14)0.0804 (16)0.0544 (11)0.0209 (13)0.0305 (11)0.0094 (11)
C80.0685 (15)0.0919 (18)0.0725 (14)0.0327 (14)0.0366 (12)0.0133 (13)
C90.0623 (14)0.0737 (15)0.0630 (13)0.0189 (12)0.0199 (11)0.0076 (11)
C100.0686 (14)0.0690 (14)0.0478 (10)0.0116 (12)0.0203 (10)0.0043 (10)
C110.0574 (12)0.0613 (13)0.0498 (10)0.0076 (11)0.0239 (9)0.0034 (9)
C120.0645 (14)0.0599 (13)0.0499 (11)0.0007 (11)0.0078 (11)0.0041 (10)
C130.0745 (16)0.0677 (15)0.0679 (14)0.0120 (13)0.0041 (12)0.0042 (11)
C140.0697 (15)0.0915 (18)0.0737 (14)0.0268 (14)0.0293 (12)0.0001 (13)
O210.0956 (13)0.1380 (17)0.0771 (11)0.0562 (12)0.0485 (10)0.0161 (11)
O220.1323 (17)0.178 (2)0.0862 (12)0.0505 (16)0.0727 (13)0.0229 (13)
N210.0616 (11)0.0788 (13)0.0554 (10)0.0240 (10)0.0282 (9)0.0052 (9)
N220.0824 (14)0.1190 (18)0.0700 (12)0.0519 (13)0.0393 (11)0.0221 (12)
C230.0722 (15)0.0956 (18)0.0634 (13)0.0270 (14)0.0275 (12)0.0125 (13)
C240.0601 (13)0.0746 (15)0.0528 (11)0.0049 (12)0.0226 (10)0.0014 (10)
C250.0618 (13)0.0703 (15)0.0607 (12)0.0113 (12)0.0292 (11)0.0019 (11)
C260.0674 (14)0.0600 (13)0.0524 (11)0.0121 (11)0.0239 (11)0.0007 (10)
C270.0782 (17)0.102 (2)0.0700 (15)0.0283 (15)0.0272 (13)0.0093 (14)
C280.0888 (19)0.103 (2)0.0754 (17)0.0238 (17)0.0092 (16)0.0120 (15)
C290.112 (2)0.0838 (19)0.0616 (14)0.0010 (17)0.0206 (16)0.0095 (13)
C300.107 (2)0.0783 (17)0.0679 (15)0.0045 (16)0.0400 (15)0.0041 (13)
C310.0774 (16)0.0741 (15)0.0651 (13)0.0103 (13)0.0306 (12)0.0031 (12)
C320.0825 (17)0.0944 (19)0.0616 (14)0.0036 (15)0.0283 (13)0.0008 (13)
C330.111 (2)0.118 (2)0.0601 (14)0.0131 (19)0.0201 (14)0.0143 (15)
C340.114 (2)0.177 (3)0.093 (2)0.084 (2)0.0405 (18)0.042 (2)
Geometric parameters (Å, º) top
O1—C51.290 (3)C11—H110.9300
O2—C121.276 (3)C13—H13B0.9600
O1—H1O0.8200C13—H13A0.9600
O21—C251.282 (3)C13—H13C0.9600
O22—C321.279 (4)C14—H14C0.9600
O21—H21O0.8200C14—H14B0.9600
N1—C51.353 (2)C14—H14A0.9600
N1—C61.419 (2)C23—C241.409 (3)
N1—N21.398 (2)C23—C341.506 (4)
N2—C31.308 (3)C24—C251.404 (3)
N21—C251.337 (3)C24—C321.397 (3)
N21—C261.422 (2)C26—C311.372 (3)
N21—N221.397 (3)C26—C271.381 (4)
N22—C231.309 (3)C27—C281.388 (4)
C3—C141.490 (3)C28—C291.365 (4)
C3—C41.426 (3)C29—C301.365 (4)
C4—C121.410 (3)C30—C311.380 (3)
C4—C51.409 (3)C32—C331.478 (3)
C6—C111.383 (2)C27—H270.9300
C6—C71.379 (3)C28—H280.9300
C7—C81.382 (4)C29—H290.9300
C8—C91.374 (3)C30—H300.9300
C9—C101.367 (3)C31—H310.9300
C10—C111.377 (3)C33—H33A0.9600
C12—C131.486 (3)C33—H33B0.9600
C7—H70.9300C33—H33C0.9600
C8—H80.9300C34—H34A0.9600
C9—H90.9300C34—H34B0.9600
C10—H100.9300C34—H34C0.9600
C5—O1—H1O110.00H14A—C14—H14B109.00
C25—O21—H21O110.00H14A—C14—H14C110.00
N2—N1—C5110.30 (16)C3—C14—H14B109.00
C5—N1—C6130.45 (17)C3—C14—H14C109.00
N2—N1—C6119.25 (14)C3—C14—H14A109.00
N1—N2—C3106.75 (15)N22—C23—C24111.6 (2)
C25—N21—C26130.94 (19)N22—C23—C34119.8 (2)
N22—N21—C26119.17 (17)C24—C23—C34128.7 (2)
N22—N21—C25109.87 (17)C23—C24—C25104.13 (19)
N21—N22—C23106.3 (2)C23—C24—C32135.7 (2)
C4—C3—C14129.42 (18)C25—C24—C32120.1 (2)
N2—C3—C14119.48 (18)O21—C25—C24126.9 (2)
N2—C3—C4111.08 (18)N21—C25—C24108.1 (2)
C3—C4—C5104.66 (16)O21—C25—N21125.02 (19)
C3—C4—C12135.9 (2)N21—C26—C27120.5 (2)
C5—C4—C12119.44 (19)C27—C26—C31120.0 (2)
N1—C5—C4107.21 (17)N21—C26—C31119.5 (2)
O1—C5—C4127.25 (17)C26—C27—C28118.9 (2)
O1—C5—N1125.54 (18)C27—C28—C29121.3 (3)
N1—C6—C11119.18 (17)C28—C29—C30119.0 (2)
C7—C6—C11119.64 (19)C29—C30—C31121.0 (3)
N1—C6—C7121.18 (17)C26—C31—C30119.8 (2)
C6—C7—C8119.7 (2)O22—C32—C33117.7 (2)
C7—C8—C9120.7 (2)C24—C32—C33124.7 (2)
C8—C9—C10119.2 (2)O22—C32—C24117.6 (2)
C9—C10—C11121.10 (19)C26—C27—H27121.00
C6—C11—C10119.65 (19)C28—C27—H27121.00
O2—C12—C13117.93 (19)C27—C28—H28119.00
O2—C12—C4118.3 (2)C29—C28—H28119.00
C4—C12—C13123.8 (2)C28—C29—H29120.00
C8—C7—H7120.00C30—C29—H29120.00
C6—C7—H7120.00C29—C30—H30120.00
C9—C8—H8120.00C31—C30—H30120.00
C7—C8—H8120.00C26—C31—H31120.00
C10—C9—H9120.00C30—C31—H31120.00
C8—C9—H9120.00C32—C33—H33A110.00
C9—C10—H10119.00C32—C33—H33B109.00
C11—C10—H10119.00C32—C33—H33C109.00
C10—C11—H11120.00H33A—C33—H33B109.00
C6—C11—H11120.00H33A—C33—H33C110.00
C12—C13—H13B109.00H33B—C33—H33C109.00
C12—C13—H13C109.00C23—C34—H34A109.00
H13A—C13—H13C110.00C23—C34—H34B109.00
C12—C13—H13A109.00C23—C34—H34C109.00
H13A—C13—H13B109.00H34A—C34—H34B109.00
H13B—C13—H13C109.00H34A—C34—H34C110.00
H14B—C14—H14C109.00H34B—C34—H34C110.00
C5—N1—N2—C30.1 (2)C3—C4—C5—N10.3 (2)
C6—N1—N2—C3179.20 (16)C12—C4—C5—O10.2 (3)
N2—N1—C5—O1179.96 (19)C12—C4—C5—N1179.92 (16)
N2—N1—C5—C40.1 (2)C3—C4—C12—O2179.4 (2)
C6—N1—C5—O10.8 (3)N1—C6—C7—C8179.9 (2)
C6—N1—C5—C4179.31 (18)C11—C6—C7—C80.3 (3)
N2—N1—C6—C7175.42 (19)N1—C6—C11—C10179.64 (18)
N2—N1—C6—C114.7 (3)C7—C6—C11—C100.5 (3)
C5—N1—C6—C75.4 (3)C6—C7—C8—C90.1 (4)
C5—N1—C6—C11174.41 (19)C7—C8—C9—C100.3 (4)
N1—N2—C3—C40.3 (2)C8—C9—C10—C110.1 (4)
N1—N2—C3—C14178.50 (18)C9—C10—C11—C60.4 (3)
N22—N21—C25—O21178.4 (2)N22—C23—C24—C250.5 (3)
N22—N21—C25—C241.0 (2)N22—C23—C24—C32177.7 (3)
C26—N21—C25—O210.3 (4)C34—C23—C24—C25178.6 (3)
C26—N21—C25—C24179.2 (2)C34—C23—C24—C323.1 (5)
N22—N21—C26—C27163.5 (2)C23—C24—C25—O21178.5 (2)
C25—N21—N22—C230.7 (3)C23—C24—C25—N211.0 (2)
C26—N21—N22—C23179.1 (2)C32—C24—C25—O212.9 (3)
C25—N21—C26—C31163.4 (2)C32—C24—C25—N21177.6 (2)
N22—N21—C26—C3114.6 (3)C23—C24—C32—O22179.3 (3)
C25—N21—C26—C2718.5 (3)C23—C24—C32—C331.3 (5)
N21—N22—C23—C240.1 (3)C25—C24—C32—O222.7 (4)
N21—N22—C23—C34179.3 (2)C25—C24—C32—C33176.8 (2)
C14—C3—C4—C5178.3 (2)N21—C26—C27—C28179.5 (2)
C14—C3—C4—C121.3 (4)C31—C26—C27—C282.4 (4)
N2—C3—C4—C12179.9 (2)N21—C26—C31—C30179.4 (2)
N2—C3—C4—C50.3 (2)C27—C26—C31—C301.3 (4)
C3—C4—C5—O1179.81 (19)C26—C27—C28—C291.4 (4)
C3—C4—C12—C131.2 (4)C27—C28—C29—C300.8 (4)
C5—C4—C12—O20.1 (3)C28—C29—C30—C312.0 (4)
C5—C4—C12—C13179.3 (2)C29—C30—C31—C260.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O20.821.852.546 (2)142
O21—H21O···O220.821.832.531 (3)142
C8—H8···N22i0.932.563.489 (3)177
C13—H13C···Cg2ii0.962.663.533 (3)150
C33—H33B···Cg2ii0.962.983.774 (3)141
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC12H12N2O2
Mr216.24
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)13.8735 (7), 9.2037 (4), 18.3702 (8)
β (°) 110.100 (2)
V3)2202.78 (18)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.34 × 0.22 × 0.16
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
24519, 5500, 2656
Rint0.047
(sin θ/λ)max1)0.674
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.149, 0.97
No. of reflections5500
No. of parameters292
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.14

Computer programs: APEX2 (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O20.821.852.546 (2)142
O21—H21O···O220.821.832.531 (3)142
C8—H8···N22i0.932.563.489 (3)177
C13—H13C···Cg2ii0.962.663.533 (3)150
C33—H33B···Cg2ii0.962.983.774 (3)141
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1.
 

Acknowledgements

TUS acknowledges the Government College of Education, Afzalpur, Azad Jammu & Kashmir, for granting permission for further studies and providing laboratory facilities.

References

First citationBruker (2002). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCingolani, A., Effendy, Marchetti, F., Pettinari, C., Skelton, B. W. & White, A. H. (2002). Inorg. Chem. 41, 1151–1161.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGrimmett, M. R. (1970). Adv. Heterocycl. Chem. 12, 103–183.  CrossRef CAS Google Scholar
First citationKnorr, L. (1883). Ber. Dtsch. Chem. Ges. 16, 2593–2596.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds