organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages o224-o225

1H,3H-Imidazolium (R,S)-camphor-10-sulfonate

aDepartment of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia, bQueen's University Ionic Liquid Laboratory (QUILL), David Keir Building, Stransmillis Road, BT9 5AG Belfast, Northern Ireland, United Kingdom, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 4 December 2008; accepted 23 December 2008; online 8 January 2009)

The title compound, C3H5N2+·C10H15O4S, comprises two crystallographically independent ion pairs (A and B) in the asymmetric unit with slightly different conformations due to the disordered methyl groups in the anion of molecule A. Two intra­molecular C—H⋯O hydrogen bonds generate S(6) ring motifs. In mol­ecule A, the methyl groups are disordered over two sets of positions with a site-ocuppancy ratio of 0.547 (9):0.453 (9). Extensive inter­molecular N—H⋯O and C—H⋯O hydrogen-bonding inter­actions occur in the crystal structure which link the mol­ecules into a two-dimensional network parallel to the (100) plane.

Related literature

For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For general background, see: Fukumoto et al. (2005[Fukumoto, K., Yoshizawa, M. & Ohno, H. (2005). J. Am. Chem. Soc. 127, 2398-2399.]); Jeremić et al. (2008[Jeremić, D., Kaluderović, G. N., Brčeski, I., Gómez-Ruiz, S. & Andelković, K. K. (2008). Acta Cryst. E64, m952.]).

[Scheme 1]

Experimental

Crystal data
  • C3H5N2+·C10H15O4S

  • Mr = 300.37

  • Monoclinic, P 21

  • a = 9.1362 (2) Å

  • b = 12.0126 (2) Å

  • c = 13.2526 (3) Å

  • β = 90.757 (1)°

  • V = 1454.34 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 100.0 (1) K

  • 0.46 × 0.45 × 0.19 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.900, Tmax = 0.956

  • 25973 measured reflections

  • 9954 independent reflections

  • 9652 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.083

  • S = 1.07

  • 9954 reflections

  • 355 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.34 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 4199 Friedel pairs

  • Flack parameter: 0.01 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1AC⋯O2Bi 0.86 2.46 2.9479 (14) 116
N1A—H1AC⋯O3Aii 0.86 2.00 2.8293 (14) 161
N2A—H2AA⋯O1Biii 0.86 1.89 2.7235 (14) 164
N1B—H1BC⋯O1Ai 0.86 1.88 2.7231 (14) 165
N2B—H2BA⋯O2Biii 0.86 1.97 2.7412 (14) 148
N2B—H2BA⋯O3Aiv 0.86 2.43 3.0111 (14) 125
C7A—H7AB⋯O1A 0.97 2.53 3.0257 (19) 111
C11A—H11A⋯O2Bi 0.93 2.49 2.9716 (16) 113
C11A—H11A⋯O3Bi 0.93 2.35 3.2648 (15) 170
C11B—H11B⋯O2Aiv 0.93 2.33 3.2103 (16) 159
C9A—H9AC⋯O2Ai 0.96 2.59 3.469 (3) 152
C12B—H12B⋯O3Bi 0.93 2.39 2.9950 (15) 122
C12B—H12B⋯O4Ai 0.93 2.49 3.0155 (16) 116
C13A—H13A⋯O2Aiii 0.93 2.44 3.0167 (16) 120
C13A—H13A⋯O4Aiii 0.93 2.39 3.2591 (17) 155
C13B—H13B⋯O1Biii 0.93 2.58 3.2720 (16) 131
C7B—H7BA⋯O2B 0.97 2.47 3.0613 (16) 119
C5A—H5AACg1 0.98 2.83 3.5459 (5) 131
Symmetry codes: (i) x-1, y, z; (ii) x-1, y, z+1; (iii) [-x+2, y-{\script{1\over 2}}, -z+1]; (iv) [-x+2, y-{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

The title compound, (I, Fig. 1), is based on alkyl-imidazole with plant acid as anion (halogen-free). Crystallization of the 1,3-dihydrogenimidazolium camphor-10 -sulfonate having a sulfonate ion as a counter-ion was achieved by a slow evaporation of methanol at ambient temperature. Camphorsulfonate anion was selected due to their low toxicity for biocatalysis applications (Jeremić et al., 2008). The title compound has strong ion-ion interactions between cations and anions, which was attributed to an increase in the van der Waals attraction between the alkyl groups (Fukumoto et al., 2005).

In the title compound (I, Fig. 1), the bond lengths (Allen et al., 1987) and angles are within the normal ranges. There are two intramolecular C—H···O interactions generating six-membered rings with S(6) ring motifs (Bernstein et al., 1995). In the molecule A, the methyl groups are disordered over two positions and refined isotropically with site-ocuppancy ratio of 0.547 (9)/0.453 (9). In the crystal structure, molecules are linked together into 1-D infinite chains along the b axis, and are also linked into 1-D infinite chains along the c axis, thus forming a 2-D network which is parallel to the (100)-plane. The crystal structure is stabilized by intermolecular N—H···O (x 6) and C—H···O (x 9) hydrogen bonds, and weak intermlecular C—H···π interactions (Cg1 is the centroid of the N1B/C11B/N2B/C13B/C12B ring).

Related literature top

For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For general background, see: Fukumoto et al. (2005); Jeremić et al. (2008).

Experimental top

(R)-(-)-Camphor-10-sulfonic acid (0.05 mol, 7.504 g) was added to imidazole (0.05 mol, 3.404 g) which was first dissolved in 20 ml of methanol. The mixture was stirred (150 rpm) for 2 h at room temperature and the excess methanol was removed in vacuo at 343 K. The final product was obtained as a white solid with 97% yield. It was then dried under high vacuum for 2 days. m.p. 559.77 K. Single Crystals suitable for X-ray analysis was obtained from methanol. Anal. Calc.: C, 51.98; H, 6.71; N, 9.33; O, 21.31; S, 10.67. Found: C, 51.97; H, 6.77; N, 9.11; O, 21.38; S, 10.77%.

Refinement top

All the hydrogen atoms were positioned geometrically and constrained to ride with the parent atoms with Uiso(H) = 1.2 or 1.5 Ueq (O or N). In molecule A, the methyl groups are disordered over two positions and refined isotropically with a site-occupancy ratio of 0.547 (9)/0.453 (9), because anisotropic refinement casues non-positive definiteness for these atoms. Sufficient anomalous scattering due to the presence of S atoms gave the correct value of the Flack parameter which lead to the correct absolute configuration given in Fig. 1. Floating origin restraint was applied automatically by SHELXL program for this chiral space group, P21.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with atom labels and 30% probability ellipsoids for non-H atoms. Intramolecular interactions are shown as dashed lines. Open bonds show the minor component.
[Figure 2] Fig. 2. The crystal packing of (I), viewed down the a-axis showing infinite 1-D chains along the b and c-axes of the unit cell. Intermolecular interactions are shown as dashed lines. Only the major component of molecule A is shown.
1H,3H-Imidazolium (2R,5S)-camphor-10-sulfonate top
Crystal data top
C3H5N2+·C10H15O4SF(000) = 640
Mr = 300.37Dx = 1.372 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 9809 reflections
a = 9.1362 (2) Åθ = 2.3–38.9°
b = 12.0126 (2) ŵ = 0.24 mm1
c = 13.2526 (3) ÅT = 100 K
β = 90.757 (1)°Block, colourless
V = 1454.34 (5) Å30.46 × 0.45 × 0.19 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
9954 independent reflections
Radiation source: fine-focus sealed tube9652 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 32.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1313
Tmin = 0.900, Tmax = 0.956k = 1718
25973 measured reflectionsl = 1720
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.047P)2 + 0.3247P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.002
9954 reflectionsΔρmax = 0.53 e Å3
355 parametersΔρmin = 0.34 e Å3
1 restraintAbsolute structure: Flack (1983), 4199 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (3)
Crystal data top
C3H5N2+·C10H15O4SV = 1454.34 (5) Å3
Mr = 300.37Z = 4
Monoclinic, P21Mo Kα radiation
a = 9.1362 (2) ŵ = 0.24 mm1
b = 12.0126 (2) ÅT = 100 K
c = 13.2526 (3) Å0.46 × 0.45 × 0.19 mm
β = 90.757 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
9954 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
9652 reflections with I > 2σ(I)
Tmin = 0.900, Tmax = 0.956Rint = 0.022
25973 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.083Δρmax = 0.53 e Å3
S = 1.07Δρmin = 0.34 e Å3
9954 reflectionsAbsolute structure: Flack (1983), 4199 Friedel pairs
355 parametersAbsolute structure parameter: 0.01 (3)
1 restraint
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S1A1.27663 (3)0.30766 (2)0.033021 (19)0.01112 (5)
O1A1.29170 (10)0.19188 (8)0.00012 (7)0.01629 (16)
O2A1.37452 (10)0.38323 (9)0.02074 (7)0.01975 (18)
O3A1.28934 (9)0.31774 (8)0.14282 (6)0.01632 (16)
O4A1.17524 (10)0.29350 (10)0.20717 (7)0.0227 (2)
C1A1.09258 (13)0.35344 (13)0.00674 (10)0.0230 (3)
H1AA1.09900.42900.01890.028*
H1AB1.03960.35690.07060.028*
C2A1.00007 (12)0.28760 (11)0.06562 (9)0.0161 (2)
C3A1.05299 (13)0.27735 (10)0.17433 (9)0.0146 (2)
C4A0.91989 (14)0.24497 (12)0.23603 (10)0.0206 (2)
H4AA0.89900.30050.28700.025*
H4AB0.93380.17330.26840.025*
C5A0.79837 (14)0.24006 (14)0.15568 (11)0.0238 (3)
H5AA0.69910.24650.18220.029*
C6A0.8249 (2)0.13498 (19)0.09277 (16)0.0449 (5)
H6AA0.74410.12110.04630.054*
H6AB0.83900.07030.13560.054*
C7A0.96719 (18)0.16430 (16)0.03538 (13)0.0334 (4)
H7AA0.95220.15760.03700.040*
H7AB1.04700.11580.05600.040*
C8A0.84295 (13)0.33538 (17)0.08391 (10)0.0290 (3)
C9A0.7508 (3)0.3652 (4)0.0072 (2)0.0259 (7)*0.547 (9)
H9AA0.73690.30040.04860.039*0.547 (9)
H9AB0.79930.42190.04520.039*0.547 (9)
H9AC0.65740.39230.01430.039*0.547 (9)
C9C0.7443 (3)0.3212 (4)0.0153 (2)0.0206 (8)*0.453 (9)
H9CA0.75180.24610.03950.031*0.453 (9)
H9CB0.77750.37170.06630.031*0.453 (9)
H9CC0.64410.33740.00010.031*0.453 (9)
C10A0.8557 (3)0.4563 (2)0.1473 (2)0.0172 (6)*0.547 (9)
H10A0.91960.44700.20470.026*0.547 (9)
H10B0.76040.47830.16940.026*0.547 (9)
H10C0.89450.51270.10380.026*0.547 (9)
C10C0.8303 (4)0.4391 (3)0.1224 (3)0.0212 (8)*0.453 (9)
H10D0.75100.47730.08900.032*0.453 (9)
H10E0.91970.47930.11230.032*0.453 (9)
H10F0.81100.43440.19340.032*0.453 (9)
N1A0.44499 (11)0.14307 (9)0.76374 (8)0.01573 (18)*
H1AC0.38850.19770.77870.019*
N2A0.56872 (12)0.02395 (9)0.67786 (8)0.01563 (18)
H2AA0.60540.01140.62780.019*
C11A0.47931 (13)0.11135 (11)0.67088 (9)0.0155 (2)
H11A0.44660.14450.61130.019*
C12A0.51470 (14)0.07405 (12)0.83219 (9)0.0176 (2)
H12A0.50910.07800.90210.021*
C13A0.59299 (14)0.00070 (11)0.77835 (10)0.0177 (2)
H13A0.65160.05750.80420.021*
S1B1.29554 (3)0.33636 (2)0.532398 (19)0.01117 (5)
O1B1.30840 (10)0.45125 (8)0.49628 (7)0.01658 (16)
O2B1.32660 (9)0.32743 (8)0.64062 (6)0.01474 (15)
O3B1.37993 (10)0.25718 (8)0.47370 (7)0.01687 (17)
O4B0.95635 (13)0.47418 (10)0.40752 (8)0.0267 (2)
C1B1.10979 (12)0.29462 (11)0.51462 (9)0.0165 (2)
H1BA1.09020.29160.44260.020*
H1BB1.10050.21930.54020.020*
C2B0.98994 (12)0.36491 (10)0.56233 (9)0.0141 (2)
C3B0.91119 (14)0.44242 (11)0.48786 (10)0.0186 (2)
C4B0.76277 (16)0.46991 (13)0.53347 (11)0.0233 (3)
H4BA0.68280.44480.49030.028*
H4BB0.75260.54910.54560.028*
C5B0.76907 (13)0.40436 (11)0.63263 (10)0.0185 (2)
H5BA0.67340.38970.66250.022*
C6B0.87688 (15)0.46647 (12)0.70195 (11)0.0217 (2)
H6BA0.87320.43810.77040.026*
H6BB0.85630.54570.70260.026*
C7B1.02824 (14)0.44215 (12)0.65360 (11)0.0199 (2)
H7BA1.09330.40490.70120.024*
H7BB1.07430.51040.63110.024*
C8B0.85559 (12)0.29851 (11)0.60317 (9)0.0154 (2)
C9B0.89102 (17)0.22292 (13)0.69361 (11)0.0244 (3)
H9BA0.80360.18540.71430.037*
H9BB0.92850.26720.74850.037*
H9BC0.96310.16900.67460.037*
C10B0.78064 (14)0.22785 (12)0.52073 (11)0.0207 (2)
H10G0.69920.18880.54900.031*
H10H0.84940.17520.49450.031*
H10I0.74650.27550.46720.031*
N1B0.42936 (11)0.12226 (9)0.17235 (8)0.01373 (17)
H1BC0.38020.15370.12440.016*
N2B0.56682 (11)0.00652 (9)0.25337 (9)0.01636 (19)
H2BA0.62210.04960.26680.020*
C11B0.50552 (13)0.02832 (11)0.16403 (9)0.0153 (2)
H11B0.51430.01450.10600.018*
C12B0.44173 (13)0.16124 (11)0.27007 (9)0.0154 (2)
H12B0.39920.22530.29600.018*
C13B0.52797 (14)0.08788 (11)0.32086 (9)0.0171 (2)
H13B0.55560.09180.38860.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.01090 (10)0.01332 (11)0.00917 (10)0.00054 (8)0.00172 (8)0.00011 (8)
O1A0.0197 (4)0.0149 (4)0.0142 (4)0.0028 (3)0.0013 (3)0.0028 (3)
O2A0.0213 (4)0.0211 (5)0.0168 (4)0.0046 (3)0.0011 (3)0.0040 (3)
O3A0.0219 (4)0.0171 (4)0.0101 (3)0.0017 (3)0.0030 (3)0.0002 (3)
O4A0.0188 (4)0.0302 (6)0.0189 (4)0.0012 (4)0.0020 (3)0.0005 (4)
C1A0.0152 (5)0.0307 (7)0.0232 (6)0.0082 (5)0.0075 (4)0.0153 (5)
C2A0.0115 (4)0.0247 (6)0.0120 (5)0.0004 (4)0.0019 (3)0.0015 (4)
C3A0.0164 (5)0.0129 (5)0.0146 (5)0.0023 (4)0.0019 (4)0.0019 (4)
C4A0.0213 (5)0.0236 (6)0.0171 (5)0.0022 (5)0.0067 (4)0.0062 (5)
C5A0.0161 (5)0.0345 (8)0.0211 (6)0.0054 (5)0.0068 (4)0.0012 (5)
C6A0.0342 (8)0.0530 (12)0.0480 (10)0.0286 (8)0.0241 (8)0.0278 (9)
C7A0.0280 (7)0.0392 (9)0.0333 (8)0.0180 (6)0.0153 (6)0.0200 (7)
C8A0.0121 (5)0.0538 (10)0.0212 (6)0.0088 (6)0.0043 (4)0.0164 (6)
N2A0.0192 (4)0.0139 (5)0.0138 (4)0.0027 (3)0.0020 (3)0.0009 (3)
C11A0.0179 (5)0.0141 (5)0.0146 (5)0.0019 (4)0.0010 (4)0.0013 (4)
C12A0.0200 (5)0.0203 (6)0.0124 (5)0.0010 (4)0.0012 (4)0.0017 (4)
C13A0.0195 (5)0.0186 (6)0.0151 (5)0.0032 (4)0.0009 (4)0.0034 (4)
S1B0.01270 (10)0.01178 (11)0.00904 (10)0.00008 (8)0.00085 (8)0.00100 (8)
O1B0.0207 (4)0.0140 (4)0.0151 (4)0.0021 (3)0.0020 (3)0.0028 (3)
O2B0.0204 (4)0.0147 (4)0.0091 (3)0.0010 (3)0.0011 (3)0.0004 (3)
O3B0.0161 (4)0.0197 (4)0.0148 (4)0.0036 (3)0.0019 (3)0.0045 (3)
O4B0.0345 (5)0.0241 (5)0.0217 (5)0.0021 (4)0.0052 (4)0.0054 (4)
C1B0.0143 (4)0.0160 (5)0.0192 (5)0.0007 (4)0.0007 (4)0.0069 (4)
C2B0.0132 (4)0.0127 (5)0.0164 (5)0.0005 (3)0.0020 (4)0.0034 (4)
C3B0.0216 (5)0.0129 (5)0.0213 (6)0.0010 (4)0.0023 (4)0.0001 (4)
C4B0.0219 (6)0.0204 (6)0.0277 (7)0.0068 (5)0.0021 (5)0.0034 (5)
C5B0.0154 (5)0.0174 (6)0.0230 (6)0.0023 (4)0.0050 (4)0.0003 (4)
C6B0.0206 (5)0.0207 (6)0.0239 (6)0.0017 (4)0.0057 (5)0.0081 (5)
C7B0.0170 (5)0.0200 (6)0.0227 (6)0.0009 (4)0.0038 (4)0.0099 (5)
C8B0.0155 (4)0.0143 (5)0.0165 (5)0.0011 (4)0.0031 (4)0.0005 (4)
C9B0.0316 (7)0.0209 (7)0.0208 (6)0.0027 (5)0.0048 (5)0.0050 (5)
C10B0.0185 (5)0.0195 (6)0.0243 (6)0.0061 (4)0.0019 (4)0.0039 (5)
N1B0.0142 (4)0.0156 (5)0.0114 (4)0.0014 (3)0.0004 (3)0.0017 (3)
N2B0.0139 (4)0.0138 (5)0.0214 (5)0.0016 (3)0.0000 (4)0.0036 (4)
C11B0.0145 (5)0.0149 (5)0.0165 (5)0.0000 (4)0.0026 (4)0.0016 (4)
C12B0.0167 (5)0.0162 (5)0.0132 (5)0.0013 (4)0.0020 (4)0.0015 (4)
C13B0.0184 (5)0.0193 (6)0.0136 (5)0.0026 (4)0.0007 (4)0.0029 (4)
Geometric parameters (Å, º) top
S1A—O2A1.4542 (10)C11A—H11A0.9300
S1A—O1A1.4645 (9)C12A—C13A1.3566 (18)
S1A—O3A1.4663 (8)C12A—H12A0.9300
S1A—C1A1.8074 (12)C13A—H13A0.9300
O4A—C3A1.2090 (15)S1B—O3B1.4560 (9)
C1A—C2A1.5102 (17)S1B—O2B1.4622 (8)
C1A—H1AA0.9700S1B—O1B1.4661 (9)
C1A—H1AB0.9700S1B—C1B1.7822 (12)
C2A—C3A1.5185 (16)O4B—C3B1.2088 (17)
C2A—C7A1.563 (2)C1B—C2B1.5264 (16)
C2A—C8A1.5678 (17)C1B—H1BA0.9700
C3A—C4A1.5248 (17)C1B—H1BB0.9700
C4A—C5A1.529 (2)C2B—C3B1.5297 (18)
C4A—H4AA0.9700C2B—C7B1.5606 (18)
C4A—H4AB0.9700C2B—C8B1.5663 (16)
C5A—C6A1.534 (2)C3B—C4B1.5280 (19)
C5A—C8A1.547 (2)C4B—C5B1.532 (2)
C5A—H5AA0.9800C4B—H4BA0.9700
C6A—C7A1.555 (2)C4B—H4BB0.9700
C6A—H6AA0.9700C5B—C6B1.532 (2)
C6A—H6AB0.9700C5B—C8B1.5499 (18)
C7A—H7AA0.9700C5B—H5BA0.9800
C7A—H7AB0.9700C6B—C7B1.5593 (18)
C8A—C10C1.352 (5)C6B—H6BA0.9700
C8A—C9A1.506 (3)C6B—H6BB0.9700
C8A—C9C1.594 (3)C7B—H7BA0.9700
C8A—C10A1.681 (4)C7B—H7BB0.9700
C9A—H9AA0.9600C8B—C9B1.5347 (19)
C9A—H9AB0.9600C8B—C10B1.5374 (18)
C9A—H9AC0.9600C9B—H9BA0.9600
C9C—H9CA0.9600C9B—H9BB0.9600
C9C—H9CB0.9600C9B—H9BC0.9600
C9C—H9CC0.9600C10B—H10G0.9600
C10A—H10A0.9600C10B—H10H0.9600
C10A—H10B0.9600C10B—H10I0.9600
C10A—H10C0.9600N1B—C11B1.3311 (16)
C10C—H10D0.9600N1B—C12B1.3803 (15)
C10C—H10E0.9600N1B—H1BC0.8600
C10C—H10F0.9600N2B—C11B1.3291 (16)
N1A—C11A1.3297 (16)N2B—C13B1.3747 (17)
N1A—C12A1.3786 (17)N2B—H2BA0.8600
N1A—H1AC0.8600C11B—H11B0.9300
N2A—C11A1.3327 (16)C12B—C13B1.3552 (18)
N2A—C13A1.3793 (16)C12B—H12B0.9300
N2A—H2AA0.8600C13B—H13B0.9300
O2A—S1A—O1A113.02 (6)C13A—N2A—H2AA125.5
O2A—S1A—O3A112.24 (6)N1A—C11A—N2A108.26 (11)
O1A—S1A—O3A111.57 (5)N1A—C11A—H11A125.9
O2A—S1A—C1A106.46 (7)N2A—C11A—H11A125.9
O1A—S1A—C1A108.37 (6)C13A—C12A—N1A107.11 (11)
O3A—S1A—C1A104.61 (6)C13A—C12A—H12A126.4
C2A—C1A—S1A119.53 (9)N1A—C12A—H12A126.4
C2A—C1A—H1AA107.4C12A—C13A—N2A106.65 (11)
S1A—C1A—H1AA107.4C12A—C13A—H13A126.7
C2A—C1A—H1AB107.4N2A—C13A—H13A126.7
S1A—C1A—H1AB107.4O3B—S1B—O2B112.27 (5)
H1AA—C1A—H1AB107.0O3B—S1B—O1B113.28 (6)
C1A—C2A—C3A118.10 (11)O2B—S1B—O1B111.96 (5)
C1A—C2A—C7A116.16 (11)O3B—S1B—C1B104.81 (5)
C3A—C2A—C7A102.95 (11)O2B—S1B—C1B106.33 (5)
C1A—C2A—C8A115.32 (11)O1B—S1B—C1B107.57 (6)
C3A—C2A—C8A99.42 (9)C2B—C1B—S1B118.47 (8)
C7A—C2A—C8A102.31 (12)C2B—C1B—H1BA107.7
O4A—C3A—C2A127.55 (11)S1B—C1B—H1BA107.7
O4A—C3A—C4A125.97 (11)C2B—C1B—H1BB107.7
C2A—C3A—C4A106.46 (10)S1B—C1B—H1BB107.7
C3A—C4A—C5A102.31 (10)H1BA—C1B—H1BB107.1
C3A—C4A—H4AA111.3C1B—C2B—C3B113.79 (10)
C5A—C4A—H4AA111.3C1B—C2B—C7B119.69 (10)
C3A—C4A—H4AB111.3C3B—C2B—C7B103.70 (10)
C5A—C4A—H4AB111.3C1B—C2B—C8B115.55 (10)
H4AA—C4A—H4AB109.2C3B—C2B—C8B99.72 (9)
C4A—C5A—C6A106.96 (14)C7B—C2B—C8B101.75 (9)
C4A—C5A—C8A101.83 (11)O4B—C3B—C4B126.53 (13)
C6A—C5A—C8A103.31 (13)O4B—C3B—C2B126.68 (12)
C4A—C5A—H5AA114.5C4B—C3B—C2B106.78 (10)
C6A—C5A—H5AA114.5C3B—C4B—C5B101.81 (10)
C8A—C5A—H5AA114.5C3B—C4B—H4BA111.4
C5A—C6A—C7A102.63 (13)C5B—C4B—H4BA111.4
C5A—C6A—H6AA111.2C3B—C4B—H4BB111.4
C7A—C6A—H6AA111.2C5B—C4B—H4BB111.4
C5A—C6A—H6AB111.2H4BA—C4B—H4BB109.3
C7A—C6A—H6AB111.2C6B—C5B—C4B106.29 (12)
H6AA—C6A—H6AB109.2C6B—C5B—C8B102.98 (10)
C6A—C7A—C2A104.38 (13)C4B—C5B—C8B102.65 (10)
C6A—C7A—H7AA110.9C6B—C5B—H5BA114.5
C2A—C7A—H7AA110.9C4B—C5B—H5BA114.5
C6A—C7A—H7AB110.9C8B—C5B—H5BA114.5
C2A—C7A—H7AB110.9C5B—C6B—C7B103.23 (10)
H7AA—C7A—H7AB108.9C5B—C6B—H6BA111.1
C10C—C8A—C9A91.9 (2)C7B—C6B—H6BA111.1
C10C—C8A—C5A115.18 (19)C5B—C6B—H6BB111.1
C9A—C8A—C5A121.34 (19)C7B—C6B—H6BB111.1
C10C—C8A—C2A118.6 (2)H6BA—C6B—H6BB109.1
C9A—C8A—C2A117.82 (16)C6B—C7B—C2B103.83 (10)
C5A—C8A—C2A94.20 (11)C6B—C7B—H7BA111.0
C10C—C8A—C9C111.1 (2)C2B—C7B—H7BA111.0
C9A—C8A—C9C19.89 (13)C6B—C7B—H7BB111.0
C5A—C8A—C9C106.14 (19)C2B—C7B—H7BB111.0
C2A—C8A—C9C110.03 (16)H7BA—C7B—H7BB109.0
C10C—C8A—C10A11.72 (18)C9B—C8B—C10B108.40 (11)
C9A—C8A—C10A103.2 (2)C9B—C8B—C5B113.06 (11)
C5A—C8A—C10A110.47 (13)C10B—C8B—C5B114.08 (10)
C2A—C8A—C10A109.62 (14)C9B—C8B—C2B114.39 (10)
C9C—C8A—C10A122.6 (2)C10B—C8B—C2B112.29 (10)
C8A—C9A—H9AA109.5C5B—C8B—C2B94.24 (9)
C8A—C9A—H9AB109.5C8B—C9B—H9BA109.5
H9AA—C9A—H9AB109.5C8B—C9B—H9BB109.5
C8A—C9A—H9AC109.5H9BA—C9B—H9BB109.5
H9AA—C9A—H9AC109.5C8B—C9B—H9BC109.5
H9AB—C9A—H9AC109.5H9BA—C9B—H9BC109.5
C8A—C9C—H9CA109.5H9BB—C9B—H9BC109.5
C8A—C9C—H9CB109.5C8B—C10B—H10G109.5
H9CA—C9C—H9CB109.5C8B—C10B—H10H109.5
C8A—C9C—H9CC109.5H10G—C10B—H10H109.5
H9CA—C9C—H9CC109.5C8B—C10B—H10I109.5
H9CB—C9C—H9CC109.5H10G—C10B—H10I109.5
C8A—C10A—H10A109.5H10H—C10B—H10I109.5
C8A—C10A—H10B109.5C11B—N1B—C12B109.21 (10)
H10A—C10A—H10B109.5C11B—N1B—H1BC125.4
C8A—C10A—H10C109.5C12B—N1B—H1BC125.4
H10A—C10A—H10C109.5C11B—N2B—C13B109.28 (11)
H10B—C10A—H10C109.5C11B—N2B—H2BA125.4
C8A—C10C—H10D109.5C13B—N2B—H2BA125.4
C8A—C10C—H10E109.5N2B—C11B—N1B107.93 (11)
H10D—C10C—H10E109.5N2B—C11B—H11B126.0
C8A—C10C—H10F109.5N1B—C11B—H11B126.0
H10D—C10C—H10F109.5C13B—C12B—N1B106.57 (11)
H10E—C10C—H10F109.5C13B—C12B—H12B126.7
C11A—N1A—C12A108.91 (11)N1B—C12B—H12B126.7
C11A—N1A—H1AC125.5C12B—C13B—N2B107.01 (11)
C12A—N1A—H1AC125.5C12B—C13B—H13B126.5
C11A—N2A—C13A109.07 (11)N2B—C13B—H13B126.5
C11A—N2A—H2AA125.5
O2A—S1A—C1A—C2A105.42 (12)C12A—N1A—C11A—N2A0.11 (14)
O1A—S1A—C1A—C2A16.45 (14)C13A—N2A—C11A—N1A0.31 (14)
O3A—S1A—C1A—C2A135.58 (11)C11A—N1A—C12A—C13A0.14 (15)
S1A—C1A—C2A—C3A62.08 (16)N1A—C12A—C13A—N2A0.32 (15)
S1A—C1A—C2A—C7A60.97 (16)C11A—N2A—C13A—C12A0.40 (15)
S1A—C1A—C2A—C8A179.34 (11)O3B—S1B—C1B—C2B176.85 (9)
C1A—C2A—C3A—O4A18.12 (19)O2B—S1B—C1B—C2B64.08 (11)
C7A—C2A—C3A—O4A111.36 (15)O1B—S1B—C1B—C2B56.02 (11)
C8A—C2A—C3A—O4A143.57 (14)S1B—C1B—C2B—C3B101.52 (11)
C1A—C2A—C3A—C4A160.54 (11)S1B—C1B—C2B—C7B21.79 (16)
C7A—C2A—C3A—C4A69.99 (12)S1B—C1B—C2B—C8B143.94 (9)
C8A—C2A—C3A—C4A35.08 (13)C1B—C2B—C3B—O4B20.75 (19)
O4A—C3A—C4A—C5A178.27 (13)C7B—C2B—C3B—O4B110.90 (15)
C2A—C3A—C4A—C5A0.41 (13)C8B—C2B—C3B—O4B144.36 (14)
C3A—C4A—C5A—C6A72.78 (14)C1B—C2B—C3B—C4B157.98 (11)
C3A—C4A—C5A—C8A35.27 (14)C7B—C2B—C3B—C4B70.38 (12)
C4A—C5A—C6A—C7A68.92 (19)C8B—C2B—C3B—C4B34.36 (12)
C8A—C5A—C6A—C7A38.09 (18)O4B—C3B—C4B—C5B178.76 (14)
C5A—C6A—C7A—C2A4.3 (2)C2B—C3B—C4B—C5B0.04 (14)
C1A—C2A—C7A—C6A156.62 (14)C3B—C4B—C5B—C6B72.54 (13)
C3A—C2A—C7A—C6A72.72 (16)C3B—C4B—C5B—C8B35.24 (13)
C8A—C2A—C7A—C6A30.11 (17)C4B—C5B—C6B—C7B71.47 (13)
C4A—C5A—C8A—C10C68.8 (2)C8B—C5B—C6B—C7B36.08 (13)
C6A—C5A—C8A—C10C179.6 (2)C5B—C6B—C7B—C2B1.55 (14)
C4A—C5A—C8A—C9A178.0 (2)C1B—C2B—C7B—C6B161.59 (11)
C6A—C5A—C8A—C9A71.1 (2)C3B—C2B—C7B—C6B70.33 (12)
C4A—C5A—C8A—C2A55.64 (13)C8B—C2B—C7B—C6B32.87 (13)
C6A—C5A—C8A—C2A55.21 (14)C6B—C5B—C8B—C9B63.83 (13)
C4A—C5A—C8A—C9C167.90 (17)C4B—C5B—C8B—C9B174.13 (11)
C6A—C5A—C8A—C9C57.05 (19)C6B—C5B—C8B—C10B171.69 (11)
C4A—C5A—C8A—C10A57.12 (16)C4B—C5B—C8B—C10B61.40 (13)
C6A—C5A—C8A—C10A167.96 (15)C6B—C5B—C8B—C2B54.96 (11)
C1A—C2A—C8A—C10C60.1 (2)C4B—C5B—C8B—C2B55.33 (11)
C3A—C2A—C8A—C10C67.3 (2)C1B—C2B—C8B—C9B66.55 (14)
C7A—C2A—C8A—C10C172.9 (2)C3B—C2B—C8B—C9B171.07 (11)
C1A—C2A—C8A—C9A49.3 (3)C7B—C2B—C8B—C9B64.75 (13)
C3A—C2A—C8A—C9A176.6 (2)C1B—C2B—C8B—C10B57.54 (14)
C7A—C2A—C8A—C9A77.8 (3)C3B—C2B—C8B—C10B64.84 (12)
C1A—C2A—C8A—C5A178.22 (12)C7B—C2B—C8B—C10B171.16 (11)
C3A—C2A—C8A—C5A54.43 (12)C1B—C2B—C8B—C5B175.74 (10)
C7A—C2A—C8A—C5A51.17 (13)C3B—C2B—C8B—C5B53.37 (10)
C1A—C2A—C8A—C9C69.4 (2)C7B—C2B—C8B—C5B52.95 (11)
C3A—C2A—C8A—C9C163.3 (2)C13B—N2B—C11B—N1B0.55 (14)
C7A—C2A—C8A—C9C57.7 (2)C12B—N1B—C11B—N2B0.35 (14)
C1A—C2A—C8A—C10A68.30 (16)C11B—N1B—C12B—C13B0.01 (14)
C3A—C2A—C8A—C10A59.06 (15)N1B—C12B—C13B—N2B0.32 (13)
C7A—C2A—C8A—C10A164.65 (14)C11B—N2B—C13B—C12B0.54 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1AC···O2Bi0.862.462.9479 (14)116
N1A—H1AC···O3Aii0.862.002.8293 (14)161
N2A—H2AA···O1Biii0.861.892.7235 (14)164
N1B—H1BC···O1Ai0.861.882.7231 (14)165
N2B—H2BA···O2Biii0.861.972.7412 (14)148
N2B—H2BA···O3Aiv0.862.433.0111 (14)125
C7A—H7AB···O1A0.972.533.0257 (19)111
C11A—H11A···O2Bi0.932.492.9716 (16)113
C11A—H11A···O3Bi0.932.353.2648 (15)170
C11B—H11B···O2Aiv0.932.333.2103 (16)159
C9A—H9AC···O2Ai0.962.593.469 (3)152
C12B—H12B···O3Bi0.932.392.9950 (15)122
C12B—H12B···O4Ai0.932.493.0155 (16)116
C13A—H13A···O2Aiii0.932.443.0167 (16)120
C13A—H13A···O4Aiii0.932.393.2591 (17)155
C13B—H13B···O1Biii0.932.583.2720 (16)131
C7B—H7BA···O2B0.972.473.0613 (16)119
C5A—H5AA···Cg10.982.833.5459 (5)131
Symmetry codes: (i) x1, y, z; (ii) x1, y, z+1; (iii) x+2, y1/2, z+1; (iv) x+2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC3H5N2+·C10H15O4S
Mr300.37
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)9.1362 (2), 12.0126 (2), 13.2526 (3)
β (°) 90.757 (1)
V3)1454.34 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.46 × 0.45 × 0.19
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.900, 0.956
No. of measured, independent and
observed [I > 2σ(I)] reflections
25973, 9954, 9652
Rint0.022
(sin θ/λ)max1)0.756
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.083, 1.07
No. of reflections9954
No. of parameters355
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.34
Absolute structureFlack (1983), 4199 Friedel pairs
Absolute structure parameter0.01 (3)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1AC···O2Bi0.86002.46002.9479 (14)116.00
N1A—H1AC···O3Aii0.86002.00002.8293 (14)161.00
N2A—H2AA···O1Biii0.86001.89002.7235 (14)164.00
N1B—H1BC···O1Ai0.86001.88002.7231 (14)165.00
N2B—H2BA···O2Biii0.86001.97002.7412 (14)148.00
N2B—H2BA···O3Aiv0.86002.43003.0111 (14)125.00
C7A—H7AB···O1A0.97002.53003.0257 (19)111.00
C11A—H11A···O2Bi0.93002.49002.9716 (16)113.00
C11A—H11A···O3Bi0.93002.35003.2648 (15)170.00
C11B—H11B···O2Aiv0.93002.33003.2103 (16)159.00
C9A—H9AC···O2Ai0.96002.59003.469 (3)152.00
C12B—H12B···O3Bi0.93002.39002.9950 (15)122.00
C12B—H12B···O4Ai0.93002.49003.0155 (16)116.00
C13A—H13A···O2Aiii0.93002.44003.0167 (16)120.00
C13A—H13A···O4Aiii0.93002.39003.2591 (17)155.00
C13B—H13B···O1Biii0.93002.58003.2720 (16)131.00
C7B—H7BA···O2B0.97002.47003.0613 (16)119.00
C5A—H5AA···Cg10.98002.83003.5459 (5)131.00
Symmetry codes: (i) x1, y, z; (ii) x1, y, z+1; (iii) x+2, y1/2, z+1; (iv) x+2, y1/2, z.
 

Footnotes

Additional correspondence author, e-mail: basya@science.upm.edu.my.

Acknowledgements

MBAR, EMO and NSL thank the Malaysian Government and Universiti Putra Malaysia for the Research Universiti Grant Scheme (RUGS 2007) grant No. 91183. MBAR would like to thank Professor Kenneth R. Seddon for the opportunity to conduct this research by SLN at QUILL. HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFukumoto, K., Yoshizawa, M. & Ohno, H. (2005). J. Am. Chem. Soc. 127, 2398–2399.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJeremić, D., Kaluderović, G. N., Brčeski, I., Gómez-Ruiz, S. & Andelković, K. K. (2008). Acta Cryst. E64, m952.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages o224-o225
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds