metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages m163-m164

catena-Poly[dieth­yl(2-hy­droxy­ethyl)­ammonium [[tetra-μ-acetato-κ8O:O′-dicuprate(II)(CuCu)]-μ-acetato-κ2O:O′] di­chloro­methane solvate]

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bThe School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, England
*Correspondence e-mail: mazhar42pk@yahoo.com

(Received 20 November 2008; accepted 27 December 2008; online 8 January 2009)

The title compound, {(C6H16NO)[Cu2(CH3COO)5]·CH2Cl2}n, consists of acetate-bridged Cu2(CH3COO)4 units that are connected via another acetate anion at each terminus to form infinite anionic [{Cu2(CH3COO)4}(CH3COO)]n chains along [100]. The connecting acetate is hydrogen bonded to the dieth­yl(2-hydroxy­ethyl)ammonium cation, and the dichloro­methane solvent mol­ecule fills the remaining voids in the structure. The O—Cu—Cu angles along the polymeric chain are nearly linear [175.49 (5)°], but individual O—Cu—Cu—O units along the chain are bent and rotated against each other at the bridging acetate ion. Translation of each Cu2(CH3COO)4 unit along the chain, represented by the least-squares plane of the two copper ions along with four of the acetate O atoms, rotated these units by 35.16 (3)°.

Related literature

Shahid, Mazhar, Helliwell et al. (2008[Shahid, M., Mazhar, M., Helliwell, M., Akhtar, J. & Ahmad, K. (2008). Acta Cryst. E64, m1139-m1140.]) describe the study of dinuclear Cu complexes; Van Niekerk & Schoening (1953[Van Niekerk, J. N. & Schoening, F. R. L. (1953). Nature (London), 171, 36-37.]) provide X-ray evidence for Cu—Cu bonds in cupric acetate; Brown & Chidambaram (1973[Brown, G. M. & Chidambaram, R. (1973). Acta Cryst. B29, 2393-2403.]) report the redetermination of the structure of cupric acetate by neutron-diffraction; Shahid, Mazhar, Malik et al. (2008[Shahid, M., Mazhar, M., Malik, M. A., O'Brien, P. & Raftery, J. (2008). Polyhedron, 27, 3337-3342.]); Hamid et al. (2007[Hamid, M., Tahir, A. A., Mazhar, M., Zeller, M. & Hunter, A. D. (2007). Inorg. Chem. 46, 4120-4127.]) and Zhang et al. (2004[Zhang, Y.-L., Chen, S.-W., Liu, W.-S. & Wang, D.-Q. (2004). Acta Cryst. E60, m196-m197.]) describe geometric parameters of organo–copper complexes.

[Scheme 1]

Experimental

Crystal data
  • (C6H16NO)[Cu2(C2H3O2)5]·CH2Cl2

  • Mr = 625.42

  • Orthorhombic, P n a 21

  • a = 17.6366 (11) Å

  • b = 12.1078 (8) Å

  • c = 11.9148 (7) Å

  • V = 2544.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.94 mm−1

  • T = 100 (2) K

  • 0.40 × 0.40 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.657, Tmax = 0.830

  • 21202 measured reflections

  • 5939 independent reflections

  • 5693 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.080

  • S = 1.08

  • 5939 reflections

  • 306 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.75 e Å−3

  • Δρmin = −0.40 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2726 Friedel pairs

  • Flack parameter: 0.017 (11)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O10i 0.93 1.97 2.832 (4) 153
N1—H1⋯O9i 0.93 2.45 3.056 (3) 123
O11—H11⋯O9i 0.84 2.04 2.840 (3) 159
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The background of this study has been set out in our previous work on the structural chemistry of metal-organic compounds (Shahid, Mazhar, Helliwell et al., 2008). Herein, as a continuation of these studies, the structure of the title compound is described which consists of acetate bridged Cu2(CH3COO)4 units that are connected via another acetate anion at each terminus to form infinite anionic [{Cu2(CH3COO)4}(CH3COO)]n chains along the [100] direction of the crystal. Crystallographically speaking the chain is generated from a glide related copies of the monomer. The connecting acetate is hydrogen bonded to the (diethylammonium)ethanol cation (Fig. 2). The dichloromethane solvate molecule occupies voids in the structure. The O—Cu—Cu angles along the polymeric chain are nearly linear (175.49 (5)°), but individual O—Cu—Cu—O units along the chain are rotated relative to each other. Representing the orientation of Cu2(CH3COO)4 unit by the least squares plane Cu1 Cu2 O1 O2 O5 O6, translation along the chain rotates the orientation by 35.16 (3)°.

In the title compound (Fig.1), the two metal centers are similar; each has a coordination number of six having a coordination geometry close to octahedral, with a CuO5Cu core similar to that of Cu centers in Cu2(OAc)4(H2O)2. The basal planes of Cu(1) and Cu(2) are each composed of an oxygen from each of the four acetate groups (O(1), O(3), O(5), O(8) and O(2), O(4), O(6), O(7) respectively), which link the two copper atoms in the monomer. Coordination by the fifth acetate's O atoms, O(9) and O(10) (from a symmetry generated copy), form one apical bond for Cu(2) and Cu(1) respectively. The octahedral coordination of the copper atoms is completed by the apical Cu(1)—Cu(2) bond of 2.6259 (4) Å. This is significantly shorter than the 2.64 Å as reported for dinuclear copper (II) acetate monohydrate in 1953 (Van Niekerk & Schoening, 1953), but close to the more accurate value obtained in a redetermination by neutron diffraction analysis (2.6143 (17) Å, Brown & Chidambaram, 1973). The Cu—O bond lengths in the basal planes for both the Cu atoms range from 1.949 (2) to 1.985 (2) Å and the average distance is in good agreement with 1.97 Å, as reported for copper acetate (Van Niekerk & Schoening, 1953). The most striking structural difference between the title compound and the dinuclear units in cupric acetate appears to be the weaker apixal bonds Cu—O which are 2.148 (18) and 2.124 (18) Å for Cu(1) and Cu(2), respectively in the title compound and 2.20 Å in the cupric acetate. The distortion is further evident from the slight deviation of trans angles in the basal plane and axial angle from ideal value of 180°. This is in good agreement with the literature (Shahid, Mazhar, Malik et al., 2008); Hamid et al., 2007; Zhang et al., 2004). In the structure, the (diethylamonium)ethanol cations are linked through hydrogen bonds [O(11)—H(11)···O(9)], [N(1)—H(1)···O(9)] and [N(1)—H(1)···O(10)] to the connecting acetate group occupying cis positions at the main polymeric chain (Table 1, Fig. 3).

Related literature top

Shahid, Mazhar, Helliwell et al. (2008) describe the study of dinuclear Cu complexes; Van Niekerk & Schoening (1953) provide X-ray evidence for Cu—Cu bonds in cupric acetate; Brown & Chidambaram (1973) report the redetermination of the structure of cupric acetate by neutron-diffraction; Shahid, Mazhar, Malik et al. (2008), Hamid et al. (2007) and Zhang et al. (2004) describe geometric parameters of organo–copper complexes.

Experimental top

N,N-Diethylaminoethanol (deaeH) (0.27 g, 2.34 mmol) and acetic acid (0.14 g, 2.34 mmol) were added to a stirred suspension of Cu(CH3COO)2.H2O (0.85 g, 4.67 mmol) in 25 ml dichloromethane. After two hours stirring, the mixture was vacuum evaporated to dryness and the solid was redissolved in minimum amount of dichloromethane to give blue block-shaped crystals at room temperature after two weeks.

Refinement top

The non-hydrogen atoms were refined anisotropically. H atoms were included in calculated positions with C—H lengths of 0.95(CH), 0.99(CH2) & 0.98(CH3)Å; Uiso(H) values were fixed at 1.2Ueq(C) except for CH3 where it was 1.5Ueq(C). For N—H and O—H the lengths and Uiso were 0.98Å and 1.2Ueq(N) and 0.84Å and 1.5Ueq(O) respectively.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound (50% probability displacement ellipsoids)
[Figure 2] Fig. 2. Fragment of the chain showing the H-bonding interactions.
[Figure 3] Fig. 3. View down the b axis showing the infinite chains.
catena-Poly[diethyl(2-hydroxyethyl)ammonium [[tetra-µ-acetato-κ8O:O'-dicuprate(II)(CuCu)]-µ-acetato- κ2O:O'] dichloromethane solvate] top
Crystal data top
(C6H16NO)[Cu2(C2H3O2)5]·CH2Cl2Dx = 1.633 Mg m3
Mr = 625.42Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 7814 reflections
a = 17.6366 (11) Åθ = 2.4–28.1°
b = 12.1078 (8) ŵ = 1.94 mm1
c = 11.9148 (7) ÅT = 100 K
V = 2544.3 (3) Å3Plate, turquoise
Z = 40.40 × 0.40 × 0.10 mm
F(000) = 1288
Data collection top
Bruker SMART CCD area-detector
diffractometer
5939 independent reflections
Radiation source: fine-focus sealed tube5693 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 2222
Tmin = 0.657, Tmax = 0.830k = 1615
21202 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0393P)2 + 1.2652P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.013
5939 reflectionsΔρmax = 0.75 e Å3
306 parametersΔρmin = 0.40 e Å3
1 restraintAbsolute structure: Flack (1983), 2726 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.017 (11)
Crystal data top
(C6H16NO)[Cu2(C2H3O2)5]·CH2Cl2V = 2544.3 (3) Å3
Mr = 625.42Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 17.6366 (11) ŵ = 1.94 mm1
b = 12.1078 (8) ÅT = 100 K
c = 11.9148 (7) Å0.40 × 0.40 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
5939 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
5693 reflections with I > 2σ(I)
Tmin = 0.657, Tmax = 0.830Rint = 0.029
21202 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.080Δρmax = 0.75 e Å3
S = 1.08Δρmin = 0.40 e Å3
5939 reflectionsAbsolute structure: Flack (1983), 2726 Friedel pairs
306 parametersAbsolute structure parameter: 0.017 (11)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O101.03029 (10)0.66475 (16)0.5408 (2)0.0152 (4)
C10.75148 (17)0.9544 (3)0.6165 (2)0.0176 (6)
C20.77083 (18)1.0672 (3)0.6609 (3)0.0206 (6)
H2A0.75881.07070.74110.031*
H2B0.74131.12300.62060.031*
H2C0.82501.08130.65000.031*
C30.73249 (17)0.8234 (2)0.3482 (2)0.0166 (6)
C40.73934 (19)0.8662 (3)0.2292 (3)0.0222 (7)
H4A0.78960.84780.19940.033*
H4B0.73270.94650.22890.033*
H4C0.70020.83190.18230.033*
C50.68347 (17)0.5689 (3)0.4849 (3)0.0191 (6)
C60.66262 (19)0.4540 (3)0.4463 (3)0.0283 (8)
H6A0.70850.40870.44140.042*
H6B0.63840.45810.37240.042*
H6C0.62740.42080.50020.042*
C70.71363 (17)0.6985 (3)0.7522 (3)0.0173 (6)
C80.71030 (19)0.6623 (3)0.8732 (3)0.0257 (7)
H8A0.66930.70170.91160.039*
H8B0.75870.67910.91000.039*
H8C0.70080.58260.87670.039*
C90.96959 (15)0.7062 (2)0.5798 (2)0.0133 (6)
C100.97463 (17)0.7894 (3)0.6744 (3)0.0189 (6)
H10A1.01560.76820.72560.028*
H10B0.92650.79090.71540.028*
H10C0.98510.86280.64330.028*
C110.54065 (17)0.9990 (3)0.2860 (3)0.0210 (7)
H11A0.57950.95150.25040.025*
H11B0.51831.04630.22680.025*
C120.57806 (18)1.0711 (3)0.3723 (3)0.0240 (7)
H12A0.59671.02530.43420.036*
H12B0.54121.12460.40120.036*
H12C0.62061.11060.33790.036*
C130.4783 (2)0.8130 (3)0.2850 (3)0.0265 (7)
H13A0.44130.76690.32620.032*
H13B0.52900.77920.29470.032*
C140.4581 (2)0.8124 (4)0.1617 (3)0.0350 (9)
H14A0.49340.85990.12050.052*
H14B0.40630.83990.15190.052*
H14C0.46150.73680.13270.052*
C150.40137 (17)0.9772 (3)0.3296 (3)0.0249 (7)
H15A0.39130.99980.25120.030*
H15B0.36350.92030.34990.030*
C160.39024 (18)1.0753 (3)0.4043 (3)0.0280 (7)
H16A0.42251.13650.37710.034*
H16B0.33681.09960.39910.034*
C170.9547 (2)0.9492 (3)0.4356 (3)0.0292 (8)
H17A0.99910.90180.45200.035*
H17B0.90860.90930.46010.035*
Cl10.96272 (5)1.07456 (9)0.51185 (9)0.0367 (2)
Cl20.94975 (7)0.97421 (9)0.29049 (9)0.0475 (3)
Cu10.647405 (16)0.78765 (2)0.55145 (3)0.01289 (8)
Cu20.791704 (16)0.73425 (3)0.54933 (4)0.01346 (8)
N10.47907 (14)0.9266 (2)0.3355 (2)0.0182 (5)
H10.49050.91790.41120.022*
O10.68332 (11)0.93608 (17)0.59168 (18)0.0168 (4)
O20.80508 (12)0.88517 (18)0.60953 (19)0.0211 (5)
O30.66724 (12)0.82111 (19)0.39116 (18)0.0184 (4)
O40.79321 (12)0.79520 (19)0.39662 (19)0.0194 (5)
O50.62993 (11)0.63224 (17)0.51139 (19)0.0193 (4)
O60.75254 (11)0.59322 (18)0.4873 (2)0.0202 (5)
O70.77446 (12)0.67809 (19)0.70047 (19)0.0212 (5)
O80.65654 (12)0.7454 (2)0.71140 (18)0.0188 (4)
O90.90593 (10)0.67911 (16)0.5416 (2)0.0172 (4)
O110.40773 (14)1.05419 (19)0.5170 (2)0.0306 (6)
H110.39630.98860.53270.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O100.0095 (8)0.0212 (9)0.0148 (10)0.0006 (6)0.0011 (8)0.0015 (10)
C10.0178 (15)0.0243 (16)0.0107 (14)0.0011 (12)0.0035 (11)0.0009 (12)
C20.0197 (15)0.0206 (16)0.0215 (15)0.0048 (12)0.0025 (13)0.0057 (12)
C30.0190 (14)0.0160 (14)0.0148 (14)0.0009 (11)0.0020 (12)0.0026 (11)
C40.0220 (16)0.0293 (17)0.0153 (15)0.0007 (13)0.0025 (12)0.0042 (13)
C50.0186 (15)0.0205 (15)0.0182 (15)0.0010 (12)0.0025 (12)0.0014 (12)
C60.0172 (16)0.0200 (16)0.048 (2)0.0038 (12)0.0046 (15)0.0101 (15)
C70.0172 (15)0.0179 (14)0.0168 (15)0.0019 (11)0.0000 (11)0.0016 (12)
C80.0232 (16)0.0366 (19)0.0173 (16)0.0060 (14)0.0024 (13)0.0091 (14)
C90.0139 (13)0.0139 (13)0.0123 (15)0.0011 (10)0.0003 (10)0.0017 (9)
C100.0144 (14)0.0209 (16)0.0213 (16)0.0000 (11)0.0036 (12)0.0091 (12)
C110.0150 (15)0.0296 (18)0.0185 (16)0.0010 (12)0.0033 (12)0.0075 (13)
C120.0144 (15)0.0294 (17)0.0283 (17)0.0048 (13)0.0006 (13)0.0063 (14)
C130.0315 (19)0.0241 (16)0.0240 (17)0.0013 (14)0.0016 (14)0.0000 (14)
C140.040 (2)0.043 (2)0.0215 (17)0.0088 (17)0.0011 (16)0.0045 (16)
C150.0135 (15)0.0404 (19)0.0208 (16)0.0001 (13)0.0038 (12)0.0141 (14)
C160.0133 (15)0.0298 (17)0.041 (2)0.0028 (13)0.0025 (14)0.0116 (15)
C170.0277 (18)0.036 (2)0.0242 (18)0.0045 (14)0.0010 (15)0.0061 (15)
Cl10.0248 (4)0.0460 (5)0.0393 (5)0.0034 (4)0.0039 (4)0.0083 (4)
Cl20.0826 (8)0.0327 (5)0.0272 (5)0.0082 (5)0.0083 (5)0.0062 (4)
Cu10.00720 (13)0.01831 (15)0.01316 (15)0.00109 (10)0.00003 (17)0.00089 (17)
Cu20.00722 (13)0.01905 (15)0.01411 (15)0.00129 (10)0.00009 (19)0.00129 (18)
N10.0148 (12)0.0255 (14)0.0142 (12)0.0033 (10)0.0022 (10)0.0056 (11)
O10.0117 (10)0.0184 (10)0.0205 (10)0.0008 (8)0.0007 (8)0.0027 (8)
O20.0119 (10)0.0253 (12)0.0260 (12)0.0025 (9)0.0020 (9)0.0077 (10)
O30.0117 (10)0.0290 (12)0.0145 (10)0.0008 (9)0.0004 (8)0.0014 (9)
O40.0127 (10)0.0295 (12)0.0161 (11)0.0003 (8)0.0025 (8)0.0018 (9)
O50.0123 (10)0.0200 (10)0.0255 (11)0.0005 (8)0.0006 (8)0.0045 (8)
O60.0103 (10)0.0207 (11)0.0295 (13)0.0016 (8)0.0002 (9)0.0022 (9)
O70.0138 (10)0.0317 (12)0.0183 (11)0.0069 (9)0.0001 (9)0.0054 (9)
O80.0153 (10)0.0273 (12)0.0137 (10)0.0043 (9)0.0023 (8)0.0023 (9)
O90.0083 (8)0.0220 (9)0.0213 (11)0.0002 (7)0.0008 (10)0.0075 (10)
O110.0310 (13)0.0231 (11)0.0378 (15)0.0031 (10)0.0034 (11)0.0001 (10)
Geometric parameters (Å, º) top
O10—C91.271 (3)C12—H12A0.9800
O10—Cu1i2.1482 (18)C12—H12B0.9800
C1—O11.258 (4)C12—H12C0.9800
C1—O21.266 (4)C13—N11.500 (4)
C1—C21.504 (4)C13—C141.512 (5)
C2—H2A0.9800C13—H13A0.9900
C2—H2B0.9800C13—H13B0.9900
C2—H2C0.9800C14—H14A0.9800
C3—O31.260 (4)C14—H14B0.9800
C3—O41.263 (4)C14—H14C0.9800
C3—C41.514 (4)C15—C161.496 (5)
C4—H4A0.9800C15—N11.503 (4)
C4—H4B0.9800C15—H15A0.9900
C4—H4C0.9800C15—H15B0.9900
C5—O61.254 (4)C16—O111.400 (4)
C5—O51.257 (4)C16—H16A0.9900
C5—C61.510 (4)C16—H16B0.9900
C6—H6A0.9800C17—Cl21.758 (4)
C6—H6B0.9800C17—Cl11.775 (4)
C6—H6C0.9800C17—H17A0.9900
C7—O81.254 (4)C17—H17B0.9900
C7—O71.262 (4)Cu1—O11.965 (2)
C7—C81.508 (4)Cu1—O51.966 (2)
C8—H8A0.9800Cu1—O81.980 (2)
C8—H8B0.9800Cu1—O31.983 (2)
C8—H8C0.9800Cu1—O10ii2.1482 (18)
C9—O91.255 (3)Cu1—Cu22.6259 (4)
C9—C101.514 (4)Cu2—O71.949 (2)
C10—H10A0.9800Cu2—O41.964 (2)
C10—H10B0.9800Cu2—O21.977 (2)
C10—H10C0.9800Cu2—O61.985 (2)
C11—C121.502 (5)Cu2—O92.1243 (18)
C11—N11.515 (4)N1—H10.9300
C11—H11A0.9900O11—H110.8400
C11—H11B0.9900
C9—O10—Cu1i133.03 (19)C13—C14—H14C109.5
O1—C1—O2125.5 (3)H14A—C14—H14C109.5
O1—C1—C2117.4 (3)H14B—C14—H14C109.5
O2—C1—C2117.1 (3)C16—C15—N1114.6 (3)
C1—C2—H2A109.5C16—C15—H15A108.6
C1—C2—H2B109.5N1—C15—H15A108.6
H2A—C2—H2B109.5C16—C15—H15B108.6
C1—C2—H2C109.5N1—C15—H15B108.6
H2A—C2—H2C109.5H15A—C15—H15B107.6
H2B—C2—H2C109.5O11—C16—C15113.4 (3)
O3—C3—O4125.6 (3)O11—C16—H16A108.9
O3—C3—C4117.4 (3)C15—C16—H16A108.9
O4—C3—C4116.9 (3)O11—C16—H16B108.9
C3—C4—H4A109.5C15—C16—H16B108.9
C3—C4—H4B109.5H16A—C16—H16B107.7
H4A—C4—H4B109.5Cl2—C17—Cl1111.1 (2)
C3—C4—H4C109.5Cl2—C17—H17A109.4
H4A—C4—H4C109.5Cl1—C17—H17A109.4
H4B—C4—H4C109.5Cl2—C17—H17B109.4
O6—C5—O5125.5 (3)Cl1—C17—H17B109.4
O6—C5—C6117.4 (3)H17A—C17—H17B108.0
O5—C5—C6117.1 (3)O1—Cu1—O5170.19 (8)
C5—C6—H6A109.5O1—Cu1—O888.59 (10)
C5—C6—H6B109.5O5—Cu1—O889.95 (10)
H6A—C6—H6B109.5O1—Cu1—O389.50 (9)
C5—C6—H6C109.5O5—Cu1—O389.39 (10)
H6A—C6—H6C109.5O8—Cu1—O3164.87 (9)
H6B—C6—H6C109.5O1—Cu1—O10ii94.53 (8)
O8—C7—O7125.6 (3)O5—Cu1—O10ii95.26 (8)
O8—C7—C8118.1 (3)O8—Cu1—O10ii101.81 (9)
O7—C7—C8116.3 (3)O3—Cu1—O10ii93.31 (9)
C7—C8—H8A109.5O1—Cu1—Cu285.13 (6)
C7—C8—H8B109.5O5—Cu1—Cu285.06 (6)
H8A—C8—H8B109.5O8—Cu1—Cu282.34 (6)
C7—C8—H8C109.5O3—Cu1—Cu282.54 (6)
H8A—C8—H8C109.5O10ii—Cu1—Cu2175.83 (7)
H8B—C8—H8C109.5O7—Cu2—O4171.68 (9)
O9—C9—O10121.2 (3)O7—Cu2—O290.33 (10)
O9—C9—C10119.7 (2)O4—Cu2—O289.27 (10)
O10—C9—C10119.1 (2)O7—Cu2—O689.42 (10)
C9—C10—H10A109.5O4—Cu2—O689.01 (10)
C9—C10—H10B109.5O2—Cu2—O6166.35 (9)
H10A—C10—H10B109.5O7—Cu2—O994.49 (9)
C9—C10—H10C109.5O4—Cu2—O993.75 (9)
H10A—C10—H10C109.5O2—Cu2—O9101.13 (8)
H10B—C10—H10C109.5O6—Cu2—O992.50 (8)
C12—C11—N1112.6 (3)O7—Cu2—Cu185.74 (6)
C12—C11—H11A109.1O4—Cu2—Cu185.95 (6)
N1—C11—H11A109.1O2—Cu2—Cu183.37 (6)
C12—C11—H11B109.1O6—Cu2—Cu183.00 (6)
N1—C11—H11B109.1O9—Cu2—Cu1175.49 (5)
H11A—C11—H11B107.8C13—N1—C15110.3 (3)
C11—C12—H12A109.5C13—N1—C11112.4 (3)
C11—C12—H12B109.5C15—N1—C11113.5 (3)
H12A—C12—H12B109.5C13—N1—H1106.7
C11—C12—H12C109.5C15—N1—H1106.7
H12A—C12—H12C109.5C11—N1—H1106.7
H12B—C12—H12C109.5C1—O1—Cu1121.79 (19)
N1—C13—C14113.4 (3)C1—O2—Cu2123.1 (2)
N1—C13—H13A108.9C3—O3—Cu1123.84 (19)
C14—C13—H13A108.9C3—O4—Cu2120.88 (19)
N1—C13—H13B108.9C5—O5—Cu1121.84 (19)
C14—C13—H13B108.9C5—O6—Cu2123.3 (2)
H13A—C13—H13B107.7C7—O7—Cu2121.1 (2)
C13—C14—H14A109.5C7—O8—Cu1123.7 (2)
C13—C14—H14B109.5C9—O9—Cu2138.64 (19)
H14A—C14—H14B109.5C16—O11—H11109.5
Cu1i—O10—C9—O9163.2 (2)O8—Cu1—O3—C37.4 (5)
Cu1i—O10—C9—C1017.2 (4)O10ii—Cu1—O3—C3169.8 (2)
N1—C15—C16—O1154.5 (4)Cu2—Cu1—O3—C39.9 (2)
O1—Cu1—Cu2—O797.97 (10)O3—C3—O4—Cu23.4 (4)
O5—Cu1—Cu2—O781.87 (10)C4—C3—O4—Cu2178.2 (2)
O8—Cu1—Cu2—O78.74 (10)O2—Cu2—O4—C391.6 (2)
O3—Cu1—Cu2—O7171.90 (10)O6—Cu2—O4—C374.9 (2)
O1—Cu1—Cu2—O482.60 (9)O9—Cu2—O4—C3167.3 (2)
O5—Cu1—Cu2—O497.56 (10)Cu1—Cu2—O4—C38.2 (2)
O8—Cu1—Cu2—O4171.83 (10)O6—C5—O5—Cu14.7 (4)
O3—Cu1—Cu2—O47.53 (9)C6—C5—O5—Cu1175.0 (2)
O1—Cu1—Cu2—O27.13 (9)O8—Cu1—O5—C591.6 (2)
O5—Cu1—Cu2—O2172.71 (10)O3—Cu1—O5—C573.3 (2)
O8—Cu1—Cu2—O282.10 (10)O10ii—Cu1—O5—C5166.5 (2)
O3—Cu1—Cu2—O297.26 (10)Cu2—Cu1—O5—C59.3 (2)
O1—Cu1—Cu2—O6172.10 (10)O5—C5—O6—Cu26.5 (4)
O5—Cu1—Cu2—O68.06 (9)C6—C5—O6—Cu2173.8 (2)
O8—Cu1—Cu2—O698.67 (10)O7—Cu2—O6—C575.7 (2)
O3—Cu1—Cu2—O681.97 (10)O4—Cu2—O6—C596.2 (2)
C14—C13—N1—C1562.7 (4)O2—Cu2—O6—C513.3 (6)
C14—C13—N1—C1165.1 (4)O9—Cu2—O6—C5170.1 (2)
C16—C15—N1—C13163.9 (3)Cu1—Cu2—O6—C510.1 (2)
C16—C15—N1—C1168.9 (3)O8—C7—O7—Cu27.2 (4)
C12—C11—N1—C13141.1 (3)C8—C7—O7—Cu2173.0 (2)
C12—C11—N1—C1592.8 (3)O2—Cu2—O7—C772.4 (2)
O2—C1—O1—Cu16.5 (4)O6—Cu2—O7—C794.0 (2)
C2—C1—O1—Cu1171.9 (2)O9—Cu2—O7—C7173.6 (2)
O8—Cu1—O1—C173.2 (2)Cu1—Cu2—O7—C711.0 (2)
O3—Cu1—O1—C191.8 (2)O7—C7—O8—Cu14.9 (5)
O10ii—Cu1—O1—C1174.9 (2)C8—C7—O8—Cu1174.9 (2)
Cu2—Cu1—O1—C19.2 (2)O1—Cu1—O8—C795.1 (3)
O1—C1—O2—Cu23.4 (4)O5—Cu1—O8—C775.2 (3)
C2—C1—O2—Cu2178.2 (2)O3—Cu1—O8—C712.3 (6)
O7—Cu2—O2—C193.5 (2)O10ii—Cu1—O8—C7170.5 (2)
O4—Cu2—O2—C178.2 (2)Cu2—Cu1—O8—C79.9 (2)
O6—Cu2—O2—C14.6 (6)O10—C9—O9—Cu2166.8 (2)
O9—Cu2—O2—C1171.9 (2)C10—C9—O9—Cu213.5 (5)
Cu1—Cu2—O2—C17.8 (2)O7—Cu2—O9—C975.7 (3)
O4—C3—O3—Cu17.0 (4)O4—Cu2—O9—C9105.5 (3)
C4—C3—O3—Cu1171.4 (2)O2—Cu2—O9—C915.5 (3)
O1—Cu1—O3—C375.3 (2)O6—Cu2—O9—C9165.4 (3)
O5—Cu1—O3—C394.9 (2)
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x1/2, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10ii0.931.972.832 (4)153
N1—H1···O9ii0.932.453.056 (3)123
O11—H11···O9ii0.842.042.840 (3)159
Symmetry code: (ii) x1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formula(C6H16NO)[Cu2(C2H3O2)5]·CH2Cl2
Mr625.42
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)100
a, b, c (Å)17.6366 (11), 12.1078 (8), 11.9148 (7)
V3)2544.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.94
Crystal size (mm)0.40 × 0.40 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.657, 0.830
No. of measured, independent and
observed [I > 2σ(I)] reflections
21202, 5939, 5693
Rint0.029
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.080, 1.08
No. of reflections5939
No. of parameters306
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.75, 0.40
Absolute structureFlack (1983), 2726 Friedel pairs
Absolute structure parameter0.017 (11)

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10i0.931.972.832 (4)153.4
N1—H1···O9i0.932.453.056 (3)122.5
O11—H11···O9i0.842.042.840 (3)158.8
Symmetry code: (i) x1/2, y+3/2, z.
 

Acknowledgements

MS is grateful to the Higher Education Commission of Pakistan and the Pakistan Science Foundation for financial support via their PhD program.

References

First citationBrown, G. M. & Chidambaram, R. (1973). Acta Cryst. B29, 2393–2403.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationBruker (2001). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHamid, M., Tahir, A. A., Mazhar, M., Zeller, M. & Hunter, A. D. (2007). Inorg. Chem. 46, 4120–4127.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationShahid, M., Mazhar, M., Helliwell, M., Akhtar, J. & Ahmad, K. (2008). Acta Cryst. E64, m1139–m1140.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShahid, M., Mazhar, M., Malik, M. A., O'Brien, P. & Raftery, J. (2008). Polyhedron, 27, 3337–3342.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVan Niekerk, J. N. & Schoening, F. R. L. (1953). Nature (London), 171, 36–37.  CrossRef CAS Web of Science Google Scholar
First citationZhang, Y.-L., Chen, S.-W., Liu, W.-S. & Wang, D.-Q. (2004). Acta Cryst. E60, m196–m197.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages m163-m164
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds