organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages o332-o333

3-O-Benzyl-6-O-benzoyl-1,2-O-isopropil­­idene-5-C-nitro­methyl-a-D-gluco­furan­ose

aDepartamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain, and bDepartamento de Química Inorgánica, Facultade de Química, Universidad de Vigo, 36310 Vigo, Pontevedra, Spain
*Correspondence e-mail: ramon.estevez@usc.es

(Received 24 September 2008; accepted 19 December 2008; online 17 January 2009)

The title compound, C24H27NO9, is one of the epimers of the Henry reaction of 3-O-benzyl-6-O-benzoyl-2-O-isopropyl­idene-a-D-glucofuran-5-one with nitro­methane. The conformation of the five membered rings is as expected from the precursor compound and the mol­ecule is folded with a dihedral angle of 51.4 (2)° between the aromatic rings. One O—H⋯O hydrogen bond and some intra­molecular and inter­molecular C—H⋯O inter­actions are observed in the structure.

Related literature

For the preparation of 3-O-benzyl-6-O-benzoyl-1,2-isopro­pyl­idene-a-D-xilo-hexofuran-5-one, the precursor of the title compound, and for the Henry reaction of the title compound with nitro­methane, see: Yoshikawa et al. (1990[Yoshikawa, M., Okaichi, Y., Cha, B. C. & Kitagawa, I. (1990). Tetrahedron, 46, 7459-7470.]). For background to nitro­sugars as precursors of a wide range of natural and synthetic products, see: Chakraborty et al. (2002[Chakraborty, T. K., Ghosh, S. & Jayaprkas, S. (2002). Curr. Med. Chem. 9, 421-435.]); Gruner et al. (2002[Gruner, S. A. W., Locardi, E., Lohof, E. & Kessler, H. (2002). Chem. Rev. 102, 491-514.]); Lillelund et al. (2002[Lillelund, V. H., Jensen, H. H., Liang, X. & Bols, M. (2002). Chem. Rev. 102, 515-553.]); Ogawa & Morikawa (2005[Ogawa, S. & Morikawa, T. (2005). Eur. J. Org. Chem. 19, 4065-4072.]).

[Scheme 1]

Experimental

Crystal data
  • C24H27NO9

  • Mr = 473.47

  • Orthorhombic, P 21 21 21

  • a = 9.5080 (12) Å

  • b = 11.8190 (16) Å

  • c = 21.395 (3) Å

  • V = 2404.3 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 113 (2) K

  • 0.47 × 0.29 × 0.13 mm

Data collection
  • Bruker SMART CCD 1000 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.626, Tmax = 0.982

  • 4735 measured reflections

  • 2692 independent reflections

  • 1940 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.131

  • S = 1.10

  • 2692 reflections

  • 313 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O28—H28⋯O9 0.84 (2) 1.83 (3) 2.628 (4) 157 (5)
C4—H4⋯O31i 1.00 2.44 3.084 (5) 122
C5—H5⋯O28ii 1.00 2.45 3.189 (5) 130
C5—H5⋯O31ii 1.00 2.49 3.352 (5) 144
C18—H18A⋯O32 0.99 2.46 3.000 (6) 114
C24—H24⋯O1iii 0.95 2.59 3.445 (5) 151
C26—H26⋯O8iv 0.95 2.60 3.514 (5) 162
C29—H29A⋯O27v 0.99 2.54 3.334 (5) 137
Symmetry codes: (i) x-1, y, z; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) [-x+{\script{1\over 2}}, -y, z+{\script{1\over 2}}]; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS, Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS, Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Nitrosugars are very important organic compounds because of their use as precursors of a wide range of natural and synthetic products with relevant properties (Gruner et al., 2002) as aminopoliols (Lillelund et al., 2002, Ogawa et al., 2005), polihydroxilated amino acids (Chakraborty et al., 2002), etc. The title nitrosugar compound 2 (C24H27NO9, Figure 1) is one of the epimers of the Henry reaction (Yoshikawa et al., 1990) of 3-O-benzyl-6-O-benzoyl-2-O-isopropilidene-a-D-glucofuran-5-one (1) (Yoshikawa et al., 1990) with nitromethane (See Figure 1). The molecular structure of the title compound is represented in Figure 2. Bond lengths and angles are within the expected values and confirm the bond orders giving in the Scheme. The compound crystallized in the orthorhombic space group P212121 with only one molecule in the asymmetric unit. The molecule is folded with a dihedral angle between the aromatic rings of 51.4 (2)°. The conformation of the five membered rings is as expected from the precursor compound (1). Some intramolecular and intermolecular H bond interactions have been observed in the structure. The intramolecular O28—H28···O9 H bond interaction shows a distance H28···O9 of 2.628 (4) Å and an angle of 157 (5)°. No ππ-stacking interactions have been observed in the structure of the title compound.

Related literature top

For the preparation of 3-O-benzyl-6-O-benzoyl-1,2-isopropylidene-a-D-xilo-hexofuran-5-one, the precursor of the title compound, and for the Henry reaction of the title compound with nitrometane, see: Yoshikawa et al. (1990). For background to nitrosugars as precursors of a wide range of natural and synthetic products, see: Chakraborty et al. (2002); Gruner et al. (2002); Lillelund et al. (2002); Ogawa & Morikawa (2005).

Experimental top

3-O-Benzyl-6-O-benzoyl-1,2-O-isopropilidene-5-C-nitromethyl-a-D-glucofuranose (2) and 3-O-benzyl-6-O-benzoyl-1,2-O-isopropilidene-5-C-nitromethyl-b-L-Idofuranose (3).

KF.2H2O (0.46 g, 4.90 mmol) and 18-crown-6 ether (0.82 g, 3.10 mmol) were added to a solution of 3-O-benzyl-6-O-benzoyl-1,2-isopropylidene-a-D-xilo-hexofuran-5-one (1) (1.19 g, 2.90 mmol) in acetonitrile (18 ml) and the resulting suspension was stirred at room temperature for 1 h. The reaction mixture was poured into ice water (50 ml) and extracted with ethyl acetate (3 m × 80 ml). The organic layers were then dried with anhydrous sodium sulfate, filtered and evaporated to give a residue wich was purificated by flash column chromatography (ethyl acetate/hexane 1:3) to give 3-O-benzyl-6-O-benzoyl-1,2-O-isopropilidene-5-C-nitromethyl-a-D-glucofuranose (2) (0.47 g, 34%) and 3-O-benzyl-6-O-benzoyl-1,2-O-isopropilidene-5-C-nitromethyl-b-L-Idofuranose (3) (0.36 g, 26%) as white solids that were crystallized from a mixture of ethylacetate and hexane.

3-O-Benzyl-6-O-benzoyl-1,2-O-isopropilidene-5-C-nitromethyl-a-D-glucofuranose (2): mp: 375–379 K. [a]D22 -75.6° (c 1.00, CHCl3). IR (NaCl, cm-1): 3454 (OH); 2854–3064 (CArH); 1722 (CO); 1554, 1375 (NO2). 1H NMR (250 MHz, CDCl3) δ 1.32 (s, 3H, CH3); 1.46 (s, 3H, CH3); 4.30 (d, 1H, J3,4= 3.35 Hz, H-3); 4.38 (d, 1H, J4,3= 3.35 Hz, H-4); 4.42–4.47 (m, 2H, CH2NO2); 4.54–4.60 (m, 2H, H-6 + H-6'); 4.66 (d, 1H, J2,1= 3.65 Hz, H-2); 4.73 (d, 1H, J= 11.87 Hz, CHPh); 4.80 (s, 1H, OH); 4.91 (d, 1H, J = 11.87 Hz, CHPh); 6.02 (d, 1H, J1,2 = 3.65 Hz, H-1); 7.31–7.61 (m, 8H, 8 × HPh); 7.98–8.01 (m, 2H, 2 × HPh). 13CNMR (62.8 MHz, CDCl3) δ 26.17 (CH3); 26.56 (CH3); 65.34 (CH2); 72.40 (CH2); 73.05 (CH2); 77.62 (CH); 77.76 (C); 81.38 (CH); 82.99 (CH); 104.53 (CH); 112.19 (C); 128.21 (2 × CArH); 128.45 (2 × CArH); 128.67(CArH); 128.79 (2 × Ar CArH); 129.06 (CAr); 129.54 (2 × CArH); 133.39 (CArH); 135.47 (CAr); 165.64 (CO). MS (CI) m/z 474 [(M+H)+, 1]; 105 (38); 91 [(PhCH2)+, 81], 28 (100).

3-O-Benzyl-6-O-benzoyl-1,2-O-isopropilidene-5-C-nitromethyl-b-L-Idofuranose (3): mp: 382–384 K. [a]D22 -38.0° (c 1.90, CHCl3). IR (NaCl, cm-1): 3454 (OH); 2854–3089 (CArH); 1722 (CO); 1554, 1375 (NO2). 1H NMR (250 MHz, CDCl3) δ 1.33 (s, 3H, CH3); 1.45 (s, 3H, CH3); 4.27 (d, 1H, J3,4 = 3.35 Hz, H-3); 4.31 (s, 1H, OH); 4.39 (1H, d, J4,3= 3.35 Hz, H-4); 4.49–4.64 (m, 5H, H-6 + H-6' + CH2NO2 + CHPh); 4.69 (d, 1H, J2,1 =3.35 Hz, H-2); 4.74 (d, 1H, J = 11.8 Hz, CHPh); 6.01 (d, 1H, J1,2= 3.35 Hz, H-1); 7.33–7.60 (m, 8H, 8 × H—Ph); 7.96–8.01 (m, 2H, 2 × H—Ph).13CNMR (62.8 MHz, CDCl3) δ 26.60 (CH3); 27.09 (CH3); 65.90 (CH2); 72.52 (CH2); 73.90 (C); 78.96 (CH2); 79.20 (CH); 81.80 (CH); 82.70 (CH); 104.90 (CH); 112.70 (C); 128.90 (4 × CArH); 129.20 (2 × CArH); 129.30 (2 × CArH); 129.80 (CAr); 130.02 (CArH); 133.70 (CArH); 136.02 (CAr); 166.05 (CO). MS (CI) m/z105 (38); 91 [(PhCH2)+, 86], 61 (100); 28 (87).

Refinement top

As the data were collected with Mo-Kα radiation and no heavy atoms present anomalous dispersion data are not reliable and Friedel opposites were thus merged before refinement. The hydrogen atom of the alcohol group, H28, was located in a difference density Fourier map and was refined isotropically. All other hydrogen atoms were located in calculated positions and were refined using a riding model with C-H diatnces of 0.95 to 1.0 Å and Uiso(H) = Ueq(C) of the adjacent carbon atom.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART (Bruker, 1998); data reduction: SHELXTL ((Sheldrick, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound (2), with atom labels and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Chemical reaction scheme of the molecule (2).
(I) top
Crystal data top
C24H27NO9Dx = 1.308 Mg m3
Mr = 473.47Mo Kα radiation, λ = 0.71069 Å
Orthorhombic, P212121Cell parameters from 915 reflections
a = 9.5080 (12) Åθ = 2.6–24.4°
b = 11.8190 (16) ŵ = 0.10 mm1
c = 21.395 (3) ÅT = 113 K
V = 2404.3 (5) Å3Prism, colourless
Z = 40.47 × 0.29 × 0.13 mm
F(000) = 1000
Data collection top
Bruker SMART CCD 1000
diffractometer
2692 independent reflections
Radiation source: fine-focus sealed tube1940 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick 1996)
h = 1111
Tmin = 0.626, Tmax = 0.982k = 014
4735 measured reflectionsl = 026
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0583P)2 + 1.021P]
where P = (Fo2 + 2Fc2)/3
2692 reflections(Δ/σ)max < 0.001
313 parametersΔρmax = 0.25 e Å3
1 restraintΔρmin = 0.30 e Å3
Crystal data top
C24H27NO9V = 2404.3 (5) Å3
Mr = 473.47Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.5080 (12) ŵ = 0.10 mm1
b = 11.8190 (16) ÅT = 113 K
c = 21.395 (3) Å0.47 × 0.29 × 0.13 mm
Data collection top
Bruker SMART CCD 1000
diffractometer
2692 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick 1996)
1940 reflections with I > 2σ(I)
Tmin = 0.626, Tmax = 0.982Rint = 0.037
4735 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0471 restraint
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.25 e Å3
2692 reflectionsΔρmin = 0.30 e Å3
313 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1700 (3)0.0030 (2)0.56353 (12)0.0391 (7)
C20.0591 (5)0.0120 (3)0.61034 (19)0.0402 (11)
O30.0623 (3)0.1268 (2)0.62962 (11)0.0348 (7)
C40.1148 (5)0.1931 (3)0.57862 (16)0.0302 (9)
H40.03970.22280.55030.036*
C50.2170 (4)0.1109 (3)0.54653 (16)0.0303 (9)
H50.21430.12060.50010.036*
C60.2093 (4)0.2840 (3)0.60556 (16)0.0288 (9)
H60.16770.31970.64370.035*
C70.3420 (5)0.2167 (3)0.62059 (15)0.0283 (9)
H70.32650.17460.66060.034*
O80.3531 (3)0.1354 (2)0.57021 (11)0.0308 (6)
O90.2419 (3)0.3664 (2)0.55803 (10)0.0315 (6)
C100.1342 (5)0.4495 (3)0.54682 (17)0.0337 (10)
H10A0.04610.41060.53470.040*
H10B0.16320.49860.51160.040*
C110.1070 (5)0.5218 (3)0.60372 (16)0.0308 (9)
C120.0205 (5)0.5153 (4)0.63417 (18)0.0382 (10)
H120.09400.46990.61770.046*
C130.0408 (6)0.5759 (4)0.6894 (2)0.0477 (12)
H130.12860.57160.71040.057*
C140.0640 (6)0.6412 (4)0.7134 (2)0.0443 (11)
H140.04900.68160.75120.053*
C150.1910 (5)0.6489 (3)0.6834 (2)0.0422 (11)
H150.26400.69420.70050.051*
C160.2130 (5)0.5899 (3)0.62766 (18)0.0363 (10)
H160.30010.59650.60620.044*
C170.4799 (5)0.2818 (3)0.62561 (15)0.0279 (9)
C180.4703 (5)0.3727 (3)0.67693 (15)0.0318 (9)
H18A0.55780.41820.67780.038*
H18B0.39030.42400.66840.038*
O190.4505 (3)0.3165 (2)0.73631 (10)0.0330 (7)
C200.4824 (5)0.3802 (3)0.78726 (16)0.0307 (9)
C210.4595 (5)0.3169 (3)0.84646 (16)0.0317 (9)
C220.3918 (6)0.2137 (4)0.8481 (2)0.0571 (15)
H220.36110.17990.81020.069*
C230.3680 (7)0.1590 (5)0.9043 (2)0.0663 (17)
H230.32220.08760.90510.080*
C240.4120 (6)0.2096 (4)0.95958 (18)0.0497 (13)
H240.39150.17480.99850.060*
C250.4849 (5)0.3097 (4)0.95812 (17)0.0416 (11)
H250.51930.34170.99590.050*
C260.5087 (5)0.3643 (3)0.90188 (16)0.0369 (10)
H260.55840.43410.90110.044*
O270.5252 (4)0.4754 (2)0.78355 (11)0.0436 (8)
O280.5152 (3)0.3409 (2)0.56949 (11)0.0339 (7)
C290.5974 (4)0.1972 (3)0.63705 (18)0.0324 (9)
H29A0.58290.15930.67780.039*
H29B0.59630.13860.60400.039*
N300.7345 (4)0.2559 (3)0.63692 (16)0.0411 (9)
O310.8021 (3)0.2601 (3)0.58777 (14)0.0529 (9)
O320.7732 (4)0.3030 (3)0.68513 (14)0.0516 (9)
C330.0979 (8)0.0629 (4)0.6645 (2)0.0663 (17)
H33A0.18940.03960.68120.099*
H33B0.10330.14170.65040.099*
H33C0.02640.05630.69730.099*
C340.0801 (5)0.0168 (4)0.5813 (2)0.0530 (13)
H34A0.15440.01090.61290.080*
H34B0.07710.09420.56490.080*
H34C0.09980.03600.54700.080*
H280.434 (3)0.366 (4)0.561 (2)0.060 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.046 (2)0.0339 (14)0.0374 (14)0.0003 (14)0.0047 (14)0.0101 (12)
C20.048 (3)0.034 (2)0.039 (2)0.002 (2)0.008 (2)0.0016 (18)
O30.0463 (19)0.0312 (13)0.0269 (12)0.0023 (14)0.0063 (13)0.0019 (11)
C40.038 (3)0.0319 (18)0.0208 (17)0.0002 (18)0.0030 (17)0.0013 (15)
C50.034 (3)0.033 (2)0.0232 (17)0.0006 (18)0.0012 (17)0.0028 (15)
C60.040 (3)0.0282 (18)0.0180 (16)0.0042 (18)0.0027 (16)0.0009 (14)
C70.039 (3)0.0308 (19)0.0148 (16)0.0034 (18)0.0016 (16)0.0045 (13)
O80.0351 (18)0.0345 (13)0.0228 (12)0.0046 (13)0.0043 (11)0.0092 (10)
O90.0398 (18)0.0338 (13)0.0208 (11)0.0091 (13)0.0017 (12)0.0046 (10)
C100.039 (3)0.036 (2)0.0263 (18)0.0090 (19)0.0026 (18)0.0021 (15)
C110.035 (3)0.0298 (19)0.0282 (18)0.0045 (18)0.0009 (18)0.0070 (15)
C120.033 (3)0.045 (2)0.036 (2)0.003 (2)0.0000 (19)0.0016 (18)
C130.040 (3)0.062 (3)0.040 (2)0.011 (3)0.011 (2)0.001 (2)
C140.051 (3)0.046 (2)0.036 (2)0.009 (2)0.000 (2)0.0074 (19)
C150.054 (3)0.031 (2)0.041 (2)0.003 (2)0.006 (2)0.0039 (18)
C160.041 (3)0.0318 (19)0.036 (2)0.0028 (19)0.0047 (19)0.0073 (17)
C170.040 (3)0.0274 (18)0.0167 (15)0.0017 (18)0.0014 (16)0.0017 (13)
C180.043 (3)0.034 (2)0.0186 (16)0.000 (2)0.0009 (17)0.0042 (14)
O190.052 (2)0.0317 (13)0.0157 (11)0.0066 (14)0.0016 (12)0.0007 (10)
C200.038 (3)0.032 (2)0.0218 (16)0.0028 (19)0.0013 (17)0.0042 (14)
C210.038 (3)0.037 (2)0.0201 (16)0.0037 (19)0.0004 (17)0.0006 (15)
C220.085 (4)0.060 (3)0.027 (2)0.034 (3)0.009 (2)0.0057 (19)
C230.087 (5)0.071 (3)0.040 (2)0.043 (3)0.010 (3)0.019 (2)
C240.057 (3)0.068 (3)0.024 (2)0.007 (3)0.001 (2)0.014 (2)
C250.057 (3)0.048 (2)0.0192 (17)0.006 (2)0.0037 (19)0.0037 (16)
C260.051 (3)0.0364 (19)0.0231 (17)0.000 (2)0.0005 (18)0.0038 (15)
O270.079 (2)0.0289 (14)0.0231 (12)0.0101 (16)0.0052 (14)0.0029 (10)
O280.040 (2)0.0450 (16)0.0169 (11)0.0035 (14)0.0009 (12)0.0047 (11)
C290.029 (3)0.038 (2)0.0301 (19)0.0012 (19)0.0031 (18)0.0020 (16)
N300.042 (2)0.047 (2)0.0340 (18)0.0058 (19)0.0066 (17)0.0115 (16)
O310.039 (2)0.079 (2)0.0404 (17)0.0084 (18)0.0052 (15)0.0129 (16)
O320.056 (2)0.061 (2)0.0387 (16)0.0149 (18)0.0148 (16)0.0018 (15)
C330.107 (5)0.042 (2)0.050 (3)0.010 (3)0.009 (3)0.011 (2)
C340.048 (3)0.049 (3)0.062 (3)0.011 (2)0.009 (3)0.009 (2)
Geometric parameters (Å, º) top
O1—C51.400 (5)C17—O281.429 (4)
O1—C21.458 (5)C17—C291.519 (5)
C2—O31.419 (5)C17—C181.539 (5)
C2—C341.502 (7)C18—O191.446 (4)
C2—C331.505 (6)C18—H18A0.9900
O3—C41.433 (4)C18—H18B0.9900
C4—C61.515 (5)O19—C201.359 (4)
C4—C51.536 (5)C20—O271.199 (5)
C4—H41.0000C20—C211.487 (5)
C5—O81.419 (5)C21—C221.379 (6)
C5—H51.0000C21—C261.393 (5)
C6—O91.442 (4)C22—C231.385 (6)
C6—C71.526 (6)C22—H220.9500
C6—H61.0000C23—C241.391 (6)
C7—O81.448 (4)C23—H230.9500
C7—C171.524 (6)C24—C251.371 (6)
C7—H71.0000C24—H240.9500
O9—C101.439 (5)C25—C261.384 (5)
C10—C111.510 (5)C25—H250.9500
C10—H10A0.9900C26—H260.9500
C10—H10B0.9900O28—H280.84 (2)
C11—C121.378 (6)C29—N301.476 (6)
C11—C161.388 (6)C29—H29A0.9900
C12—C131.394 (6)C29—H29B0.9900
C12—H120.9500N30—O321.228 (4)
C13—C141.361 (7)N30—O311.233 (5)
C13—H130.9500C33—H33A0.9800
C14—C151.370 (7)C33—H33B0.9800
C14—H140.9500C33—H33C0.9800
C15—C161.398 (6)C34—H34A0.9800
C15—H150.9500C34—H34B0.9800
C16—H160.9500C34—H34C0.9800
C5—O1—C2110.1 (3)C15—C16—H16120.1
O3—C2—O1104.7 (3)O28—C17—C29106.5 (3)
O3—C2—C34110.9 (4)O28—C17—C7112.9 (3)
O1—C2—C34109.7 (3)C29—C17—C7108.2 (3)
O3—C2—C33109.5 (4)O28—C17—C18105.8 (3)
O1—C2—C33108.0 (4)C29—C17—C18112.8 (3)
C34—C2—C33113.7 (4)C7—C17—C18110.6 (3)
C2—O3—C4108.0 (3)O19—C18—C17108.3 (3)
O3—C4—C6107.7 (3)O19—C18—H18A110.0
O3—C4—C5102.4 (3)C17—C18—H18A110.0
C6—C4—C5104.1 (3)O19—C18—H18B110.0
O3—C4—H4113.8C17—C18—H18B110.0
C6—C4—H4113.8H18A—C18—H18B108.4
C5—C4—H4113.8C20—O19—C18114.9 (3)
O1—C5—O8112.6 (3)O27—C20—O19122.9 (3)
O1—C5—C4104.9 (3)O27—C20—C21125.3 (3)
O8—C5—C4106.8 (3)O19—C20—C21111.8 (3)
O1—C5—H5110.8C22—C21—C26119.5 (3)
O8—C5—H5110.8C22—C21—C20122.3 (3)
C4—C5—H5110.8C26—C21—C20118.2 (3)
O9—C6—C4109.8 (3)C21—C22—C23120.8 (4)
O9—C6—C7108.8 (3)C21—C22—H22119.6
C4—C6—C7101.6 (3)C23—C22—H22119.6
O9—C6—H6112.0C22—C23—C24119.2 (4)
C4—C6—H6112.0C22—C23—H23120.4
C7—C6—H6112.0C24—C23—H23120.4
O8—C7—C17109.0 (3)C25—C24—C23120.3 (4)
O8—C7—C6104.4 (3)C25—C24—H24119.9
C17—C7—C6117.6 (3)C23—C24—H24119.9
O8—C7—H7108.5C24—C25—C26120.3 (4)
C17—C7—H7108.5C24—C25—H25119.8
C6—C7—H7108.5C26—C25—H25119.8
C5—O8—C7109.6 (3)C25—C26—C21119.8 (4)
C10—O9—C6115.2 (3)C25—C26—H26120.1
O9—C10—C11112.0 (3)C21—C26—H26120.1
O9—C10—H10A109.2C17—O28—H2897 (4)
C11—C10—H10A109.2N30—C29—C17109.9 (3)
O9—C10—H10B109.2N30—C29—H29A109.7
C11—C10—H10B109.2C17—C29—H29A109.7
H10A—C10—H10B107.9N30—C29—H29B109.7
C12—C11—C16119.8 (4)C17—C29—H29B109.7
C12—C11—C10120.0 (4)H29A—C29—H29B108.2
C16—C11—C10120.1 (4)O32—N30—O31122.8 (4)
C11—C12—C13119.6 (4)O32—N30—C29118.4 (4)
C11—C12—H12120.2O31—N30—C29118.7 (3)
C13—C12—H12120.2C2—C33—H33A109.5
C14—C13—C12120.7 (5)C2—C33—H33B109.5
C14—C13—H13119.7H33A—C33—H33B109.5
C12—C13—H13119.7C2—C33—H33C109.5
C13—C14—C15120.4 (4)H33A—C33—H33C109.5
C13—C14—H14119.8H33B—C33—H33C109.5
C15—C14—H14119.8C2—C34—H34A109.5
C14—C15—C16119.9 (4)C2—C34—H34B109.5
C14—C15—H15120.1H34A—C34—H34B109.5
C16—C15—H15120.1C2—C34—H34C109.5
C11—C16—C15119.7 (4)H34A—C34—H34C109.5
C11—C16—H16120.1H34B—C34—H34C109.5
C5—O1—C2—O311.5 (4)C12—C13—C14—C150.5 (7)
C5—O1—C2—C34107.5 (4)C13—C14—C15—C160.3 (7)
C5—O1—C2—C33128.2 (4)C12—C11—C16—C151.9 (6)
O1—C2—O3—C427.8 (4)C10—C11—C16—C15174.4 (3)
C34—C2—O3—C490.4 (4)C14—C15—C16—C111.5 (6)
C33—C2—O3—C4143.4 (4)O8—C7—C17—O2859.3 (4)
C2—O3—C4—C6141.4 (4)C6—C7—C17—O2859.2 (4)
C2—O3—C4—C532.0 (4)O8—C7—C17—C2958.3 (4)
C2—O1—C5—O8107.9 (3)C6—C7—C17—C29176.8 (3)
C2—O1—C5—C47.8 (4)O8—C7—C17—C18177.6 (3)
O3—C4—C5—O123.9 (4)C6—C7—C17—C1859.1 (4)
C6—C4—C5—O1136.0 (3)O28—C17—C18—O19173.6 (3)
O3—C4—C5—O895.8 (3)C29—C17—C18—O1957.5 (4)
C6—C4—C5—O816.3 (3)C7—C17—C18—O1963.8 (4)
O3—C4—C6—O9168.4 (3)C17—C18—O19—C20160.9 (3)
C5—C4—C6—O983.3 (3)C18—O19—C20—O270.8 (6)
O3—C4—C6—C776.5 (3)C18—O19—C20—C21180.0 (4)
C5—C4—C6—C731.8 (3)O27—C20—C21—C22170.7 (5)
O9—C6—C7—O879.1 (3)O19—C20—C21—C2210.1 (6)
C4—C6—C7—O836.6 (3)O27—C20—C21—C269.3 (7)
O9—C6—C7—C1741.7 (4)O19—C20—C21—C26169.9 (4)
C4—C6—C7—C17157.5 (3)C26—C21—C22—C232.2 (8)
O1—C5—O8—C7107.4 (3)C20—C21—C22—C23177.8 (5)
C4—C5—O8—C77.3 (4)C21—C22—C23—C240.6 (10)
C17—C7—O8—C5154.4 (3)C22—C23—C24—C253.5 (9)
C6—C7—O8—C527.9 (3)C23—C24—C25—C263.5 (8)
C4—C6—O9—C1080.2 (4)C24—C25—C26—C210.6 (7)
C7—C6—O9—C10169.4 (3)C22—C21—C26—C252.2 (7)
C6—O9—C10—C1162.9 (4)C20—C21—C26—C25177.7 (4)
O9—C10—C11—C12113.6 (4)O28—C17—C29—N3053.6 (4)
O9—C10—C11—C1662.6 (4)C7—C17—C29—N30175.3 (3)
C16—C11—C12—C131.1 (6)C18—C17—C29—N3062.1 (4)
C10—C11—C12—C13175.2 (4)C17—C29—N30—O3282.8 (4)
C11—C12—C13—C140.1 (6)C17—C29—N30—O3193.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O28—H28···O90.84 (2)1.83 (3)2.628 (4)157 (5)
C4—H4···O31i1.002.443.084 (5)122
C5—H5···O28ii1.002.453.189 (5)130
C5—H5···O31ii1.002.493.352 (5)144
C18—H18A···O320.992.463.000 (6)114
C22—H22···O190.952.412.739 (5)100
C24—H24···O1iii0.952.593.445 (5)151
C26—H26···O8iv0.952.603.514 (5)162
C29—H29A···O190.992.572.907 (5)100
C29—H29A···O27v0.992.543.334 (5)137
C29—H29B···O80.992.422.824 (5)104
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+1/2, z+1; (iii) x+1/2, y, z+1/2; (iv) x+1, y+1/2, z+3/2; (v) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC24H27NO9
Mr473.47
Crystal system, space groupOrthorhombic, P212121
Temperature (K)113
a, b, c (Å)9.5080 (12), 11.8190 (16), 21.395 (3)
V3)2404.3 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.47 × 0.29 × 0.13
Data collection
DiffractometerBruker SMART CCD 1000
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick 1996)
Tmin, Tmax0.626, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
4735, 2692, 1940
Rint0.037
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.131, 1.10
No. of reflections2692
No. of parameters313
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.30

Computer programs: SMART (Bruker, 1998), SHELXTL ((Sheldrick, 2008), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX publication routines (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O28—H28···O90.84 (2)1.83 (3)2.628 (4)157 (5)
C4—H4···O31i1.002.443.084 (5)121.8
C5—H5···O28ii1.002.453.189 (5)130.1
C5—H5···O31ii1.002.493.352 (5)143.6
C18—H18A···O320.992.463.000 (6)113.5
C22—H22···O190.952.412.739 (5)99.7
C24—H24···O1iii0.952.593.445 (5)150.5
C26—H26···O8iv0.952.603.514 (5)162.1
C29—H29A···O190.992.572.907 (5)99.8
C29—H29A···O27v0.992.543.334 (5)136.8
C29—H29B···O80.992.422.824 (5)103.6
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+1/2, z+1; (iii) x+1/2, y, z+1/2; (iv) x+1, y+1/2, z+3/2; (v) x+1, y1/2, z+3/2.
 

Acknowledgements

We gratefully acknowledge the Spanish Education Ministry and the Xunta de Galicia for financial support. Intensity measurements were performed at the Unidade de Raios X. RIAIDT. University of Santiago de Compostela, Spain.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS, Madison, Wisconsin, USA.  Google Scholar
First citationChakraborty, T. K., Ghosh, S. & Jayaprkas, S. (2002). Curr. Med. Chem. 9, 421–435.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGruner, S. A. W., Locardi, E., Lohof, E. & Kessler, H. (2002). Chem. Rev. 102, 491–514.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLillelund, V. H., Jensen, H. H., Liang, X. & Bols, M. (2002). Chem. Rev. 102, 515–553.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOgawa, S. & Morikawa, T. (2005). Eur. J. Org. Chem. 19, 4065–4072.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYoshikawa, M., Okaichi, Y., Cha, B. C. & Kitagawa, I. (1990). Tetrahedron, 46, 7459–7470.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages o332-o333
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds