organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages o385-o386

5,11,17,23-Tetra-tert-butyl-25,26,27,28-tetra­kis[2-(2-chloro­eth­oxy)eth­­oxy]-2,8,14,20-tetra­sulfonyl­calix[4]arene

aDepartment of Chemistry, Shandong Normal University, Jinan 250014, People's Republic of China
*Correspondence e-mail: chdsguo@sdnu.edu.cn

(Received 5 January 2009; accepted 21 January 2009; online 28 January 2009)

Mol­ecules of the title compound, C56H76Cl4O16S4, have crystallographic C2 symmetry and adopt a 1,3-alternate conformation where the four –OCH2CH2OCH2CH2Cl groups are located alternately above and below the virtual plane (R) defined by the four bridging S atoms. The dihedral angles between the plane (R) and the phenolic rings are 72.85 (7) and 74.57 (7)°. An unusual 24-membered macrocyclic ring is formed in the crystal structure with an array of eight intra­molecular C—H⋯O hydrogen bonds between the ether arm H atoms and the sulfonyl O atoms. In the supra­molecular structure, the mol­ecular components are linked into infinite zigzag one-dimensional chains by a combination of four inter­molecular C—H⋯O hydrogen bonds, forming R22(13), R22(16), R22(21) and R22(26) ring motifs. These chains are augmented into a wave-like two-dimensional network by weak C⋯O inter­actions. One tert-butyl group shows rotational disorder, and one CH2CH2Cl group is disordered over two orientations; the site-occupation factors are 0.756 (6) and 0.244 (6) for the two tert-butyl groups, and 0.808 (3) and 0.192 (3) for the two CH2CH2Cl units.

Related literature

For general background on the chemistry of thia­calix[4]arene derivatives, see: Shokova & Kovalev (2003[Shokova, E. A. & Kovalev, V. V. (2003). Russ. J. Org. Chem. 39, 1-28.]); Lhoták (2004[Lhoták, P. (2004). Eur. J. Org. Chem. pp. 1675-1692.]); Morohashi et al. (2006[Morohashi, N., Narumi, F., Iki, N., Hattori, T. & Miyano, S. (2006). Chem. Rev. 106, 5291-5316.]). For related crystal structures, see: Mislin et al. (1998[Mislin, G., Graf, E., Hosseini, M. W., De Cian, A. & Fischer, J. (1998). Chem. Commun. pp. 1345-1346.], 1999[Mislin, G., Graf, E., Hosseini, M. W., De Cian, A. & Fischer, J. (1999). Tetrahedron Lett. 40, 1129-1132.]); Akdas et al. (1999[Akdas, H., Mislin, G., Graf, E., Hosseini, M. W., De Cian, A. & Fischer, J. (1999). Tetrahedron Lett. 40, 2113-2116.], 2000[Akdas, H., Jaunky, W., Graf, E., Hosseini, M. W., Planeix, J.-M., De Cian, A. & Fischer, J. (2000). Tetrahedron Lett. 41, 3601-3606.]); Lhoták et al. (2002[Lhoták, P., Svoboda, J., Stibora, I. & Sykorab, J. (2002). Tetrahedron Lett. 43, 7413-7417.]); Horiuchi et al. (2007[Horiuchi, T., Iki, N., Hoshino, H., Kabutob, C. & Miyanoa, S. (2007). Tetrahedron Lett. 48, 821-825.]); Xu et al. (2008[Xu, W.-N., Yuan, J.-M., Liu, Y., Ma, J.-P. & Guo, D.-S. (2008). Acta Cryst. C64, o349-o352.]). For the synthesis of sulfonyl­calix[4]arene derivatives, see: Iki et al. (1998[Iki, N., Kumagai, H., Morohashi, N., Ejima, K., Hasegawa, M., Miyanari, S. & Miyano, S. (1998). Tetrahedron Lett. 39, 7559-7562.]); Guo et al. (2007[Guo, D.-S., Liu, Z.-P., Ma, J.-P. & Huang, R.-Q. (2007). Tetrahedron Lett. 48, 1221-1224.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For C⋯O short contacts, see: Manoj et al. (2007[Manoj, K., Gonnade, R. G., Bhadbhade, M. M. & Shashidhar, M. S. (2007). Acta Cryst. C63, o555-o558.]). For atomic radii, see: Bondi (1964[Bondi, A. J. (1964). Chem. Phys. 68, 441-452.]).

[Scheme 1]

Experimental

Crystal data
  • C56H76Cl4O16S4

  • Mr = 1275.21

  • Monoclinic, C 2/c

  • a = 22.496 (2) Å

  • b = 16.0372 (15) Å

  • c = 19.8646 (19) Å

  • β = 120.355 (1)°

  • V = 6184.1 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 173 (2) K

  • 0.41 × 0.28 × 0.24 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.856, Tmax = 0.912

  • 15381 measured reflections

  • 5442 independent reflections

  • 4709 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.166

  • S = 1.09

  • 5442 reflections

  • 402 parameters

  • 27 restraints

  • H-atom parameters constrained

  • Δρmax = 1.30 e Å−3

  • Δρmin = −0.80 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯O1i 0.99 2.48 3.232 (4) 133
C11—H11B⋯O3 0.99 2.51 3.103 (4) 118
C20—H20B⋯O1ii 0.98 2.57 3.377 (5) 139
C21—H21C⋯O8iii 0.98 2.60 3.462 (6) 146
C25—H25A⋯O2 0.99 2.58 3.099 (4) 113
C25—H25B⋯O4 0.99 2.45 3.217 (4) 134
Symmetry codes: (i) [-x+1, y, -z+{\script{3\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) [x, -y+1, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Thiacalix[4]arenes have attracted considerable interest in recent years as useful scaffolds for highly organized ionophores (Shokova & Kovalev, 2003; Lhoták, 2004; Morohashi et al., 2006; Guo et al., 2007). Compared with classical calix[4]arenes, the presence of four bridging S atoms results in a differing complexation ability, and a diverse cavity and conformational behavior. Moreover, by virtue of the sulfide function, thiacalix[4]arenes can undergo unique transformations that are not applicable to the classical calix[4]arenes, the most important of which is oxidation to sulfinyl and sulfonyl functions. All four sulfide groups of thiacalix[4]arenes, for instance, can be easily converted to sulfones by a small excess amount of an oxidant such as hydrogen peroxide or sodium perborate in an organic acid solvent (Iki et al., 1998; Mislin et al., 1998). A number of crystal stuctures of sulfonyl derivatives of thiacalix[4]arenes (Mislin et al., 1998; Akdas et al., 2000; Lhoták et al., 2002; Horiuchi et al., 2007) have been described. We now present the crystal structure of a new sulfonyl derivative thiacalix[4]arene, 5,11,17,23-tetra-tert-butyl-25,26,27,28-tetrakis[2-(2-chloroethoxy)ethoxy]-2,8,14,20-tetrasulfonylcalix[4]arene.

The title sulfonylcalix[4]arene derivative is shown in Fig. 1. It was found to adopt a 1,3-alternate conformation with O atoms of the sulfones pointing outward. The main geometric parameters of the title molecule are comparable to those reported for the similar structures (Mislin et al., 1998; Akdas et al., 2000) and most bond lengths and angles are consistent with the values presented for 1,3-alternate-5,11,17,23-tetra-tert-butyl-25,26,27,28-tetrakismethyl-2,8,14,20-tetrasulfonylcalix[4]arene (Mislin et al., 1998). The sulfonylcalix[4]arene shape of the title compound can be characterized by the values of the dihedral angles between the phenolic rings and the plane (R) defined by the four bridging S atoms. The dihedral angles between the plane (R) and the aromatic rings are 74.57 (7) and 72.85 (7)°, respectively. Actually, the title molecule has a pseudo 4-fold rotation-reflection (S4) axis. Consistent with this symmetry, the adjacent phenyl rings lie above and below the plane (R), and interplanar angles of the opposing aromatic rings are 34.31 (8) and 38.86 (14)°. The pseudo S4 symmetry also reasonably depicts the almost parallel orientation of the four ether arms above and below the plane (R). The separations between diametrically located ethereal O5 and O5i, O7 and O7i [Symmetry code: (i) -x + 1, y, -z + 3/2] are 4.660 (4) and 4.347 (4) Å, respectively. In the crystal packing, 1,3-alternate molecules are packed along the b axis, forming a type of a beautiful nanotubular array extending in the b direction (Fig. 3). Such a packing was found in the cases of several 1,3-alternate thiaclix[4]arene derivatives (Akdas et al., 1999, 2000; Guo et al., 2007; Xu et al., 2008).

Although no conventional hydrogen bonds are found, various intra- and intermolecular C—H···O hydrogen bonds exist in the crystal structure (Table 1). Interestingly, an unusual 24-membered macrocyclic ring is formed by an array of eight intramolecular C—H···O hydrogen bonds between the sulfonyl O atoms and the ether arm protons closer the phenolic rings, which stabilize the 1,3-alternate conformation (Fig. 4). In this macrocyclic ring, both O atoms of each sulfonyl group act as a hydrogen-bond acceptor, via H, to two C atoms belonging to both adjacent ether arms, respectively. A similar hydrogen bonding array was observed in the structure of the related compound p-tert-butyltetrasulfinylcalix[4]arene, however, it is formed with only four intramolecular O—H···O hydrogen bonds between the OH and SO groups (Mislin, et al., 1999). On the other hand, in the supramolecular structure, infinite zigzag one-dimensional chains are generated by a combination of four intermolecular C—H···O hydrogen bonds, locally forming different ring motifs: two R22(13), one R22(16), two R22(21), and one R22(26) (Bernstein et al., 1995), and making a distorted capsule at each link in the chain (Fig. 4). These motifs arise from atoms C20 and C21 at (x, y, z) and (-x + 1, -y + 1, -z + 1) in neighboring molecules that act as hydrogen-bond donors, respectively, via H20B, to atoms O1 at (-x + 1, -y + 1, -z + 1) and (x, y, z), via H21C, to atoms O8 at (x, -y + 1, z - 1/2) and (-x + 1, y, -z + 3/2). The zigzag chains are linked into wave-like two-dimensional networks by the C···O weak interactions (Manoj et al., 2007) between C10iv [symmetry code: (iv) – x + 3/2, – y + 3/2, –z + 2] and O3. The C10iv···O3 distance is 3.143 (4) Å, less than the sum of the van der Waals radii for C and O atoms (C = 1.70 Å, O = 1.52 Å; Bondi, 1964).

Related literature top

For general background on the chemistry of thiacalix[4]arene derivatives, see: Shokova & Kovalev (2003); Lhoták (2004); Morohashi et al. (2006). For related crystal structures, see: Mislin et al. (1998, 1999); Akdas et al. (1999, 2000); Lhoták et al. (2002); Horiuchi et al. (2007); Xu et al. (2008). For the synthesis of sulfonylcalix[4]arene derivatives, see: Iki et al. (1998); Guo et al. (2007). For hydrogen-bond motifs, see: Bernstein et al. (1995). For C···O short contacts, see: Manoj et al. (2007). For atomic radii, see: Bondi (1964).

Experimental top

For the synthesis of the title compound, to a solution of 1,3-alternate-5,11,17,23-tetra-tert-butyl-25,26,27,28-tetrakis[2-(2-chloroethoxy)ethoxy]thiacalix[4]arene, prepared according to the published precedure (Guo et al., 2007), (0.200 g, 0.174 mmol) in CHCl3 (10 ml) and CF3CO2H (1.50 ml) was added 30% H2O2 (0.90 ml, 7.840 mmol). The resulting mixture was stirred at 298 K for 50 h, and neutralized with a saturated aqueous solution of NaHCO3. The organic layer was separated and washed with brine, and dried over anhydrous MgSO4. Removal of the solvent under reduced pressure gave the title compound as a white solid (yield 95%) by recrystallization from CH2Cl2/CH3OH. 1H NMR (300 MHz, CDCl3): δ 8.38 (s, 8H), 4.58 (t, 8H, J = 5.67 Hz), 3.84 (t, 16H, J = 5.98 Hz), 3.71 (t, 8H, J = 5.83 Hz), 1.40 (s, 36H). IR (KBr pellets, cm-1): 1304, 1137. Single crystals of the title molecule suitable for X-ray diffraction analysis were obtained by slow evaporation of a solution in CH2Cl2 and CH3OH at 273 K.

Refinement top

All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms attached to refined atoms were placed in geometrically idealized positions and refined using a riding model, with C—H = 0.93, 0.98 and 0.97 Å for aromatic, methylene and methyl H, respectively, and Uiso(H) = 1.5Ueq(C) for methyl H, and Uiso(H) = 1.2Ueq(C) for all other H atoms. In the title molecule, one of the symmetry-independent tert-butyl groups (C1—C4) shows rotational disorder, with refined site occupation factors of 0.756 (6):0.244 (6). The C—C bond lengths involving the disordered C atoms were restrained to be the same within a standard deviation of 0.02 Å, C—C distances refined to values between 1.472 and 1.5559 Å. The ADPs of C1', C2' and C3' were restrained to be isotropic within a standard deviation of 0.01 Å2. The atoms C27, C28 and Cl1 are disordered over two orientations, with refined site occupation factors of 0.808 (3):0.192 (3). The C—C, C—O and C—Cl bonds were restrained to be each the same within a standard deviation of 0.02 Å and refined to 1.453–1.461, 1.425–1.436 and 1.790–1.794 Å, respectively. The atoms C27', C28' and Cl1' were constrained to have the same ADPs as the atoms C27, C28 and Cl1.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level for non-H atoms. The disordered atoms are shown, but hydrogen atoms are omitted for clarity. [Symmetry code: (i) -x + 1, y, -z + 3/2].
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the b axis. Hydrogen atoms and the minor disordered units are omitted for clarity.
[Figure 3] Fig. 3. The array of intramolecular hydrogen-bonded rings of the title molecule viewed approximatively along the c axis. The minor disordered units and some hydrogen atoms are omitted for clarity. [Symmetry code: (i) -x + 1, y, -z + 3/2].
[Figure 4] Fig. 4. The hydrogen-bonded zigzag one-dimensional chains of the title molecule with R22(13), R22(16), R22(21) and R22(26) motifs. The minor disordered moieties and some hydrogen atoms are omitted for clarity. [Symmetry codes: (i) -x + 1, y, -z + 3/2; (ii) -x + 1, -y + 1, -z + 1; (iii) x, -y + 1, z - 1/2].
5,11,17,23-Tetra-tert-butyl-25,26,27,28-tetrakis[2-(2-chloroethoxy)ethoxy]-2,8,14,20-tetrasulfonylcalix[4]arene top
Crystal data top
C56H76Cl4O16S4F(000) = 2688
Mr = 1275.21Dx = 1.370 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 22.496 (2) ÅCell parameters from 7613 reflections
b = 16.0372 (15) Åθ = 2.2–28.1°
c = 19.8646 (19) ŵ = 0.39 mm1
β = 120.355 (1)°T = 173 K
V = 6184.1 (10) Å3Block, colourless
Z = 40.41 × 0.28 × 0.24 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
5442 independent reflections
Radiation source: fine-focus sealed tube4709 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 2626
Tmin = 0.856, Tmax = 0.912k = 1619
15381 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.166H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0863P)2 + 20.079P]
where P = (Fo2 + 2Fc2)/3
5442 reflections(Δ/σ)max = 0.001
402 parametersΔρmax = 1.30 e Å3
27 restraintsΔρmin = 0.80 e Å3
Crystal data top
C56H76Cl4O16S4V = 6184.1 (10) Å3
Mr = 1275.21Z = 4
Monoclinic, C2/cMo Kα radiation
a = 22.496 (2) ŵ = 0.39 mm1
b = 16.0372 (15) ÅT = 173 K
c = 19.8646 (19) Å0.41 × 0.28 × 0.24 mm
β = 120.355 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5442 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
4709 reflections with I > 2σ(I)
Tmin = 0.856, Tmax = 0.912Rint = 0.022
15381 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05827 restraints
wR(F2) = 0.166H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0863P)2 + 20.079P]
where P = (Fo2 + 2Fc2)/3
5442 reflectionsΔρmax = 1.30 e Å3
402 parametersΔρmin = 0.80 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C50.63360 (14)0.93392 (17)0.93979 (16)0.0206 (6)
C60.58157 (15)0.89626 (18)0.94656 (16)0.0216 (6)
H60.55740.92830.96530.026*
C70.56341 (14)0.81334 (18)0.92702 (15)0.0206 (6)
C80.59817 (14)0.76368 (17)0.90004 (15)0.0198 (6)
C90.65037 (14)0.80187 (17)0.89320 (15)0.0200 (6)
C100.66757 (14)0.88537 (17)0.91240 (16)0.0202 (6)
H100.70330.90930.90660.024*
C110.60405 (18)0.61541 (18)0.92839 (18)0.0298 (7)
H11A0.57870.61060.95700.036*
H11B0.65370.62290.96650.036*
C120.5924 (2)0.5401 (2)0.8784 (2)0.0429 (9)
H12A0.54600.54280.83130.051*
H12B0.62690.53860.86150.051*
C130.5939 (3)0.3938 (2)0.8805 (3)0.0513 (10)
H13A0.63680.38660.87870.062*
H13B0.55500.39820.82620.062*
C140.5834 (2)0.3196 (2)0.9195 (3)0.0529 (10)
H14A0.57300.27010.88550.063*
H14B0.54320.32990.92600.063*
C150.64816 (14)0.70631 (17)0.77013 (16)0.0191 (6)
C160.65912 (14)0.62388 (18)0.75768 (17)0.0220 (6)
H160.69220.59190.80060.026*
C170.62342 (15)0.58698 (18)0.68504 (17)0.0242 (6)
C220.57340 (15)0.63497 (18)0.62448 (17)0.0245 (6)
H220.54660.61100.57410.029*
C230.56198 (15)0.71742 (18)0.63650 (17)0.0217 (6)
C240.60033 (14)0.75573 (17)0.70897 (16)0.0196 (6)
Cl20.65663 (6)0.29815 (6)1.01204 (7)0.0613 (3)
O10.46758 (12)0.71591 (14)0.49020 (12)0.0331 (5)
O20.53371 (11)0.84535 (14)0.54324 (13)0.0309 (5)
O30.72979 (11)0.67345 (13)0.91607 (12)0.0303 (5)
O40.75042 (11)0.80237 (13)0.86416 (13)0.0295 (5)
O70.57763 (11)0.68433 (12)0.87321 (11)0.0252 (5)
O80.59813 (14)0.46765 (14)0.92163 (14)0.0395 (6)
S10.50048 (4)0.77435 (5)0.55345 (4)0.0239 (2)
S20.70254 (4)0.74481 (4)0.86614 (4)0.0216 (2)
C10.7049 (3)1.0578 (3)0.9434 (4)0.0496 (16)0.756 (6)
H1A0.74841.02760.97450.074*0.756 (6)
H1B0.71241.11740.95550.074*0.756 (6)
H1C0.68821.04920.88780.074*0.756 (6)
C20.5861 (2)1.0799 (3)0.9178 (3)0.0416 (13)0.756 (6)
H2A0.59751.13850.93260.062*0.756 (6)
H2B0.55181.06140.93110.062*0.756 (6)
H2C0.56721.07390.86150.062*0.756 (6)
C30.6783 (3)1.0349 (3)1.0494 (3)0.0467 (14)0.756 (6)
H3A0.72011.00131.07920.070*0.756 (6)
H3B0.64281.01561.06040.070*0.756 (6)
H3C0.68881.09361.06440.070*0.756 (6)
C40.65239 (16)1.02564 (18)0.96255 (18)0.0263 (7)0.756 (6)
C1'0.6356 (10)1.0747 (10)0.8892 (9)0.056 (5)0.244 (6)
H1E0.58721.06580.84940.084*0.244 (6)
H1F0.66521.05570.86920.084*0.244 (6)
H1D0.64351.13430.90180.084*0.244 (6)
C2'0.7322 (6)1.0296 (9)1.0160 (9)0.039 (4)0.244 (6)
H2D0.74611.08681.03460.059*0.244 (6)
H2F0.75401.01220.98620.059*0.244 (6)
H2E0.74670.99221.06060.059*0.244 (6)
C3'0.6215 (9)1.0616 (10)1.0060 (11)0.052 (5)0.244 (6)
H3E0.57111.05900.97380.078*0.244 (6)
H3D0.63601.11981.01890.078*0.244 (6)
H3F0.63671.02981.05410.078*0.244 (6)
C4'0.65239 (16)1.02564 (18)0.96255 (18)0.0263 (7)0.244 (6)
C180.63795 (17)0.49736 (19)0.66984 (19)0.0303 (7)
C190.6904 (2)0.4528 (2)0.7460 (2)0.0483 (10)
H19A0.67210.45010.78140.072*
H19B0.73390.48390.77090.072*
H19C0.69850.39620.73390.072*
C200.5723 (3)0.4473 (3)0.6328 (3)0.0730 (10)
H20A0.55410.44470.66830.110*
H20B0.58170.39070.62200.110*
H20C0.53830.47390.58380.110*
C210.6712 (3)0.5009 (3)0.6204 (3)0.0730 (10)
H21A0.68290.44430.61250.110*
H21B0.71320.53470.64680.110*
H21C0.63910.52590.56970.110*
O50.58700 (10)0.83690 (12)0.71892 (11)0.0222 (4)
C250.63180 (16)0.89918 (18)0.71453 (19)0.0285 (7)
H25A0.64230.88470.67320.034*
H25B0.67560.90330.76490.034*
C260.59268 (19)0.9801 (2)0.6958 (2)0.0406 (8)
H26A0.55340.97930.64160.049*
H26B0.57450.98880.73150.049*
O60.63887 (13)1.04475 (14)0.70517 (16)0.0440 (6)0.808 (3)
C270.6023 (3)1.1211 (3)0.6756 (3)0.0425 (13)0.808 (3)
H27A0.57741.13520.70330.051*0.808 (3)
H27B0.56811.11500.61940.051*0.808 (3)
C280.6508 (5)1.1877 (6)0.6868 (4)0.0571 (18)0.808 (3)
H28A0.62451.23870.66060.069*0.808 (3)
H28B0.67701.17130.66110.069*0.808 (3)
Cl10.71051 (11)1.21148 (10)0.78691 (10)0.0777 (6)0.808 (3)
O6'0.63887 (13)1.04475 (14)0.70517 (16)0.0440 (6)0.192 (3)
C27'0.6214 (13)1.1202 (16)0.6602 (17)0.0425 (13)0.192 (3)
H27C0.57211.13290.63940.051*0.192 (3)
H27D0.62851.11200.61540.051*0.192 (3)
C28'0.663 (3)1.190 (3)0.706 (2)0.0571 (18)0.192 (3)
H28C0.64641.23950.67120.069*0.192 (3)
H28D0.71031.17930.71810.069*0.192 (3)
Cl1'0.6696 (5)1.2238 (4)0.7962 (5)0.0777 (6)0.192 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C50.0221 (14)0.0180 (14)0.0176 (14)0.0005 (11)0.0071 (12)0.0007 (11)
C60.0251 (15)0.0190 (14)0.0192 (14)0.0007 (11)0.0100 (12)0.0019 (11)
C70.0229 (14)0.0199 (14)0.0151 (13)0.0034 (11)0.0066 (12)0.0010 (11)
C80.0243 (15)0.0152 (14)0.0126 (13)0.0018 (11)0.0039 (11)0.0009 (10)
C90.0217 (14)0.0194 (14)0.0138 (13)0.0031 (11)0.0051 (11)0.0002 (10)
C100.0213 (14)0.0158 (14)0.0194 (13)0.0008 (11)0.0072 (11)0.0001 (11)
C110.0421 (19)0.0162 (15)0.0281 (16)0.0005 (13)0.0156 (14)0.0035 (12)
C120.077 (3)0.0179 (17)0.045 (2)0.0033 (16)0.040 (2)0.0011 (14)
C130.085 (3)0.0215 (18)0.056 (2)0.0058 (18)0.042 (2)0.0071 (16)
C140.058 (3)0.0266 (19)0.071 (3)0.0038 (17)0.031 (2)0.0027 (18)
C150.0207 (14)0.0191 (14)0.0193 (14)0.0015 (11)0.0114 (12)0.0036 (11)
C160.0214 (14)0.0183 (14)0.0252 (15)0.0022 (11)0.0109 (12)0.0001 (11)
C170.0266 (15)0.0209 (15)0.0286 (15)0.0021 (12)0.0165 (13)0.0017 (12)
C220.0283 (16)0.0217 (15)0.0224 (15)0.0020 (12)0.0119 (13)0.0055 (11)
C230.0230 (14)0.0212 (15)0.0212 (14)0.0051 (11)0.0113 (12)0.0014 (11)
C240.0229 (15)0.0152 (14)0.0239 (15)0.0008 (11)0.0143 (13)0.0003 (11)
Cl20.0629 (7)0.0338 (5)0.0756 (8)0.0030 (5)0.0264 (6)0.0063 (5)
O10.0391 (13)0.0349 (13)0.0200 (11)0.0114 (10)0.0110 (10)0.0027 (9)
O20.0374 (12)0.0321 (12)0.0307 (12)0.0093 (10)0.0227 (10)0.0087 (9)
O30.0319 (12)0.0228 (11)0.0237 (11)0.0081 (9)0.0049 (9)0.0014 (8)
O40.0228 (11)0.0255 (11)0.0382 (12)0.0023 (9)0.0141 (10)0.0090 (9)
O70.0332 (11)0.0144 (10)0.0211 (10)0.0039 (8)0.0088 (9)0.0010 (8)
O80.0649 (17)0.0150 (11)0.0445 (14)0.0022 (10)0.0321 (13)0.0002 (10)
S10.0294 (4)0.0249 (4)0.0178 (4)0.0076 (3)0.0122 (3)0.0014 (3)
S20.0203 (4)0.0175 (4)0.0215 (4)0.0023 (3)0.0065 (3)0.0035 (3)
C10.057 (3)0.025 (2)0.089 (5)0.017 (2)0.053 (3)0.020 (3)
C20.041 (3)0.018 (2)0.059 (3)0.0003 (19)0.020 (2)0.003 (2)
C30.061 (4)0.030 (3)0.040 (3)0.013 (2)0.018 (3)0.017 (2)
C40.0317 (16)0.0156 (14)0.0333 (17)0.0031 (12)0.0176 (14)0.0046 (12)
C1'0.065 (9)0.034 (7)0.052 (8)0.002 (6)0.017 (6)0.003 (6)
C2'0.035 (7)0.023 (6)0.050 (7)0.007 (5)0.013 (5)0.009 (5)
C3'0.056 (8)0.039 (7)0.064 (8)0.007 (6)0.033 (7)0.019 (6)
C4'0.0317 (16)0.0156 (14)0.0333 (17)0.0031 (12)0.0176 (14)0.0046 (12)
C180.0352 (17)0.0196 (16)0.0318 (17)0.0063 (13)0.0137 (14)0.0069 (12)
C190.071 (3)0.0274 (19)0.044 (2)0.0165 (18)0.027 (2)0.0012 (16)
C200.086 (3)0.0380 (18)0.091 (3)0.0217 (17)0.042 (2)0.0082 (17)
C210.086 (3)0.0380 (18)0.091 (3)0.0217 (17)0.042 (2)0.0082 (17)
O50.0275 (11)0.0138 (10)0.0269 (11)0.0020 (8)0.0149 (9)0.0013 (8)
C250.0317 (17)0.0172 (15)0.0345 (17)0.0007 (12)0.0153 (14)0.0019 (12)
C260.039 (2)0.0198 (16)0.055 (2)0.0003 (14)0.0174 (17)0.0041 (15)
O60.0430 (14)0.0185 (12)0.0572 (16)0.0014 (10)0.0157 (13)0.0086 (11)
C270.042 (3)0.0233 (19)0.053 (3)0.002 (2)0.018 (2)0.012 (2)
C280.055 (5)0.031 (2)0.055 (5)0.011 (3)0.006 (5)0.012 (3)
Cl10.0839 (13)0.0500 (8)0.0731 (10)0.0158 (8)0.0204 (9)0.0028 (7)
O6'0.0430 (14)0.0185 (12)0.0572 (16)0.0014 (10)0.0157 (13)0.0086 (11)
C27'0.042 (3)0.0233 (19)0.053 (3)0.002 (2)0.018 (2)0.012 (2)
C28'0.055 (5)0.031 (2)0.055 (5)0.011 (3)0.006 (5)0.012 (3)
Cl1'0.0839 (13)0.0500 (8)0.0731 (10)0.0158 (8)0.0204 (9)0.0028 (7)
Geometric parameters (Å, º) top
C5—C101.381 (4)C2—H2A0.9800
C5—C61.383 (4)C2—H2B0.9800
C5—C41.534 (4)C2—H2C0.9800
C6—C71.388 (4)C3—C41.523 (5)
C6—H60.9500C3—H3A0.9800
C7—C81.399 (4)C3—H3B0.9800
C7—S1i1.781 (3)C3—H3C0.9800
C8—O71.367 (3)C1'—H1E0.9800
C8—C91.391 (4)C1'—H1F0.9800
C9—C101.393 (4)C1'—H1D0.9800
C9—S21.772 (3)C2'—H2D0.9800
C10—H100.9500C2'—H2F0.9800
C11—O71.455 (4)C2'—H2E0.9800
C11—C121.499 (5)C3'—H3E0.9800
C11—H11A0.9900C3'—H3D0.9800
C11—H11B0.9900C3'—H3F0.9800
C12—O81.411 (4)C18—C201.506 (6)
C12—H12A0.9900C18—C211.507 (6)
C12—H12B0.9900C18—C191.545 (5)
C13—O81.414 (4)C19—H19A0.9800
C13—C141.503 (6)C19—H19B0.9800
C13—H13A0.9900C19—H19C0.9800
C13—H13B0.9900C20—H20A0.9800
C14—Cl21.775 (5)C20—H20B0.9800
C14—H14A0.9900C20—H20C0.9800
C14—H14B0.9900C21—H21A0.9800
C15—C161.390 (4)C21—H21B0.9800
C15—C241.393 (4)C21—H21C0.9800
C15—S21.777 (3)O5—C251.453 (4)
C16—C171.381 (4)C25—C261.505 (4)
C16—H160.9500C25—H25A0.9900
C17—C221.392 (4)C25—H25B0.9900
C17—C181.537 (4)C26—O61.412 (4)
C22—C231.391 (4)C26—H26A0.9900
C22—H220.9500C26—H26B0.9900
C23—C241.392 (4)O6—C271.425 (6)
C23—S11.778 (3)C27—C281.461 (7)
C24—O51.373 (3)C27—H27A0.9900
O1—S11.437 (2)C27—H27B0.9900
O2—S11.432 (2)C28—Cl11.790 (6)
O3—S21.433 (2)C28—H28A0.9900
O4—S21.434 (2)C28—H28B0.9900
S1—C7i1.781 (3)C27'—C28'1.453 (18)
C1—C41.503 (5)C27'—H27C0.9900
C1—H1A0.9800C27'—H27D0.9900
C1—H1B0.9800C28'—Cl1'1.79 (2)
C1—H1C0.9800C28'—H28C0.9900
C2—C41.560 (5)C28'—H28D0.9900
C10—C5—C6117.1 (3)C1—C4—C3110.6 (4)
C10—C5—C4122.1 (3)C1—C4—C5112.9 (3)
C6—C5—C4120.7 (3)C3—C4—C5108.5 (3)
C5—C6—C7122.4 (3)C1—C4—C2108.2 (4)
C5—C6—H6118.8C3—C4—C2107.5 (3)
C7—C6—H6118.8C5—C4—C2109.0 (3)
C6—C7—C8120.7 (3)H1E—C1'—H1F109.5
C6—C7—S1i115.6 (2)H1E—C1'—H1D109.5
C8—C7—S1i123.5 (2)H1F—C1'—H1D109.5
O7—C8—C9120.5 (3)H2D—C2'—H2F109.5
O7—C8—C7122.4 (3)H2D—C2'—H2E109.5
C9—C8—C7116.7 (3)H2F—C2'—H2E109.5
C8—C9—C10121.9 (3)H3E—C3'—H3D109.5
C8—C9—S2121.6 (2)H3E—C3'—H3F109.5
C10—C9—S2116.4 (2)H3D—C3'—H3F109.5
C5—C10—C9121.2 (3)C20—C18—C21112.8 (4)
C5—C10—H10119.4C20—C18—C17110.0 (3)
C9—C10—H10119.4C21—C18—C17108.5 (3)
O7—C11—C12104.2 (2)C20—C18—C19107.9 (3)
O7—C11—H11A110.9C21—C18—C19105.7 (3)
C12—C11—H11A110.9C17—C18—C19111.9 (3)
O7—C11—H11B110.9C18—C19—H19A109.5
C12—C11—H11B110.9C18—C19—H19B109.5
H11A—C11—H11B108.9H19A—C19—H19B109.5
O8—C12—C11109.2 (3)C18—C19—H19C109.5
O8—C12—H12A109.8H19A—C19—H19C109.5
C11—C12—H12A109.8H19B—C19—H19C109.5
O8—C12—H12B109.8C18—C20—H20A109.5
C11—C12—H12B109.8C18—C20—H20B109.5
H12A—C12—H12B108.3H20A—C20—H20B109.5
O8—C13—C14110.3 (3)C18—C20—H20C109.5
O8—C13—H13A109.6H20A—C20—H20C109.5
C14—C13—H13A109.6H20B—C20—H20C109.5
O8—C13—H13B109.6C18—C21—H21A109.5
C14—C13—H13B109.6C18—C21—H21B109.5
H13A—C13—H13B108.1H21A—C21—H21B109.5
C13—C14—Cl2112.5 (3)C18—C21—H21C109.5
C13—C14—H14A109.1H21A—C21—H21C109.5
Cl2—C14—H14A109.1H21B—C21—H21C109.5
C13—C14—H14B109.1C24—O5—C25115.8 (2)
Cl2—C14—H14B109.1O5—C25—C26105.7 (2)
H14A—C14—H14B107.8O5—C25—H25A110.6
C16—C15—C24120.9 (3)C26—C25—H25A110.6
C16—C15—S2115.7 (2)O5—C25—H25B110.6
C24—C15—S2123.2 (2)C26—C25—H25B110.6
C17—C16—C15122.1 (3)H25A—C25—H25B108.7
C17—C16—H16118.9O6—C26—C25107.5 (3)
C15—C16—H16118.9O6—C26—H26A110.2
C16—C17—C22117.1 (3)C25—C26—H26A110.2
C16—C17—C18122.5 (3)O6—C26—H26B110.2
C22—C17—C18120.4 (3)C25—C26—H26B110.2
C23—C22—C17121.1 (3)H26A—C26—H26B108.5
C23—C22—H22119.5C26—O6—C27110.1 (3)
C17—C22—H22119.5O6—C27—C28109.5 (6)
C22—C23—C24121.7 (3)O6—C27—H27A109.8
C22—C23—S1117.0 (2)C28—C27—H27A109.8
C24—C23—S1121.2 (2)O6—C27—H27B109.8
O5—C24—C23120.1 (2)C28—C27—H27B109.8
O5—C24—C15122.9 (2)H27A—C27—H27B108.2
C23—C24—C15116.9 (2)C27—C28—Cl1114.0 (5)
C8—O7—C11119.0 (2)C27—C28—H28A108.7
C12—O8—C13112.3 (3)Cl1—C28—H28A108.7
O2—S1—O1118.02 (14)C27—C28—H28B108.7
O2—S1—C23108.83 (14)Cl1—C28—H28B108.7
O1—S1—C23106.96 (13)H28A—C28—H28B107.6
O2—S1—C7i106.76 (13)C28'—C27'—H27C109.2
O1—S1—C7i107.68 (13)C28'—C27'—H27D109.2
C23—S1—C7i108.26 (13)H27C—C27'—H27D107.9
O3—S2—O4117.92 (14)C27'—C28'—Cl1'124 (3)
O3—S2—C9108.63 (13)C27'—C28'—H28C106.2
O4—S2—C9107.32 (13)Cl1'—C28'—H28C106.2
O3—S2—C15106.68 (13)C27'—C28'—H28D106.2
O4—S2—C15108.27 (13)Cl1'—C28'—H28D106.2
C9—S2—C15107.62 (13)H28C—C28'—H28D106.4
C10—C5—C6—C70.0 (4)C14—C13—O8—C12166.6 (4)
C4—C5—C6—C7179.6 (3)C22—C23—S1—O2120.7 (2)
C5—C6—C7—C80.7 (4)C24—C23—S1—O254.8 (3)
C5—C6—C7—S1i175.6 (2)C22—C23—S1—O17.8 (3)
C6—C7—C8—O7173.6 (2)C24—C23—S1—O1176.6 (2)
S1i—C7—C8—O711.9 (4)C22—C23—S1—C7i123.6 (2)
C6—C7—C8—C90.8 (4)C24—C23—S1—C7i60.9 (3)
S1i—C7—C8—C9175.2 (2)C8—C9—S2—O351.8 (3)
O7—C8—C9—C10173.2 (2)C10—C9—S2—O3123.9 (2)
C7—C8—C9—C100.2 (4)C8—C9—S2—O4179.7 (2)
O7—C8—C9—S211.4 (4)C10—C9—S2—O44.6 (3)
C7—C8—C9—S2175.6 (2)C8—C9—S2—C1563.4 (3)
C6—C5—C10—C90.6 (4)C10—C9—S2—C15120.9 (2)
C4—C5—C10—C9179.0 (3)C16—C15—S2—O319.6 (3)
C8—C9—C10—C50.5 (4)C24—C15—S2—O3164.5 (2)
S2—C9—C10—C5175.2 (2)C16—C15—S2—O4108.3 (2)
O7—C11—C12—O8164.0 (3)C24—C15—S2—O467.7 (3)
O8—C13—C14—Cl267.9 (4)C16—C15—S2—C9136.0 (2)
C24—C15—C16—C170.3 (4)C24—C15—S2—C948.1 (3)
S2—C15—C16—C17176.3 (2)C10—C5—C4—C16.4 (5)
C15—C16—C17—C222.5 (4)C6—C5—C4—C1174.1 (4)
C15—C16—C17—C18176.6 (3)C10—C5—C4—C3116.7 (4)
C16—C17—C22—C232.3 (4)C6—C5—C4—C362.9 (4)
C18—C17—C22—C23176.9 (3)C10—C5—C4—C2126.6 (3)
C17—C22—C23—C240.7 (5)C6—C5—C4—C253.8 (4)
C17—C22—C23—S1176.2 (2)C16—C17—C18—C20125.9 (4)
C22—C23—C24—O5179.1 (3)C22—C17—C18—C2054.9 (4)
S1—C23—C24—O55.6 (4)C16—C17—C18—C21110.2 (4)
C22—C23—C24—C153.5 (4)C22—C17—C18—C2168.9 (4)
S1—C23—C24—C15178.8 (2)C16—C17—C18—C196.0 (4)
C16—C15—C24—O5178.8 (2)C22—C17—C18—C19174.9 (3)
S2—C15—C24—O55.5 (4)C23—C24—O5—C2598.1 (3)
C16—C15—C24—C233.3 (4)C15—C24—O5—C2586.5 (3)
S2—C15—C24—C23179.0 (2)C24—O5—C25—C26158.7 (3)
C9—C8—O7—C1199.0 (3)O5—C25—C26—O6169.4 (3)
C7—C8—O7—C1188.4 (3)C25—C26—O6—C27170.1 (4)
C12—C11—O7—C8160.8 (3)C26—O6—C27—C28179.1 (5)
C11—C12—O8—C13174.6 (3)O6—C27—C28—Cl165.1 (9)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···O1i0.992.483.232 (4)133
C11—H11B···O30.992.513.103 (4)118
C20—H20B···O1ii0.982.573.377 (5)139
C21—H21C···O8iii0.982.603.462 (6)146
C25—H25A···O20.992.583.099 (4)113
C25—H25B···O40.992.453.217 (4)134
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+1, y+1, z+1; (iii) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC56H76Cl4O16S4
Mr1275.21
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)22.496 (2), 16.0372 (15), 19.8646 (19)
β (°) 120.355 (1)
V3)6184.1 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.39
Crystal size (mm)0.41 × 0.28 × 0.24
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.856, 0.912
No. of measured, independent and
observed [I > 2σ(I)] reflections
15381, 5442, 4709
Rint0.022
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.166, 1.09
No. of reflections5442
No. of parameters402
No. of restraints27
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0863P)2 + 20.079P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.30, 0.80

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···O1i0.992.483.232 (4)132.5
C11—H11B···O30.992.513.103 (4)117.8
C20—H20B···O1ii0.982.573.377 (5)139.3
C21—H21C···O8iii0.982.603.462 (6)146.4
C25—H25A···O20.992.583.099 (4)112.7
C25—H25B···O40.992.453.217 (4)134.3
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+1, y+1, z+1; (iii) x, y+1, z1/2.
 

Acknowledgements

Financial support from the National Natural Science Foundation of China (grant No. 20572064) and the Natural Science Foundation of Shandong Province (grant No. Y2006B30) is gratefully acknowledged.

References

First citationAkdas, H., Jaunky, W., Graf, E., Hosseini, M. W., Planeix, J.-M., De Cian, A. & Fischer, J. (2000). Tetrahedron Lett. 41, 3601–3606.  Web of Science CSD CrossRef CAS Google Scholar
First citationAkdas, H., Mislin, G., Graf, E., Hosseini, M. W., De Cian, A. & Fischer, J. (1999). Tetrahedron Lett. 40, 2113–2116.  Web of Science CSD CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBondi, A. J. (1964). Chem. Phys. 68, 441–452.  CrossRef CAS Google Scholar
First citationBruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGuo, D.-S., Liu, Z.-P., Ma, J.-P. & Huang, R.-Q. (2007). Tetrahedron Lett. 48, 1221–1224.  Web of Science CrossRef CAS Google Scholar
First citationHoriuchi, T., Iki, N., Hoshino, H., Kabutob, C. & Miyanoa, S. (2007). Tetrahedron Lett. 48, 821–825.  Web of Science CSD CrossRef CAS Google Scholar
First citationIki, N., Kumagai, H., Morohashi, N., Ejima, K., Hasegawa, M., Miyanari, S. & Miyano, S. (1998). Tetrahedron Lett. 39, 7559–7562.  Web of Science CrossRef CAS Google Scholar
First citationLhoták, P. (2004). Eur. J. Org. Chem. pp. 1675–1692.  Google Scholar
First citationLhoták, P., Svoboda, J., Stibora, I. & Sykorab, J. (2002). Tetrahedron Lett. 43, 7413–7417.  Google Scholar
First citationManoj, K., Gonnade, R. G., Bhadbhade, M. M. & Shashidhar, M. S. (2007). Acta Cryst. C63, o555–o558.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMislin, G., Graf, E., Hosseini, M. W., De Cian, A. & Fischer, J. (1998). Chem. Commun. pp. 1345–1346.  Web of Science CSD CrossRef Google Scholar
First citationMislin, G., Graf, E., Hosseini, M. W., De Cian, A. & Fischer, J. (1999). Tetrahedron Lett. 40, 1129–1132.  Web of Science CSD CrossRef CAS Google Scholar
First citationMorohashi, N., Narumi, F., Iki, N., Hattori, T. & Miyano, S. (2006). Chem. Rev. 106, 5291–5316.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShokova, E. A. & Kovalev, V. V. (2003). Russ. J. Org. Chem. 39, 1–28.  Web of Science CrossRef CAS Google Scholar
First citationXu, W.-N., Yuan, J.-M., Liu, Y., Ma, J.-P. & Guo, D.-S. (2008). Acta Cryst. C64, o349–o352.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages o385-o386
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds