organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2-Chloro­phen­yl)succinamic acid

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany, and cFaculty of Integrated Arts and Sciences, Tokushima University, Minamijosanjima-cho, Tokushima 770-8502, Japan
*Correspondence e-mail: gowdabt@yahoo.com

(Received 16 January 2009; accepted 23 January 2009; online 28 January 2009)

The conformations of the N—H and C=O bonds in the amide segment of the structure of the title compound {systematic name: 3-[(2-chloro­phen­yl)amino­carbon­yl]propionic acid}, C10H10ClNO3, are trans to each other, while the conformation of the amide H atom is syn to the ortho-chloro group in the benzene ring. Further, the conformations of the amide O atom and the carbonyl O atom of the ester segment are also trans to the H atoms attached to the adjacent C atoms. In the crystal structure, mol­ecules are packed into infinite chains through inter­molecular N—H⋯O and O—H⋯O hydrogen bonds.

Related literature

For general background see: Gowda, Kozisek et al. (2007[Gowda, B. T., Kozisek, J., Svoboda, I. & Fuess, H. (2007). Z. Naturforsch. A, 62, 91-100.]); Gowda, Svoboda et al. (2007[Gowda, B. T., Svoboda, I. & Fuess, H. (2007). Acta Cryst. E63, o3267.]); Gowda et al. (2008[Gowda, B. T., Foro, S. & Fuess, H. (2008). Acta Cryst. E64, o828.]); Jones et al. (1990[Jones, P. G., Kirby, A. J. & Lewis, R. J. (1990). Acta Cryst. C46, 78-81.]); Wan et al. (2006[Wan, X., Ma, Z., Li, B., Zhang, K., Cao, S., Zhang, S. & Shi, Z. (2006). J. Am. Chem. Soc. 128, 7416-7417.]).

[Scheme 1]

Experimental

Crystal data
  • C10H10ClNO3

  • Mr = 227.64

  • Monoclinic, P 21 /n

  • a = 4.9056 (5) Å

  • b = 11.126 (1) Å

  • c = 18.677 (2) Å

  • β = 94.92 (1)°

  • V = 1015.63 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 299 (2) K

  • 0.50 × 0.35 × 0.30 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd, Köln, Germany.]) Tmin = 0.840, Tmax = 0.899

  • 6644 measured reflections

  • 2065 independent reflections

  • 1585 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.126

  • S = 1.08

  • 2065 reflections

  • 142 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.877 (16) 2.079 (17) 2.943 (2) 168 (2)
O2—H2O⋯O3ii 0.814 (18) 1.866 (18) 2.673 (2) 171 (3)
Symmetry codes: (i) x+1, y, z; (ii) -x, -y-1, -z+2.

Data collection: CrysAlis CCD (Oxford Diffraction, 2004[Oxford Diffraction (2004). CrysAlis CCD. Oxford Diffraction Ltd, Köln, Germany.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd, Köln, Germany.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Amides are of interest as conjugation between the nitrogen lone pair electrons and the carbonyl pi-bond results in distinct physical and chemical properties. The amide moiety is also an important constituent of many biologically significant compounds. Thus, the structural studies of amides are of interest (Gowda, Kozisek et al., 2007 and references therein; Gowda, Svoboda et al., 2007; Gowda et al., 2008 and references therein); Jones et al., 1990; Wan et al., 2006). As a part of studying the effect of ring and side chain substitutions on the structures of this class of compounds, we have determined the crystal structure of N-(2-Chlorophenyl)-succinamic acid (N2CPMSA).

The conformations of N—H and C=O bonds in the amide segment of the structure are trans to each other, while the conformation of the amide hydrogen is syn to the ortho-chloro group in the benzene ring. Further, the conformations of the amide oxygen and the carbonyl oxygen of the ester segment are also trans to the H-atoms attached to the adjacent carbons (Fig. 1). The torsional angles of the groups, C1-N1-C7-C8, N1-C7-C8-C9, C7-C8-C9-C10 and C8-C9-C10-O2 in the side chain are 177.5 (2)°, 173.2 (2)°, 178.9 (2)° and 167.7 (2)°, respectively. The molecular packing in the structure via N—H···O and O—H···O intermolecular hydrogen bonds (Table 1) is shown in Fig.2.

Related literature top

For general background see: Gowda, Kozisek et al. (2007); Gowda, Svoboda et al. (2007); Gowda et al. (2008); Jones et al. (1990); Wan et al. (2006).

Experimental top

The solution of succinic anhydride (2.5 g) in toluene (25 ml) was treated dropwise with the solution of 2-chloroaniline (2.5 g) also in toluene (20 ml) with constant stirring. The resulting mixture was stirred for about one hour and set aside for an additional hour at room temperature for completion of the reaction. The mixture was then treated with dilute hydrochloric acid to remove the unreacted 2-chloroaniline. The resultant solid N-(2-chlorophenyl)-succinamic acid was filtered under suction and washed thoroughly with water to remove the unreacted succinic anhydride and succinic acid. It was recrystallized to constant melting point from ethanol. The purity of the compound was checked by elemental analysis and characterized by its infrared and NMR spectra. The single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement top

The O-bound and N-bound H atoms were located in difference map, and later restrained to the distance O—H = 0.82 (2) Å, N—H = 0.86 (2) Å, respectivily. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.97 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2004); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labeling scheme. The displacement ellipsoids are drawn at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
3-[(2-Chlorophenyl)aminocarbonyl]propionic acid top
Crystal data top
C10H10ClNO3F(000) = 472
Mr = 227.64Dx = 1.489 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2963 reflections
a = 4.9056 (5) Åθ = 2.2–28.0°
b = 11.126 (1) ŵ = 0.36 mm1
c = 18.677 (2) ÅT = 299 K
β = 94.92 (1)°Rod, colourless
V = 1015.63 (18) Å30.50 × 0.35 × 0.30 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2065 independent reflections
Radiation source: fine-focus sealed tube1585 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Rotation method data acquisition using ω and ϕ scansθmax = 26.4°, θmin = 2.2°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
h = 66
Tmin = 0.840, Tmax = 0.899k = 1313
6644 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0713P)2 + 0.3374P]
where P = (Fo2 + 2Fc2)/3
2065 reflections(Δ/σ)max = 0.013
142 parametersΔρmax = 0.28 e Å3
2 restraintsΔρmin = 0.21 e Å3
Crystal data top
C10H10ClNO3V = 1015.63 (18) Å3
Mr = 227.64Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.9056 (5) ŵ = 0.36 mm1
b = 11.126 (1) ÅT = 299 K
c = 18.677 (2) Å0.50 × 0.35 × 0.30 mm
β = 94.92 (1)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2065 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
1585 reflections with I > 2σ(I)
Tmin = 0.840, Tmax = 0.899Rint = 0.018
6644 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0362 restraints
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.28 e Å3
2065 reflectionsΔρmin = 0.21 e Å3
142 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0798 (3)0.18091 (17)0.84736 (10)0.0321 (4)
C20.0342 (4)0.22834 (17)0.78777 (10)0.0344 (4)
C30.0244 (4)0.34392 (19)0.76422 (12)0.0443 (5)
H30.05690.37490.72500.053*
C40.2039 (5)0.4129 (2)0.79921 (14)0.0511 (6)
H40.24430.49070.78350.061*
C50.3238 (4)0.36726 (19)0.85722 (13)0.0486 (6)
H50.44820.41370.88000.058*
C60.2601 (4)0.25260 (19)0.88184 (11)0.0401 (5)
H60.33870.22320.92190.048*
C70.1818 (4)0.01912 (17)0.89519 (10)0.0337 (4)
C80.0514 (4)0.13863 (18)0.91553 (12)0.0421 (5)
H8A0.01030.17620.87290.051*
H8B0.10760.12530.94910.051*
C90.2446 (4)0.2219 (2)0.94887 (14)0.0507 (6)
H9A0.40530.23260.91540.061*
H9B0.30360.18380.99160.061*
C100.1304 (4)0.34338 (18)0.96916 (11)0.0392 (5)
N10.0075 (3)0.06395 (15)0.87205 (9)0.0369 (4)
H1N0.165 (3)0.042 (2)0.8730 (12)0.044*
O10.4257 (3)0.00054 (13)0.89803 (9)0.0479 (4)
O20.2733 (3)0.40550 (16)1.00881 (11)0.0614 (5)
H2O0.201 (6)0.469 (2)1.0217 (15)0.074*
O30.0897 (3)0.37797 (14)0.94783 (10)0.0559 (5)
Cl10.25199 (11)0.14183 (5)0.74014 (3)0.0493 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0253 (8)0.0311 (9)0.0396 (10)0.0008 (7)0.0003 (7)0.0032 (8)
C20.0285 (9)0.0339 (10)0.0410 (10)0.0015 (8)0.0040 (8)0.0008 (8)
C30.0442 (12)0.0387 (11)0.0505 (12)0.0035 (9)0.0066 (9)0.0119 (9)
C40.0496 (13)0.0318 (11)0.0715 (15)0.0065 (9)0.0036 (11)0.0102 (11)
C50.0405 (12)0.0387 (12)0.0673 (15)0.0077 (9)0.0080 (10)0.0066 (10)
C60.0366 (10)0.0419 (11)0.0426 (10)0.0020 (9)0.0088 (8)0.0008 (9)
C70.0285 (9)0.0357 (10)0.0374 (10)0.0009 (8)0.0047 (7)0.0075 (8)
C80.0321 (10)0.0372 (11)0.0583 (13)0.0034 (8)0.0105 (9)0.0143 (10)
C90.0361 (11)0.0423 (12)0.0748 (15)0.0018 (9)0.0106 (10)0.0231 (11)
C100.0317 (10)0.0382 (11)0.0477 (11)0.0020 (8)0.0034 (8)0.0095 (9)
N10.0248 (7)0.0341 (9)0.0524 (10)0.0042 (7)0.0069 (7)0.0105 (8)
O10.0256 (7)0.0444 (8)0.0743 (11)0.0026 (6)0.0084 (6)0.0169 (8)
O20.0516 (10)0.0441 (9)0.0918 (13)0.0046 (7)0.0255 (9)0.0298 (9)
O30.0512 (9)0.0477 (9)0.0719 (11)0.0098 (7)0.0228 (8)0.0196 (8)
Cl10.0475 (3)0.0468 (3)0.0566 (4)0.0016 (2)0.0224 (2)0.0006 (2)
Geometric parameters (Å, º) top
C1—C61.390 (3)C7—N11.355 (2)
C1—C21.392 (3)C7—C81.510 (3)
C1—N11.416 (2)C8—C91.498 (3)
C2—C31.381 (3)C8—H8A0.9700
C2—Cl11.7385 (19)C8—H8B0.9700
C3—C41.375 (3)C9—C101.500 (3)
C3—H30.9300C9—H9A0.9700
C4—C51.373 (3)C9—H9B0.9700
C4—H40.9300C10—O31.243 (2)
C5—C61.383 (3)C10—O21.267 (2)
C5—H50.9300N1—H1N0.877 (16)
C6—H60.9300O2—H2O0.814 (18)
C7—O11.220 (2)
C6—C1—C2117.93 (17)N1—C7—C8114.57 (15)
C6—C1—N1121.89 (17)C9—C8—C7112.30 (16)
C2—C1—N1120.17 (17)C9—C8—H8A109.1
C3—C2—C1121.38 (18)C7—C8—H8A109.1
C3—C2—Cl1118.22 (15)C9—C8—H8B109.1
C1—C2—Cl1120.40 (15)C7—C8—H8B109.1
C4—C3—C2119.5 (2)H8A—C8—H8B107.9
C4—C3—H3120.2C8—C9—C10115.23 (17)
C2—C3—H3120.2C8—C9—H9A108.5
C5—C4—C3120.3 (2)C10—C9—H9A108.5
C5—C4—H4119.9C8—C9—H9B108.5
C3—C4—H4119.9C10—C9—H9B108.5
C4—C5—C6120.23 (19)H9A—C9—H9B107.5
C4—C5—H5119.9O3—C10—O2123.9 (2)
C6—C5—H5119.9O3—C10—C9120.93 (18)
C5—C6—C1120.66 (19)O2—C10—C9115.21 (18)
C5—C6—H6119.7C7—N1—C1125.72 (15)
C1—C6—H6119.7C7—N1—H1N115.9 (15)
O1—C7—N1123.12 (18)C1—N1—H1N118.4 (15)
O1—C7—C8122.29 (17)C10—O2—H2O113 (2)
C6—C1—C2—C31.4 (3)N1—C1—C6—C5178.97 (19)
N1—C1—C2—C3177.44 (18)O1—C7—C8—C98.3 (3)
C6—C1—C2—Cl1177.74 (14)N1—C7—C8—C9173.18 (19)
N1—C1—C2—Cl13.5 (3)C7—C8—C9—C10178.86 (19)
C1—C2—C3—C41.5 (3)C8—C9—C10—O312.2 (3)
Cl1—C2—C3—C4177.60 (17)C8—C9—C10—O2167.7 (2)
C2—C3—C4—C50.1 (3)O1—C7—N1—C11.0 (3)
C3—C4—C5—C61.4 (4)C8—C7—N1—C1177.49 (18)
C4—C5—C6—C11.6 (3)C6—C1—N1—C742.4 (3)
C2—C1—C6—C50.2 (3)C2—C1—N1—C7138.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.88 (2)2.08 (2)2.943 (2)168 (2)
O2—H2O···O3ii0.81 (2)1.87 (2)2.673 (2)171 (3)
Symmetry codes: (i) x+1, y, z; (ii) x, y1, z+2.

Experimental details

Crystal data
Chemical formulaC10H10ClNO3
Mr227.64
Crystal system, space groupMonoclinic, P21/n
Temperature (K)299
a, b, c (Å)4.9056 (5), 11.126 (1), 18.677 (2)
β (°) 94.92 (1)
V3)1015.63 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.50 × 0.35 × 0.30
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.840, 0.899
No. of measured, independent and
observed [I > 2σ(I)] reflections
6644, 2065, 1585
Rint0.018
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.126, 1.08
No. of reflections2065
No. of parameters142
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.21

Computer programs: CrysAlis CCD (Oxford Diffraction, 2004), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.877 (16)2.079 (17)2.943 (2)168 (2)
O2—H2O···O3ii0.814 (18)1.866 (18)2.673 (2)171 (3)
Symmetry codes: (i) x+1, y, z; (ii) x, y1, z+2.
 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

References

First citationGowda, B. T., Foro, S. & Fuess, H. (2008). Acta Cryst. E64, o828.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Kozisek, J., Svoboda, I. & Fuess, H. (2007). Z. Naturforsch. A, 62, 91–100.  CAS Google Scholar
First citationGowda, B. T., Svoboda, I. & Fuess, H. (2007). Acta Cryst. E63, o3267.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJones, P. G., Kirby, A. J. & Lewis, R. J. (1990). Acta Cryst. C46, 78–81.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOxford Diffraction (2004). CrysAlis CCD. Oxford Diffraction Ltd, Köln, Germany.  Google Scholar
First citationOxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd, Köln, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWan, X., Ma, Z., Li, B., Zhang, K., Cao, S., Zhang, S. & Shi, Z. (2006). J. Am. Chem. Soc. 128, 7416–7417.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds