organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2-Fluoro­benz­yl)-1-(2-fluoro­benz­yl­­oxy)urea

aSino-German Joint Research Institute of Nanchang University, Nanchang 330006, People's Republic of China, bDepartment of Pharmacy, Medical College of Nanchang University, Nanchang 330006, People's Republic of China, and cDepartment of Chemistry, Jinggangshan University, Ji'an 343009, People's Republic of China
*Correspondence e-mail: cmxlf2008@ 163.com

(Received 17 December 2008; accepted 7 January 2009; online 31 January 2009)

In the title hydroxy­urea derivative, C15H14F2N2O2, the dihedral angle between the two benzene rings is 48.64 (19)°. The urea group forms dihedral angles of 48.1 (2) and 79.2 (2)° with the two benzene rings. In the crystal, inversion dimers linked by pairs of N—H⋯O hydrogen bonds occur, and further N—H⋯O links lead to chains of molecules.

Related literature

For geneal background, see: Krakoff et al. (1968[Krakoff, I. H., Brown, N. C. & Reichard, P. (1968). Cancer Res. 28, 1559-1565.]); Young et al. (1967[Young, C. W., Schochetman, G., Hodas, S. & Balls, E. M. (1967). Cancer Res. 27, 535-540.]) and Yu et al. (1974[Yu, R. J. & van Scott, E. J. (1974). J. Invest. Dermatol. 63, 279-283.]). For related structures, see: Howard et al. (1967[Howard, W., Shields, P. J., Hamrick, J. & Welby, R. (1967). J. Chem. Phys. 46, 2510-2514.]); Thiessen et al. (1978[Thiessen, W. E., Levy, H. A. & Flaig, B. D. (1978). Acta Cryst. B34, 2495-2502.]); Armagan et al. (1976[Armagan, N., Richards, J. P. G. & Uraz, A. A. (1976). Acta Cryst. B32, 1042-1047.]); Berman & Kim (1967[Berman, H. & Kim, S. H. (1967). Acta Cryst. 23, 180-181.]); Larsen et al. (1966[Larsen, I. K. & Jerslev, B. (1966). Acta Chem. Scand. 20, 983-991.]); Nielsen et al. (1993[Nielsen, B. B., Frydenvang, K. & Larsen, I. K. (1993). Acta Cryst. C49, 1018-1022.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14F2N2O2

  • Mr = 292.28

  • Monoclinic, P 21 /c

  • a = 5.196 (5) Å

  • b = 30.11 (3) Å

  • c = 9.059 (8) Å

  • β = 102.110 (16)°

  • V = 1386 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 (2) K

  • 0.34 × 0.13 × 0.07 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: none

  • 8214 measured reflections

  • 2416 independent reflections

  • 1042 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.080

  • wR(F2) = 0.260

  • S = 1.02

  • 2416 reflections

  • 166 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2C⋯O2i 0.86 2.05 2.910 (5) 174
N2—H2D⋯O2ii 0.86 2.32 3.079 (5) 148
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) x-1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

The anticancer drug hydroxyurea, which has been used in cancer chemotherapy for many years, has shown to impair DNA synthesis by inhibiting the enzyme ribonucleotide reductase (RNR) (Krakoff et al., 1968). Many hydroxyurea derivates has been designed and synthesized, which inhibit RNR by the same mechanism. We designed and synthesized N'-unsubstituted N-hydroxyure derivative, 1-(2-fluorobenzyl)-1-(2-fluorobenzyloxy)urea. Then we used the compound to make the antitumor activity test in vitro for lymphoid leukemia L1210 through the classic MTT assay. Results show that it has higher inhibition ratios than N-hydroxyurea. This seems to be not much in good agreement with the early structure-activity studies of Young et al. (1967) and Yu et al. (1974). As a serial study of such a complex, the title compound was synthesized and its crystal structure is reported here.

The conformations of the N—H and C=O bonds in the structure of 1-(2-fluorobenzyl)-1-(2-fluorobenzyloxy)urea (Fig. 1) are anti to each other, similar to that observed in N-hydroxyurea (Howard et al., 1967; Thiessen et al., 1978; Armagan et al., 1976; Berman & Kim, 1967; Larsen et al., 1966), 1-hydroxy-1-methylurea (Nielsen et al., 1993), 1-hydroxy-3-methylurea (Nielsen et al., 1993) and other hydroxyurea derivates. The bond parameters in N-(phenylmethoxy)-urea are similar to those in above hydroxyurea derivates, but the length of the carbonyl bond (C=O) is obviously shorter (< 1.25 Å). This may be related with the hydroxy group's etherification. The urea N—(C=O) —N group forms a dihedral angle of 48.1 (2) and 79.2 (2)° with the two benzene rings respectively. Intermolecular N—H···O hydrogen bonding presents in the crystal structure (Table 1).

Related literature top

For geneal background, see: Krakoff et al. (1968); Young et al. (1967) and Yu et al. (1974). For related structures, see: Howard et al. (1967); Thiessen et al. (1978); Armagan et al. (1976); Berman & Kim (1967); Larsen et al. (1966); Nielsen et al. (1993).

Experimental top

The title compound was prepared by the reaction of 1-(2-fluorobenzyloxy)urea (1.3 mmol) and 1-(chloromethyl)-2-fluorobenzene (1.3 mmol) in methanol (10 ml) in the presence of potassium hydroxide (1.7 mmol). After refluxing for 14 h, the mixture was distilled in the reduced pressure at 308 K. The resulting crude solid was filtered and washed by trichloromethane repeatedly, then recrystallized in acetone and trichloromethane mixture (5:2), filtered. Colorless needle-shaped single crystals used for X-ray structure determination were recrystallized from the mixed solvent acetone and N-hexane (3:13) at room temperature for one week.

Refinement top

H atoms were placed in calculated positions with C—H = 0.93 (aromatic), 0.97 Å (methylene) and N—H = 0.86 Å, and were refined in riding mode. The Uiso(H) values were set at 1.2Ueq(C,N).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: APEX2 (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
1-(2-fluorobenzyl)-1-(2-fluorobenzyloxy)urea top
Crystal data top
C15H14F2N2O2F(000) = 608
Mr = 292.28Dx = 1.401 Mg m3
Monoclinic, P21/cMelting point: 414.0 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 5.196 (5) ÅCell parameters from 1260 reflections
b = 30.11 (3) Åθ = 2.4–19.3°
c = 9.059 (8) ŵ = 0.11 mm1
β = 102.110 (16)°T = 296 K
V = 1386 (2) Å3Needle, colourless
Z = 40.34 × 0.13 × 0.07 mm
Data collection top
Bruker APEXII area-detector
diffractometer
1042 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.051
Graphite monochromatorθmax = 25.0°, θmin = 2.4°
ϕ and ω scansh = 66
8214 measured reflectionsk = 3535
2416 independent reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.080Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.260H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.14P)2]
where P = (Fo2 + 2Fc2)/3
2416 reflections(Δ/σ)max < 0.001
166 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C15H14F2N2O2V = 1386 (2) Å3
Mr = 292.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.196 (5) ŵ = 0.11 mm1
b = 30.11 (3) ÅT = 296 K
c = 9.059 (8) Å0.34 × 0.13 × 0.07 mm
β = 102.110 (16)°
Data collection top
Bruker APEXII area-detector
diffractometer
1042 reflections with I > 2σ(I)
8214 measured reflectionsRint = 0.051
2416 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0800 restraints
wR(F2) = 0.260H-atom parameters constrained
S = 1.02Δρmax = 0.39 e Å3
2416 reflectionsΔρmin = 0.37 e Å3
166 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C100.2248 (6)0.40316 (12)0.5643 (3)0.0675 (13)
C110.0040 (7)0.38153 (11)0.4930 (4)0.0829 (15)
C120.1631 (6)0.40007 (16)0.3653 (4)0.106 (2)
H120.31620.38560.31750.127*
C130.0935 (9)0.44024 (17)0.3089 (4)0.118 (2)
H130.20000.45260.22350.141*
C140.1352 (10)0.46187 (12)0.3803 (5)0.119 (2)
H140.18180.48870.34260.142*
C150.2944 (7)0.44333 (12)0.5080 (5)0.0938 (17)
H150.44740.45780.55570.113*
C30.1504 (7)0.31233 (9)0.9537 (4)0.0677 (13)
C40.3952 (7)0.29896 (13)1.0354 (4)0.0867 (16)
C50.4847 (6)0.25614 (15)1.0185 (5)0.108 (2)
H50.64840.24721.07320.130*
C60.3294 (9)0.22670 (10)0.9199 (5)0.1050 (19)
H60.38930.19800.90860.126*
C70.0846 (9)0.24007 (11)0.8383 (5)0.113 (2)
H70.01920.22040.77230.135*
C80.0049 (6)0.28289 (12)0.8552 (4)0.0964 (18)
H80.16860.29180.80050.116*
C10.3969 (8)0.43961 (14)0.9001 (5)0.0581 (11)
C20.0492 (10)0.35829 (16)0.9702 (6)0.0767 (14)
H2A0.13220.35640.98120.092*
H2B0.15120.37161.06150.092*
C90.3958 (9)0.38360 (15)0.7028 (5)0.0675 (13)
H9A0.38500.35150.69530.081*
H9B0.57690.39190.70500.081*
F10.5413 (8)0.32477 (14)1.1264 (5)0.1447 (16)
F20.0789 (8)0.34425 (11)0.5430 (4)0.1243 (13)
N10.3293 (6)0.39708 (11)0.8446 (4)0.0594 (10)
N20.2206 (7)0.46056 (11)0.9610 (4)0.0693 (11)
H2C0.25630.48631.00150.083*
H2D0.07040.44850.96010.083*
O10.0624 (5)0.38636 (9)0.8448 (3)0.0635 (9)
O20.6157 (6)0.45452 (10)0.8966 (4)0.0719 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C100.062 (3)0.080 (3)0.062 (3)0.000 (3)0.018 (2)0.019 (2)
C110.080 (4)0.097 (4)0.071 (4)0.010 (3)0.014 (3)0.025 (3)
C120.095 (4)0.139 (6)0.080 (4)0.020 (4)0.008 (4)0.029 (4)
C130.132 (6)0.145 (6)0.070 (4)0.005 (5)0.006 (4)0.003 (4)
C140.141 (6)0.123 (5)0.084 (5)0.021 (5)0.006 (4)0.016 (4)
C150.092 (4)0.111 (4)0.080 (4)0.015 (3)0.020 (3)0.001 (3)
C30.071 (3)0.072 (3)0.064 (3)0.015 (3)0.021 (3)0.002 (2)
C40.084 (4)0.091 (4)0.077 (4)0.011 (3)0.003 (3)0.006 (3)
C50.106 (5)0.111 (5)0.102 (5)0.010 (4)0.007 (4)0.036 (4)
C60.127 (5)0.083 (4)0.108 (5)0.007 (4)0.031 (4)0.016 (4)
C70.106 (5)0.097 (5)0.121 (5)0.000 (4)0.009 (4)0.008 (4)
C80.108 (4)0.067 (4)0.104 (4)0.001 (3)0.000 (3)0.011 (3)
C10.050 (3)0.064 (3)0.059 (3)0.004 (2)0.008 (2)0.006 (2)
C20.075 (3)0.082 (3)0.076 (3)0.015 (3)0.023 (3)0.006 (3)
C90.056 (3)0.070 (3)0.080 (3)0.004 (2)0.022 (2)0.021 (2)
F10.140 (3)0.135 (3)0.133 (3)0.026 (3)0.031 (2)0.013 (2)
F20.134 (3)0.105 (3)0.129 (3)0.038 (2)0.016 (2)0.019 (2)
N10.049 (2)0.061 (2)0.069 (2)0.0016 (16)0.0145 (17)0.0087 (18)
N20.054 (2)0.063 (2)0.096 (3)0.0041 (18)0.027 (2)0.018 (2)
O10.0480 (17)0.0676 (19)0.077 (2)0.0041 (14)0.0176 (15)0.0076 (15)
O20.0490 (18)0.074 (2)0.095 (2)0.0078 (16)0.0216 (16)0.0186 (16)
Geometric parameters (Å, º) top
C10—C111.3900C5—H50.9300
C10—C151.3900C6—C71.3900
C10—C91.497 (6)C6—H60.9300
C11—F21.301 (4)C7—C81.3900
C11—C121.3900C7—H70.9300
C12—C131.3900C8—H80.9300
C12—H120.9300C1—O21.229 (5)
C13—C141.3900C1—N21.324 (5)
C13—H130.9300C1—N11.394 (5)
C14—C151.3900C2—O11.429 (6)
C14—H140.9300C2—H2A0.9700
C15—H150.9300C2—H2B0.9700
C3—C41.3900C9—N11.457 (6)
C3—C81.3900C9—H9A0.9700
C3—C21.499 (6)C9—H9B0.9700
C4—F11.264 (4)N1—O11.424 (4)
C4—C51.3900N2—H2C0.8600
C5—C61.3900N2—H2D0.8600
C11—C10—C15120.0C5—C6—H6120.0
C11—C10—C9120.3 (3)C6—C7—C8120.0
C15—C10—C9119.7 (3)C6—C7—H7120.0
F2—C11—C12117.9 (3)C8—C7—H7120.0
F2—C11—C10122.1 (3)C7—C8—C3120.0
C12—C11—C10120.0C7—C8—H8120.0
C11—C12—C13120.0C3—C8—H8120.0
C11—C12—H12120.0O2—C1—N2124.2 (4)
C13—C12—H12120.0O2—C1—N1119.4 (4)
C14—C13—C12120.0N2—C1—N1116.4 (4)
C14—C13—H13120.0O1—C2—C3113.0 (4)
C12—C13—H13120.0O1—C2—H2A109.0
C13—C14—C15120.0C3—C2—H2A109.0
C13—C14—H14120.0O1—C2—H2B109.0
C15—C14—H14120.0C3—C2—H2B109.0
C14—C15—C10120.0H2A—C2—H2B107.8
C14—C15—H15120.0N1—C9—C10114.9 (3)
C10—C15—H15120.0N1—C9—H9A108.6
C4—C3—C8120.0C10—C9—H9A108.6
C4—C3—C2121.0 (3)N1—C9—H9B108.6
C8—C3—C2119.0 (3)C10—C9—H9B108.6
F1—C4—C5118.2 (4)H9A—C9—H9B107.5
F1—C4—C3121.8 (4)C1—N1—O1112.3 (3)
C5—C4—C3120.0C1—N1—C9119.0 (4)
C4—C5—C6120.0O1—N1—C9110.4 (3)
C4—C5—H5120.0C1—N2—H2C120.0
C6—C5—H5120.0C1—N2—H2D120.0
C7—C6—C5120.0H2C—N2—H2D120.0
C7—C6—H6120.0N1—O1—C2110.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2C···O2i0.862.052.910 (5)174
N2—H2D···O2ii0.862.323.079 (5)148
Symmetry codes: (i) x+1, y+1, z+2; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC15H14F2N2O2
Mr292.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)5.196 (5), 30.11 (3), 9.059 (8)
β (°) 102.110 (16)
V3)1386 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.34 × 0.13 × 0.07
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8214, 2416, 1042
Rint0.051
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.080, 0.260, 1.02
No. of reflections2416
No. of parameters166
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.37

Computer programs: APEX2 (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2C···O2i0.862.052.910 (5)174
N2—H2D···O2ii0.862.323.079 (5)148
Symmetry codes: (i) x+1, y+1, z+2; (ii) x1, y, z.
 

Acknowledgements

This work has been supported by Grand Science and Technology Special Project of Jiangxi Province, China (20041 A0300201). The authors also thank Jinggangshan University for assistance with the data collection and refinement.

References

First citationArmagan, N., Richards, J. P. G. & Uraz, A. A. (1976). Acta Cryst. B32, 1042–1047.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBerman, H. & Kim, S. H. (1967). Acta Cryst. 23, 180–181.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHoward, W., Shields, P. J., Hamrick, J. & Welby, R. (1967). J. Chem. Phys. 46, 2510-2514.  Google Scholar
First citationKrakoff, I. H., Brown, N. C. & Reichard, P. (1968). Cancer Res. 28, 1559–1565.  CAS PubMed Web of Science Google Scholar
First citationLarsen, I. K. & Jerslev, B. (1966). Acta Chem. Scand. 20, 983–991.  CrossRef Web of Science Google Scholar
First citationNielsen, B. B., Frydenvang, K. & Larsen, I. K. (1993). Acta Cryst. C49, 1018–1022.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThiessen, W. E., Levy, H. A. & Flaig, B. D. (1978). Acta Cryst. B34, 2495–2502.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar
First citationYoung, C. W., Schochetman, G., Hodas, S. & Balls, E. M. (1967). Cancer Res. 27, 535–540.  CAS PubMed Web of Science Google Scholar
First citationYu, R. J. & van Scott, E. J. (1974). J. Invest. Dermatol. 63, 279–283.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds