metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages m243-m244

Di­chlorido[1-(2-methyl­benz­yl)-3-(η6-2,4,6-tri­methyl­benz­yl)-1H-2,3-di­hydro­benzimidazol-2-yl­­idene]ruthenium(II) di­chloro­methane solvate

aDepartment of Natural Sciences, Fayetteville State University, NC 28301, USA, bDepartment of Chemistry, Faculty of Pharmacy, Mersin University, Mersin TR 33169, Turkey, cDepartment of Chemistry, Clemson University, SC 29634, USA, dDepartment of Chemistry, Faculty of Sciences and Arts, Inönü University, Malatya TR 44280, Turkey, and eDepartment of Chemistry, Faculty of Science, Ege University, Bornova-Izmir TR 35100, Turkey
*Correspondence e-mail: hakan.arslan.acad@gmail.com

(Received 26 January 2009; accepted 28 January 2009; online 4 February 2009)

The title complex, [RuCl2(C25H26N2)]·CH2Cl2, is best thought of as containing an octa­hedrally coordinated Ru center with the arene occupying three sites. Two Ru—Cl bonds and one Ru–carbene bond complete the distorted octa­hedron. The carbene portion of the ligand is a benzimidazole ring. This ring is connected to the C6H2(CH3)3 arene group by a CH2 bridge. This leads to a system with very little apparent strain. A dichloro­methane solvent mol­ecule completes the crystal structure. Further stabilization is accomplished via C—H⋯N and C—H⋯Cl interactions.

Related literature

For synthesis, see: Yaşar et al. (2008[Yaşar, S., Özdemir, İ., Çetinkaya, B., Renaud, J. L. & Bruneau, C. (2008). Eur. J. Org. Chem. 12, 2142-2149.]); Çetinkaya et al. (2001[Çetinkaya, B., Demir, S., Özdemir, İ., Toupet, L., Semeril, D., Bruneau, C. & Dixneuf, P. H. (2001). New J. Chem. 25, 519-521.], 2003[Çetinkaya, B., Demir, S., Özdemir, İ., Toupet, L., Semeril, D., Bruneau, C. & Dixneuf, P. H. (2003). Chem. Eur. J. 9, 2323-2330.]); Özdemir et al. (2001[Özdemir, İ., Yiğit, B., Çetinkaya, B., Ülkü, D., Tahir, M. N. & Arici, C. (2001). J. Organomet. Chem. 633, 27-32.], 2004[Özdemir, İ., Alıcı, B., Gürbüz, N., Çetinkaya, E. & Çetinkaya, B. (2004). J. Mol. Catal. A Chem. 217, 37-40.]). For general background, see: Herrmann (2002[Herrmann, W. A. (2002). Angew. Chem. Int. Ed. 41, 1290-1309.]); Herrmann et al. (1995[Herrmann, W. A., Elison, M., Fischer, J., Köcher, C. & Artus, G. R. J. (1995). Angew. Chem. Int. Ed. Engl. 34, 2371-2374.]); Navarro et al. (2006[Navarro, O., Marion, N., Oonishi, Y., Kelly, R. A. & Nolan, S. P. (2006). J. Org. Chem. 71, 685-692.]); Arduengo & Krafczyc (1998[Arduengo, A. J. & Krafczyc, R. (1998). Chem. Ztg, 32, 6-14.]). For related compounds, see: Begley et al. (1991[Begley, M. J., Harrison, S. & Wright, A. H. (1991). Acta Cryst. C47, 318-320.]); Steedman & Burrell (1997[Steedman, A. J. & Burrell, A. K. (1997). Acta Cryst. C53, 864-866.]); Arslan et al. (2004[Arslan, H., VanDerveer, D., Özdemir, İ., Çetinkaya, B. & Demir, S. (2004). Z. Kristallogr. New Cryst. Struct. 219, 377-378.], 2005[Arslan, H., VanDerveer, D., Özdemir, I., Yaşar, S. & Çetinkaya, B. (2005). Acta Cryst. E61, m1873-m1875.], 2007[Arslan, H., VanDerveer, D., Yaşar, S., Özdemir, İ. & Çetinkaya, B. (2007). Acta Cryst. E63, m1001-m1003.]).

[Scheme 1]

Experimental

Crystal data
  • [RuCl2(C25H26N2)]·CH2Cl2

  • Mr = 611.37

  • Monoclinic, C 2/c

  • a = 31.362 (6) Å

  • b = 8.1014 (16) Å

  • c = 20.484 (4) Å

  • β = 100.11 (3)°

  • V = 5123.8 (18) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.05 mm−1

  • T = 153 (2) K

  • 0.46 × 0.14 × 0.06 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.]) Tmin = 0.644, Tmax = 0.940

  • 15807 measured reflections

  • 4501 independent reflections

  • 3825 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.115

  • S = 1.08

  • 4501 reflections

  • 298 parameters

  • H-atom parameters constrained

  • Δρmax = 0.92 e Å−3

  • Δρmin = −0.73 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15C⋯N2 0.98 2.60 3.244 (7) 123
C18—H18A⋯Cl2 0.99 2.67 3.468 (5) 138
C23—H23A⋯Cl1i 0.95 2.78 3.730 (5) 175
C26—H26A⋯Cl2ii 0.99 2.46 3.431 (6) 168
Symmetry codes: (i) [x, -y, z-{\script{1\over 2}}]; (ii) x, y+1, z.

Data collection: CrystalClear (Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The ruthenium complexes of N-Heterocyclic carbenes have proved to be excellent catalysts for the Suzuki-Miyura, Sonogashira, Stille and Heck reactions (Herrmann et al., 1995; Herrmann, 2002; Navarro et al., 2006; Arduengo & Krafczyc, 1998). Expressive examples are found in various catalytic reactions with ruthenium catalysts for alken metathesis, cycloisomerization, and cyclopropanation reactions (Özdemir et al., 2004).

Previous work from our research groups in this area has focused on the elaboration of olefins as electron-rich heterocyclic carbene precursors which allow the formation of chelating carbenes, on the rapidly developing chemistry of η6-arene ruthenium(II) complexes containing substituted imidazolidin-2-ylidenes (Özdemir et al., 2001; Çetinkaya et al., 2001, 2003), and on the synthesis, characterization and uses of palladium, platinum and ruthenium N-heterocyclic carbene complexes as catalysts (Yaşar et al., 2008; Arslan et al., 2004, 2005, 2007, and references therein).

In the present study, we have synthesized and characterized a new ruthenium complex, (1-(2-methylbenzyl)-3-(2,4,6-trimethylbenzyl)-1H-benzo[d]imidazol-2(3H)-ylidene)ruthenium(II) dichloride. dichloromethane solvate, (I). The crystal structure of the title compound, (I), is depicted in Fig. 1.

The benzimidazol ring which has a carbene portion is connected to the C6H2(CH3)3 arene by a CH2 bridge. This leads to a system with very little apparent strain. The ruthenium atom in the title compound is best described as having an octahedral coordination environment, with the arene occupying three coordination sites. Two coordination sites are occupied by Cl ligands, while the sixth site is occupied by the carbene carbon of the benzimidazol ring.

The ruthenium atom is situated 1.6766 (19) Å from the ring centroid of the arene. While there are substantial differences in the C—C and Ru—C distances [Ru—C 92.099 (5), –C10 2.161 (4), –C11 2.246 (4), –C12 2.282 (5), –C13 2.203 (5), –C14 2.198 (5) Å] for the arene ring, there is no evidence of the alternating C—C bonds observed in some ruthenium-arene complexes (Begley et al., 1991).

The arene, the 2-methylbenzyl, imidazol and benzimidazol rings are almost planar with a maximum deviation of 0.038 (5) Å for atom C14, 0.015 (5) Å for atom C21, 0.004 (4) Å for atom N2, and 0.023 (5) Å for atom C5. The five-membered imidazole ring forms dihedral angles of 87.30 (4) ° and 78.53 (4) ° with the 2-methylbenzyl and 2,4,6-trimethylbenzyl rings, respectively.

The small steric demand of the benzimidazole ligand is reflected in the Cl—Ru—C1 angles, which are 87.51 (12) ° and 97.42 (12) °. These are significantly larger than the angles in the pyridine substituted complexes [RuCl2(py)(η6-arene)] (Steedman & Burrell, 1997), and agree with Arslan results, (Arslan et al., 2004, 2005, 2007, and references therein). On the other side, the Ru—Cl distances in the coordination sphere are equal within experimental error [Ru—Cl1 = 2.4167 (12) Å and Ru—Cl2 = 2.4175 (13) Å]. The Cl—Ru—Cl angle is 88.52 (5) °.

The components of the title compound are assembled by two intermolecular C—H···Cl hydrogen bonds, to form a three-dimensional framework (Fig. 2 and Table 1). The intramolecular contacts, C—H···N and C—H···Cl, are also listed in Table 1.

Related literature top

For synthesis, see: Yaşar et al. (2008); Çetinkaya et al. (2001, 2003); Özdemir et al. (2001, 2004). For general background, see: Herrmann (2002); Herrmann et al. (1995); Navarro et al. (2006); Arduengo & Krafczyc (1998). For related compounds, see: Begley et al. (1991); Steedman & Burrell, (1997); Arslan et al. (2004, 2005, 2007).

Experimental top

A suspension of 1-(2-methylbenzyl)-3-(2,4,6-trimethylbenzyl)benzimidazolium chloride (1.00 g, 2.56 mmol), Cs2CO3 (0.84 g, 2.56 mmol), [RuCl2(p-cymene)]2 (0.78 g, 1.28 mmol) and molecular sieves was heated under reflux in degassed dry toluene (20 ml) for 12 h. The reaction mixture was then filtered while hot, and the volume was reduced to about 10 ml before addition of n-hexane (10 ml). The precipitate formed was crystallized from CH2Cl2:hexane (5:10 ml) to give crystal product (Figure 3). Yield 0.58 g (86%), M.p.: 549–550 K. FT—IR (KBr pellet, cm-1): νCN 1424 cm-1. 1H NMR (δ, 399.9 MHz, CDCl3): 2.18 and 2.34 [s, 9H, CH2C6H2(CH3)3-2,4,6]; 2.39 [s, 3H, CH2C6H4(CH3)-2]; 5.08 [s, 2H, CH2C6H4(CH3)-2]; 5.59 [s, 2H, CH2C6H2(CH3)3-2,4,6]; 5.76 [s, 2H, CH2C6H2(CH3)3-2,4,6]; 6.80–7.50 [m, 8H, NC6H4N and CH2C6H4(CH3)-2]. 13C{H} NMR (δ, 100.5 MHz, CDCl3): 17.0 and 17.4 [CH2C6H2(CH3)3-2,4,6]; 19.5 [CH2C6H4(CH3)-2]; 49.7 [CH2C6H2(CH3)3-2,4,6]; 53.5 [CH2C6H4(CH3)-2]; 90.0, 92.8, 98.6, 101.6, 110.0, 112.5, 123.4, 123.8, 126.0, 127.0, 127.1, 130.2, 133.2, 134.8, 135.0 and 135.4 [CH2C6H2(CH3)3-2,4,6; NC6H4N and CH2C6H4(CH3)-2]; 185.9 [Ccarbene].

Refinement top

H atoms were geometrically fixed and allowed to ride on the parent atom with C—H = 0.95 - 0.99 Å, and Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2006); cell refinement: CrystalClear (Rigaku/MSC, 2006); data reduction: CrystalClear (Rigaku/MSC, 2006); program(s) used to solve structure: SHELXTL (Version 6.10; Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Version 6.10; Sheldrick, 2008); molecular graphics: SHELXTL (Version 6.10; Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Version 6.10; Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram for (I). [Symmetry codes: A = 1 - x, y, 0.5 - z; B = -1/2 + x, 1/2 + y, z; C = 1.5 - x, 1/2 + y, 0.5 - z; D = 1 - x, 1 - y, 1 - z; E = x, 1 - y, 1/2 + z; F = 1.5 - x, 0.5 - y, 1 - z; G = -1/2 + x, 0.5 - y, 1/2 + z; H = x, -1 + y, z ].
[Figure 3] Fig. 3. Synthesis of Ru(NHC) complex.
Dichlorido[1-(2-methylbenzyl)-3-(η6-2,4,6-trimethylbenzyl)-1H-2,3- dihydrobenzimidazol-2-ylidene]ruthenium(II) dichloromethane solvate top
Crystal data top
[RuCl2(C25H26N2)]·CH2Cl2F(000) = 2480
Mr = 611.37Dx = 1.585 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5683 reflections
a = 31.362 (6) Åθ = 2.8–26.0°
b = 8.1014 (16) ŵ = 1.05 mm1
c = 20.484 (4) ÅT = 153 K
β = 100.11 (3)°Rod, orange
V = 5123.8 (18) Å30.46 × 0.14 × 0.06 mm
Z = 8
Data collection top
Rigaku Mercury CCD (2x2 bin mode)
diffractometer
4501 independent reflections
Radiation source: Sealed Tube3825 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.054
Detector resolution: 14.6306 pixels mm-1θmax = 25.2°, θmin = 2.8°
ω scansh = 2837
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 99
Tmin = 0.644, Tmax = 0.940l = 2324
15807 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0431P)2 + 37.6344P]
where P = (Fo2 + 2Fc2)/3
4501 reflections(Δ/σ)max = 0.001
298 parametersΔρmax = 0.92 e Å3
0 restraintsΔρmin = 0.73 e Å3
Crystal data top
[RuCl2(C25H26N2)]·CH2Cl2V = 5123.8 (18) Å3
Mr = 611.37Z = 8
Monoclinic, C2/cMo Kα radiation
a = 31.362 (6) ŵ = 1.05 mm1
b = 8.1014 (16) ÅT = 153 K
c = 20.484 (4) Å0.46 × 0.14 × 0.06 mm
β = 100.11 (3)°
Data collection top
Rigaku Mercury CCD (2x2 bin mode)
diffractometer
4501 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
3825 reflections with I > 2σ(I)
Tmin = 0.644, Tmax = 0.940Rint = 0.054
15807 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0431P)2 + 37.6344P]
where P = (Fo2 + 2Fc2)/3
4501 reflectionsΔρmax = 0.92 e Å3
298 parametersΔρmin = 0.73 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.859197 (11)0.28327 (4)0.574586 (17)0.01982 (13)
Cl10.91585 (4)0.08062 (14)0.60413 (6)0.0281 (3)
Cl20.82324 (4)0.09300 (16)0.49193 (6)0.0355 (3)
N10.91793 (11)0.3570 (4)0.46538 (17)0.0191 (7)
N20.91101 (12)0.5520 (4)0.53600 (17)0.0214 (8)
C10.89796 (14)0.3939 (5)0.5173 (2)0.0201 (9)
C20.94310 (13)0.4900 (5)0.4509 (2)0.0201 (9)
C30.96901 (14)0.5119 (6)0.4034 (2)0.0241 (10)
H3A0.97160.42870.37160.029*
C40.99086 (14)0.6595 (6)0.4043 (2)0.0262 (10)
H4A1.00930.67780.37280.031*
C50.98659 (14)0.7840 (6)0.4505 (2)0.0252 (10)
H5A1.00260.88340.45000.030*
C60.95983 (14)0.7658 (6)0.4967 (2)0.0238 (10)
H6A0.95620.85090.52710.029*
C70.93834 (13)0.6142 (5)0.4960 (2)0.0205 (9)
C80.89772 (16)0.6340 (6)0.5930 (2)0.0276 (10)
H8A0.88510.74370.58020.033*
H8B0.92280.64850.62930.033*
C90.86420 (15)0.5220 (6)0.6150 (2)0.0242 (10)
C100.87528 (15)0.4087 (6)0.6688 (2)0.0249 (10)
C110.84433 (15)0.2836 (6)0.6779 (2)0.0265 (10)
H11A0.85490.18810.70730.032*
C120.80490 (15)0.2661 (6)0.6353 (2)0.0274 (10)
C130.79482 (15)0.3822 (6)0.5822 (2)0.0292 (11)
H13A0.77010.35610.54570.035*
C140.82217 (15)0.5141 (6)0.5727 (2)0.0277 (10)
C150.80849 (18)0.6362 (7)0.5183 (3)0.0381 (12)
H15A0.79220.72580.53460.057*
H15B0.79010.58120.48100.057*
H15C0.83420.68160.50360.057*
C160.91763 (16)0.4145 (6)0.7169 (2)0.0330 (11)
H16A0.91420.48250.75530.049*
H16B0.94010.46240.69500.049*
H16C0.92610.30240.73180.049*
C170.77421 (17)0.1265 (7)0.6407 (3)0.0396 (13)
H17A0.75460.15770.67100.059*
H17B0.79070.02820.65780.059*
H17C0.75730.10240.59680.059*
C180.91506 (14)0.2017 (5)0.4291 (2)0.0203 (9)
H18A0.89970.11960.45230.024*
H18B0.94460.15960.42870.024*
C190.89144 (14)0.2196 (5)0.3583 (2)0.0212 (9)
C200.85252 (15)0.3085 (6)0.3461 (2)0.0264 (10)
H20A0.84270.36190.38200.032*
C210.82819 (16)0.3203 (6)0.2835 (2)0.0320 (11)
H21A0.80230.38380.27620.038*
C220.84158 (18)0.2394 (6)0.2313 (2)0.0339 (12)
H22A0.82430.24260.18840.041*
C230.88025 (16)0.1539 (6)0.2418 (2)0.0296 (11)
H23A0.88960.10110.20540.036*
C240.90593 (16)0.1429 (6)0.3047 (2)0.0262 (10)
C250.94799 (17)0.0499 (7)0.3128 (3)0.0372 (12)
H25A0.95200.00600.26970.056*
H25B0.94740.04150.34390.056*
H25C0.97200.12440.32990.056*
C260.81998 (16)0.8842 (7)0.3454 (3)0.0353 (12)
H26A0.81820.95770.38350.042*
H26B0.82240.95430.30660.042*
Cl30.77287 (6)0.7648 (3)0.32788 (10)0.0729 (6)
Cl40.86627 (5)0.7586 (2)0.36431 (8)0.0496 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.0249 (2)0.0163 (2)0.0197 (2)0.00305 (13)0.00788 (14)0.00191 (13)
Cl10.0343 (6)0.0203 (6)0.0332 (6)0.0028 (4)0.0156 (5)0.0037 (5)
Cl20.0372 (7)0.0366 (7)0.0346 (7)0.0150 (5)0.0119 (5)0.0159 (5)
N10.0201 (18)0.0165 (18)0.0207 (18)0.0012 (14)0.0035 (14)0.0015 (15)
N20.031 (2)0.0133 (18)0.0213 (19)0.0040 (15)0.0094 (15)0.0024 (14)
C10.026 (2)0.017 (2)0.017 (2)0.0001 (17)0.0010 (17)0.0010 (17)
C20.021 (2)0.017 (2)0.022 (2)0.0026 (17)0.0024 (17)0.0032 (17)
C30.027 (2)0.023 (2)0.023 (2)0.0029 (18)0.0048 (18)0.0029 (18)
C40.023 (2)0.028 (3)0.030 (2)0.0005 (19)0.0099 (19)0.010 (2)
C50.022 (2)0.020 (2)0.033 (3)0.0061 (18)0.0033 (19)0.0048 (19)
C60.023 (2)0.021 (2)0.026 (2)0.0019 (18)0.0015 (18)0.0011 (19)
C70.021 (2)0.019 (2)0.021 (2)0.0009 (17)0.0037 (17)0.0026 (17)
C80.039 (3)0.020 (2)0.026 (2)0.006 (2)0.013 (2)0.0064 (19)
C90.031 (2)0.020 (2)0.023 (2)0.0011 (19)0.0112 (19)0.0055 (18)
C100.032 (2)0.022 (2)0.023 (2)0.0023 (19)0.0114 (19)0.0065 (18)
C110.033 (3)0.021 (2)0.027 (2)0.0008 (19)0.012 (2)0.0024 (19)
C120.029 (2)0.029 (3)0.029 (3)0.002 (2)0.017 (2)0.004 (2)
C130.029 (2)0.031 (3)0.028 (2)0.006 (2)0.008 (2)0.005 (2)
C140.030 (2)0.024 (2)0.031 (3)0.0044 (19)0.012 (2)0.003 (2)
C150.042 (3)0.031 (3)0.039 (3)0.005 (2)0.000 (2)0.005 (2)
C160.038 (3)0.031 (3)0.030 (3)0.002 (2)0.007 (2)0.003 (2)
C170.038 (3)0.035 (3)0.049 (3)0.010 (2)0.017 (2)0.001 (2)
C180.024 (2)0.016 (2)0.022 (2)0.0007 (17)0.0056 (17)0.0036 (17)
C190.029 (2)0.015 (2)0.020 (2)0.0061 (17)0.0062 (18)0.0014 (17)
C200.031 (2)0.024 (2)0.024 (2)0.0016 (19)0.0067 (19)0.0007 (19)
C210.030 (3)0.034 (3)0.031 (3)0.003 (2)0.003 (2)0.005 (2)
C220.044 (3)0.034 (3)0.022 (3)0.012 (2)0.002 (2)0.005 (2)
C230.047 (3)0.025 (3)0.019 (2)0.007 (2)0.012 (2)0.0028 (19)
C240.039 (3)0.018 (2)0.023 (2)0.004 (2)0.010 (2)0.0002 (18)
C250.049 (3)0.032 (3)0.033 (3)0.005 (2)0.013 (2)0.004 (2)
C260.041 (3)0.034 (3)0.030 (3)0.001 (2)0.003 (2)0.003 (2)
Cl30.0424 (9)0.0820 (13)0.0869 (13)0.0229 (9)0.0094 (9)0.0202 (10)
Cl40.0440 (8)0.0547 (9)0.0488 (8)0.0042 (7)0.0051 (6)0.0140 (7)
Geometric parameters (Å, º) top
Ru1—C12.039 (4)C12—C171.502 (7)
Ru1—C92.099 (4)C13—C141.405 (7)
Ru1—C102.162 (4)C13—H13A1.0000
Ru1—C142.198 (5)C14—C151.496 (7)
Ru1—C132.203 (5)C15—H15A0.9800
Ru1—C112.246 (5)C15—H15B0.9800
Ru1—C122.282 (5)C15—H15C0.9800
Ru1—Cl12.4167 (12)C16—H16A0.9800
Ru1—Cl22.4175 (13)C16—H16B0.9800
N1—C11.359 (6)C16—H16C0.9800
N1—C21.398 (5)C17—H17A0.9800
N1—C181.456 (5)C17—H17B0.9800
N2—C11.378 (5)C17—H17C0.9800
N2—C71.381 (6)C18—C191.515 (6)
N2—C81.466 (6)C18—H18A0.9900
C2—C31.384 (6)C18—H18B0.9900
C2—C71.392 (6)C19—C201.401 (6)
C3—C41.377 (6)C19—C241.405 (6)
C3—H3A0.9500C20—C211.377 (6)
C4—C51.407 (7)C20—H20A0.9500
C4—H4A0.9500C21—C221.380 (8)
C5—C61.378 (7)C21—H21A0.9500
C5—H5A0.9500C22—C231.380 (7)
C6—C71.399 (6)C22—H22A0.9500
C6—H6A0.9500C23—C241.397 (7)
C8—C91.515 (6)C23—H23A0.9500
C8—H8A0.9900C24—C251.503 (7)
C8—H8B0.9900C25—H25A0.9800
C9—C101.430 (6)C25—H25B0.9800
C9—C141.446 (6)C25—H25C0.9800
C10—C111.438 (6)C26—Cl31.750 (5)
C10—C161.509 (7)C26—Cl41.760 (5)
C11—C121.390 (7)C26—H26A0.9900
C11—H11A1.0000C26—H26B0.9900
C12—C131.430 (7)
C1—Ru1—C979.10 (17)C16—C10—Ru1129.7 (3)
C1—Ru1—C10103.77 (17)C12—C11—C10122.4 (4)
C9—Ru1—C1039.19 (17)C12—C11—Ru173.5 (3)
C1—Ru1—C1489.00 (17)C10—C11—Ru167.8 (2)
C9—Ru1—C1439.24 (17)C12—C11—H11A117.6
C10—Ru1—C1469.83 (17)C10—C11—H11A117.6
C1—Ru1—C13121.82 (18)Ru1—C11—H11A117.6
C9—Ru1—C1369.08 (18)C11—C12—C13117.7 (4)
C10—Ru1—C1380.71 (18)C11—C12—C17122.8 (5)
C14—Ru1—C1337.24 (18)C13—C12—C17119.5 (4)
C1—Ru1—C11141.73 (17)C11—C12—Ru170.7 (3)
C9—Ru1—C1168.95 (17)C13—C12—Ru168.4 (3)
C10—Ru1—C1138.02 (17)C17—C12—Ru1129.4 (3)
C14—Ru1—C1179.57 (17)C14—C13—C12123.1 (4)
C13—Ru1—C1165.68 (18)C14—C13—Ru171.2 (3)
C1—Ru1—C12156.54 (17)C12—C13—Ru174.4 (3)
C9—Ru1—C1281.52 (17)C14—C13—H13A117.9
C10—Ru1—C1267.76 (17)C12—C13—H13A117.9
C14—Ru1—C1267.59 (17)Ru1—C13—H13A117.9
C13—Ru1—C1237.12 (18)C13—C14—C9117.7 (4)
C11—Ru1—C1235.75 (17)C13—C14—C15120.3 (4)
C1—Ru1—Cl187.51 (12)C9—C14—C15121.9 (4)
C9—Ru1—Cl1121.77 (13)C13—C14—Ru171.6 (3)
C10—Ru1—Cl192.85 (13)C9—C14—Ru166.7 (2)
C14—Ru1—Cl1160.95 (13)C15—C14—Ru1131.1 (3)
C13—Ru1—Cl1150.67 (13)C14—C15—H15A109.5
C11—Ru1—Cl191.71 (13)C14—C15—H15B109.5
C12—Ru1—Cl1114.09 (13)H15A—C15—H15B109.5
C1—Ru1—Cl297.42 (12)C14—C15—H15C109.5
C9—Ru1—Cl2149.00 (13)H15A—C15—H15C109.5
C10—Ru1—Cl2158.81 (13)H15B—C15—H15C109.5
C14—Ru1—Cl2110.51 (13)C10—C16—H16A109.5
C13—Ru1—Cl287.77 (13)C10—C16—H16B109.5
C11—Ru1—Cl2120.82 (12)H16A—C16—H16B109.5
C12—Ru1—Cl292.40 (12)C10—C16—H16C109.5
Cl1—Ru1—Cl288.52 (5)H16A—C16—H16C109.5
C1—N1—C2110.6 (3)H16B—C16—H16C109.5
C1—N1—C18126.4 (4)C12—C17—H17A109.5
C2—N1—C18123.0 (3)C12—C17—H17B109.5
C1—N2—C7111.1 (4)H17A—C17—H17B109.5
C1—N2—C8122.0 (4)C12—C17—H17C109.5
C7—N2—C8126.9 (4)H17A—C17—H17C109.5
N1—C1—N2105.5 (4)H17B—C17—H17C109.5
N1—C1—Ru1139.2 (3)N1—C18—C19112.5 (3)
N2—C1—Ru1115.2 (3)N1—C18—H18A109.1
C3—C2—C7121.3 (4)C19—C18—H18A109.1
C3—C2—N1132.1 (4)N1—C18—H18B109.1
C7—C2—N1106.6 (4)C19—C18—H18B109.1
C4—C3—C2117.0 (4)H18A—C18—H18B107.8
C4—C3—H3A121.5C20—C19—C24118.6 (4)
C2—C3—H3A121.5C20—C19—C18118.9 (4)
C3—C4—C5121.7 (4)C24—C19—C18122.4 (4)
C3—C4—H4A119.1C21—C20—C19121.7 (4)
C5—C4—H4A119.1C21—C20—H20A119.2
C6—C5—C4121.8 (4)C19—C20—H20A119.2
C6—C5—H5A119.1C20—C21—C22119.6 (5)
C4—C5—H5A119.1C20—C21—H21A120.2
C5—C6—C7115.9 (4)C22—C21—H21A120.2
C5—C6—H6A122.0C21—C22—C23119.7 (5)
C7—C6—H6A122.0C21—C22—H22A120.1
N2—C7—C2106.3 (4)C23—C22—H22A120.1
N2—C7—C6131.5 (4)C22—C23—C24121.6 (4)
C2—C7—C6122.2 (4)C22—C23—H23A119.2
N2—C8—C9105.9 (4)C24—C23—H23A119.2
N2—C8—H8A110.6C23—C24—C19118.7 (4)
C9—C8—H8A110.6C23—C24—C25119.1 (4)
N2—C8—H8B110.6C19—C24—C25122.3 (4)
C9—C8—H8B110.6C24—C25—H25A109.5
H8A—C8—H8B108.7C24—C25—H25B109.5
C10—C9—C14120.4 (4)H25A—C25—H25B109.5
C10—C9—C8121.7 (4)C24—C25—H25C109.5
C14—C9—C8117.1 (4)H25A—C25—H25C109.5
C10—C9—Ru172.8 (3)H25B—C25—H25C109.5
C14—C9—Ru174.1 (3)Cl3—C26—Cl4111.1 (3)
C8—C9—Ru1116.3 (3)Cl3—C26—H26A109.4
C9—C10—C11118.3 (4)Cl4—C26—H26A109.4
C9—C10—C16123.4 (4)Cl3—C26—H26B109.4
C11—C10—C16118.3 (4)Cl4—C26—H26B109.4
C9—C10—Ru168.0 (2)H26A—C26—H26B108.0
C11—C10—Ru174.2 (3)
C2—N1—C1—N20.4 (4)C14—Ru1—C11—C1265.9 (3)
C18—N1—C1—N2178.7 (4)C13—Ru1—C11—C1229.6 (3)
C2—N1—C1—Ru1176.3 (4)Cl1—Ru1—C11—C12131.1 (3)
C18—N1—C1—Ru12.8 (7)Cl2—Ru1—C11—C1241.8 (3)
C7—N2—C1—N10.7 (5)C1—Ru1—C11—C104.3 (4)
C8—N2—C1—N1177.2 (4)C9—Ru1—C11—C1031.1 (3)
C7—N2—C1—Ru1177.7 (3)C14—Ru1—C11—C1070.5 (3)
C8—N2—C1—Ru10.1 (5)C13—Ru1—C11—C10106.9 (3)
C9—Ru1—C1—N1178.4 (5)C12—Ru1—C11—C10136.4 (4)
C10—Ru1—C1—N1150.9 (5)Cl1—Ru1—C11—C1092.4 (3)
C14—Ru1—C1—N1140.1 (5)Cl2—Ru1—C11—C10178.3 (2)
C13—Ru1—C1—N1121.6 (5)C10—C11—C12—C132.4 (7)
C11—Ru1—C1—N1148.2 (4)Ru1—C11—C12—C1351.5 (4)
C12—Ru1—C1—N1143.5 (5)C10—C11—C12—C17174.2 (4)
Cl1—Ru1—C1—N158.6 (5)Ru1—C11—C12—C17125.1 (5)
Cl2—Ru1—C1—N129.6 (5)C10—C11—C12—Ru149.1 (4)
C9—Ru1—C1—N26.0 (3)C1—Ru1—C12—C11100.0 (5)
C10—Ru1—C1—N224.7 (3)C9—Ru1—C12—C1165.5 (3)
C14—Ru1—C1—N244.2 (3)C10—Ru1—C12—C1127.3 (3)
C13—Ru1—C1—N262.8 (4)C14—Ru1—C12—C11103.7 (3)
C11—Ru1—C1—N227.4 (5)C13—Ru1—C12—C11131.9 (4)
C12—Ru1—C1—N240.8 (6)Cl1—Ru1—C12—C1155.6 (3)
Cl1—Ru1—C1—N2117.0 (3)Cl2—Ru1—C12—C11145.0 (3)
Cl2—Ru1—C1—N2154.8 (3)C1—Ru1—C12—C1331.8 (6)
C1—N1—C2—C3180.0 (4)C9—Ru1—C12—C1366.3 (3)
C18—N1—C2—C30.9 (7)C10—Ru1—C12—C13104.6 (3)
C1—N1—C2—C70.0 (5)C14—Ru1—C12—C1328.1 (3)
C18—N1—C2—C7179.1 (4)C11—Ru1—C12—C13131.9 (4)
C7—C2—C3—C42.1 (6)Cl1—Ru1—C12—C13172.6 (2)
N1—C2—C3—C4177.9 (4)Cl2—Ru1—C12—C1383.1 (3)
C2—C3—C4—C51.0 (6)C1—Ru1—C12—C17142.9 (5)
C3—C4—C5—C61.0 (7)C9—Ru1—C12—C17177.4 (5)
C4—C5—C6—C72.0 (6)C10—Ru1—C12—C17144.3 (5)
C1—N2—C7—C20.7 (5)C14—Ru1—C12—C17139.2 (5)
C8—N2—C7—C2177.1 (4)C13—Ru1—C12—C17111.1 (6)
C1—N2—C7—C6179.0 (4)C11—Ru1—C12—C17117.0 (6)
C8—N2—C7—C61.2 (8)Cl1—Ru1—C12—C1761.5 (5)
C3—C2—C7—N2179.6 (4)Cl2—Ru1—C12—C1728.0 (5)
N1—C2—C7—N20.4 (4)C11—C12—C13—C141.9 (7)
C3—C2—C7—C61.1 (6)C17—C12—C13—C14178.5 (4)
N1—C2—C7—C6178.9 (4)Ru1—C12—C13—C1454.4 (4)
C5—C6—C7—N2177.1 (4)C11—C12—C13—Ru152.5 (4)
C5—C6—C7—C20.9 (6)C17—C12—C13—Ru1124.1 (4)
C1—N2—C8—C98.3 (6)C1—Ru1—C13—C1431.7 (3)
C7—N2—C8—C9174.2 (4)C9—Ru1—C13—C1429.9 (3)
N2—C8—C9—C1098.1 (5)C10—Ru1—C13—C1468.8 (3)
N2—C8—C9—C1471.9 (5)C11—Ru1—C13—C14105.4 (3)
N2—C8—C9—Ru112.9 (5)C12—Ru1—C13—C14134.0 (4)
C1—Ru1—C9—C10128.3 (3)Cl1—Ru1—C13—C14147.9 (2)
C14—Ru1—C9—C10129.7 (4)Cl2—Ru1—C13—C14129.1 (3)
C13—Ru1—C9—C10101.3 (3)C1—Ru1—C13—C12165.7 (3)
C11—Ru1—C9—C1030.3 (3)C9—Ru1—C13—C12104.1 (3)
C12—Ru1—C9—C1065.0 (3)C10—Ru1—C13—C1265.2 (3)
Cl1—Ru1—C9—C1048.2 (3)C14—Ru1—C13—C12134.0 (4)
Cl2—Ru1—C9—C10145.4 (2)C11—Ru1—C13—C1228.5 (3)
C1—Ru1—C9—C14102.0 (3)Cl1—Ru1—C13—C1213.9 (4)
C10—Ru1—C9—C14129.7 (4)Cl2—Ru1—C13—C1296.9 (3)
C13—Ru1—C9—C1428.4 (3)C12—C13—C14—C96.2 (7)
C11—Ru1—C9—C1499.5 (3)Ru1—C13—C14—C949.7 (4)
C12—Ru1—C9—C1464.7 (3)C12—C13—C14—C15176.7 (4)
Cl1—Ru1—C9—C14177.9 (2)Ru1—C13—C14—C15127.4 (4)
Cl2—Ru1—C9—C1415.7 (4)C12—C13—C14—Ru155.9 (4)
C1—Ru1—C9—C810.9 (3)C10—C9—C14—C136.4 (6)
C10—Ru1—C9—C8117.4 (5)C8—C9—C14—C13163.8 (4)
C14—Ru1—C9—C8112.8 (4)Ru1—C9—C14—C1352.0 (4)
C13—Ru1—C9—C8141.3 (4)C10—C9—C14—C15176.6 (4)
C11—Ru1—C9—C8147.7 (4)C8—C9—C14—C1513.3 (6)
C12—Ru1—C9—C8177.6 (4)Ru1—C9—C14—C15125.0 (4)
Cl1—Ru1—C9—C869.3 (4)C10—C9—C14—Ru158.4 (4)
Cl2—Ru1—C9—C897.1 (4)C8—C9—C14—Ru1111.8 (4)
C14—C9—C10—C112.5 (6)C1—Ru1—C14—C13153.4 (3)
C8—C9—C10—C11167.2 (4)C9—Ru1—C14—C13132.7 (4)
Ru1—C9—C10—C1156.5 (4)C10—Ru1—C14—C13101.5 (3)
C14—C9—C10—C16177.0 (4)C11—Ru1—C14—C1363.3 (3)
C8—C9—C10—C1613.3 (7)C12—Ru1—C14—C1328.0 (3)
Ru1—C9—C10—C16124.0 (4)Cl1—Ru1—C14—C13127.2 (4)
C14—C9—C10—Ru159.0 (4)Cl2—Ru1—C14—C1355.9 (3)
C8—C9—C10—Ru1110.7 (4)C1—Ru1—C14—C973.9 (3)
C1—Ru1—C10—C952.5 (3)C10—Ru1—C14—C931.2 (3)
C14—Ru1—C10—C931.2 (3)C13—Ru1—C14—C9132.7 (4)
C13—Ru1—C10—C968.2 (3)C11—Ru1—C14—C969.4 (3)
C11—Ru1—C10—C9130.2 (4)C12—Ru1—C14—C9104.6 (3)
C12—Ru1—C10—C9104.4 (3)Cl1—Ru1—C14—C95.5 (5)
Cl1—Ru1—C10—C9140.6 (2)Cl2—Ru1—C14—C9171.4 (2)
Cl2—Ru1—C10—C9126.1 (3)C1—Ru1—C14—C1539.0 (5)
C1—Ru1—C10—C11177.3 (3)C9—Ru1—C14—C15112.8 (6)
C9—Ru1—C10—C11130.2 (4)C10—Ru1—C14—C15144.0 (5)
C14—Ru1—C10—C1199.0 (3)C13—Ru1—C14—C15114.5 (6)
C13—Ru1—C10—C1162.1 (3)C11—Ru1—C14—C15177.8 (5)
C12—Ru1—C10—C1125.8 (3)C12—Ru1—C14—C15142.5 (5)
Cl1—Ru1—C10—C1189.1 (3)Cl1—Ru1—C14—C15118.4 (5)
Cl2—Ru1—C10—C114.1 (5)Cl2—Ru1—C14—C1558.6 (5)
C1—Ru1—C10—C1663.4 (4)C1—N1—C18—C19112.6 (5)
C9—Ru1—C10—C16115.9 (5)C2—N1—C18—C1968.4 (5)
C14—Ru1—C10—C16147.1 (5)N1—C18—C19—C2045.8 (5)
C13—Ru1—C10—C16175.9 (5)N1—C18—C19—C24137.6 (4)
C11—Ru1—C10—C16113.9 (5)C24—C19—C20—C210.8 (7)
C12—Ru1—C10—C16139.7 (5)C18—C19—C20—C21175.9 (4)
Cl1—Ru1—C10—C1624.7 (4)C19—C20—C21—C221.7 (7)
Cl2—Ru1—C10—C16118.0 (4)C20—C21—C22—C233.0 (8)
C9—C10—C11—C122.0 (7)C21—C22—C23—C241.7 (7)
C16—C10—C11—C12178.5 (4)C22—C23—C24—C190.9 (7)
Ru1—C10—C11—C1251.5 (4)C22—C23—C24—C25179.2 (5)
C9—C10—C11—Ru153.5 (3)C20—C19—C24—C232.1 (6)
C16—C10—C11—Ru1127.0 (4)C18—C19—C24—C23174.5 (4)
C1—Ru1—C11—C12140.7 (3)C20—C19—C24—C25177.9 (4)
C9—Ru1—C11—C12105.3 (3)C18—C19—C24—C255.5 (7)
C10—Ru1—C11—C12136.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15C···N20.982.603.244 (7)123
C18—H18A···Cl20.992.673.468 (5)138
C23—H23A···Cl1i0.952.783.730 (5)175
C26—H26A···Cl2ii0.992.463.431 (6)168
Symmetry codes: (i) x, y, z1/2; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[RuCl2(C25H26N2)]·CH2Cl2
Mr611.37
Crystal system, space groupMonoclinic, C2/c
Temperature (K)153
a, b, c (Å)31.362 (6), 8.1014 (16), 20.484 (4)
β (°) 100.11 (3)
V3)5123.8 (18)
Z8
Radiation typeMo Kα
µ (mm1)1.05
Crystal size (mm)0.46 × 0.14 × 0.06
Data collection
DiffractometerRigaku Mercury CCD (2x2 bin mode)
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.644, 0.940
No. of measured, independent and
observed [I > 2σ(I)] reflections
15807, 4501, 3825
Rint0.054
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.115, 1.08
No. of reflections4501
No. of parameters298
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0431P)2 + 37.6344P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.92, 0.73

Computer programs: CrystalClear (Rigaku/MSC, 2006), SHELXTL (Version 6.10; Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15C···N20.982.603.244 (7)123
C18—H18A···Cl20.992.673.468 (5)138
C23—H23A···Cl1i0.952.783.730 (5)175
C26—H26A···Cl2ii0.992.463.431 (6)168
Symmetry codes: (i) x, y, z1/2; (ii) x, y+1, z.
 

Acknowledgements

We thank the Technological and Scientific Research Council of Turkey TÜBİTAK-CNRS [grant No. TBAG-U/181(106 T716)] and İnönü University Research Fund (BAP 2007/39) for financial support.

References

First citationArduengo, A. J. & Krafczyc, R. (1998). Chem. Ztg, 32, 6–14.  CAS Google Scholar
First citationArslan, H., VanDerveer, D., Özdemir, İ., Çetinkaya, B. & Demir, S. (2004). Z. Kristallogr. New Cryst. Struct. 219, 377–378.  CAS Google Scholar
First citationArslan, H., VanDerveer, D., Özdemir, I., Yaşar, S. & Çetinkaya, B. (2005). Acta Cryst. E61, m1873–m1875.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArslan, H., VanDerveer, D., Yaşar, S., Özdemir, İ. & Çetinkaya, B. (2007). Acta Cryst. E63, m1001–m1003.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBegley, M. J., Harrison, S. & Wright, A. H. (1991). Acta Cryst. C47, 318–320.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationÇetinkaya, B., Demir, S., Özdemir, İ., Toupet, L., Semeril, D., Bruneau, C. & Dixneuf, P. H. (2001). New J. Chem. 25, 519–521.  Google Scholar
First citationÇetinkaya, B., Demir, S., Özdemir, İ., Toupet, L., Semeril, D., Bruneau, C. & Dixneuf, P. H. (2003). Chem. Eur. J. 9, 2323–2330.  PubMed Google Scholar
First citationHerrmann, W. A. (2002). Angew. Chem. Int. Ed. 41, 1290–1309.  Web of Science CrossRef CAS Google Scholar
First citationHerrmann, W. A., Elison, M., Fischer, J., Köcher, C. & Artus, G. R. J. (1995). Angew. Chem. Int. Ed. Engl. 34, 2371–2374.  CrossRef CAS Web of Science Google Scholar
First citationJacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationNavarro, O., Marion, N., Oonishi, Y., Kelly, R. A. & Nolan, S. P. (2006). J. Org. Chem. 71, 685–692.  Web of Science CrossRef PubMed CAS Google Scholar
First citationÖzdemir, İ., Alıcı, B., Gürbüz, N., Çetinkaya, E. & Çetinkaya, B. (2004). J. Mol. Catal. A Chem. 217, 37–40.  CrossRef Google Scholar
First citationÖzdemir, İ., Yiğit, B., Çetinkaya, B., Ülkü, D., Tahir, M. N. & Arici, C. (2001). J. Organomet. Chem. 633, 27–32.  CrossRef Google Scholar
First citationRigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteedman, A. J. & Burrell, A. K. (1997). Acta Cryst. C53, 864–866.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationYaşar, S., Özdemir, İ., Çetinkaya, B., Renaud, J. L. & Bruneau, C. (2008). Eur. J. Org. Chem. 12, 2142–2149.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages m243-m244
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds