metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages m293-m294

Bis{2-meth­­oxy-6-[tris­­(hy­droxy­meth­yl)methyl­imino­meth­yl]phenolato-κ3O,N,O′}manganese(II) di­methanol solvate hemihydrate

aAdvanced Material Institute of Research, Department of Chemistry and Chemical Engineering, Shandong Institute of Education, Jinan 250013, People's Republic of China, bCollege of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China, and cDepartment of Chemistry and Chemical Engineering, Shandong Institute of Education, Jinan 250013, People's Republic of China
*Correspondence e-mail: xiutangzhang@yahoo.com.cn

(Received 2 January 2009; accepted 15 February 2009; online 21 February 2009)

In the title complex, [Mn(C12H16NO5)2]·2CH3OH·0.5H2O, the MnII atom has a distorted octa­hedral coordination geometry in which two N atoms from two 6-meth­oxy-2-[tris­(hydroxy­meth­yl)methyl­imino­meth­yl]phenolate ligands adopt a trans arrangement. The Mn—O(H) bonds (mean length 2.134 Å) are significantly longer than the Mn—O and Mn—N bonds (mean length 2.011 and 2.027 Å, respectively), and the dihedral angle between the mean planes through the aromatic rings of the two ligands is 76.8 (1)°. A complex network of O—H⋯O hydrogen bonds is formed between the complexes and the uncoordinated methanol and water mol­ecules. The C and O atoms of one C—OH group are disordered with equal occupancies.

Related literature

For Schiff-base complexes of transition metals, see: Ward (2007[Ward, M. D. (2007). Coord. Chem. Rev. 251, 1663-1677.]). For details of the synthesis and a related structure, see: Wang et al. (2007[Wang, Q., Li, X., Wang, X. & Zhang, Y. (2007). Acta Cryst. E63, m2537.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C12H16NO5)2]·2CH4O·0.5H2O

  • Mr = 636.55

  • Monoclinic, P 21 /n

  • a = 8.141 (2) Å

  • b = 18.130 (5) Å

  • c = 20.211 (6) Å

  • β = 93.590 (4)°

  • V = 2977.2 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.51 mm−1

  • T = 293 K

  • 0.12 × 0.10 × 0.09 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.941, Tmax = 0.955

  • 14576 measured reflections

  • 5287 independent reflections

  • 4036 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.148

  • S = 1.05

  • 5287 reflections

  • 416 parameters

  • 16 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.93 e Å−3

  • Δρmin = −0.65 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O8 0.86 (1) 1.885 (10) 2.706 (5) 160 (4)
O4—H4⋯O9 0.86 (1) 1.802 (12) 2.664 (5) 174 (5)
O5—H5⋯O2i 0.85 (1) 1.886 (13) 2.736 (4) 173 (6)
O6—H6⋯O3 0.86 (1) 1.886 (9) 2.737 (7) 172 (6)
O9—H9⋯O11 0.85 (1) 1.888 (10) 2.712 (5) 162 (4)
O10—H10⋯O1W 0.86 (1) 1.90 (4) 2.585 (6) 136 (5)
O11—H11⋯O6ii 0.85 (1) 1.897 (18) 2.739 (4) 169 (7)
O12—H12⋯O2 0.85 2.12 2.967 (7) 180
O12A—H12A⋯O5iii 0.85 2.10 2.946 (7) 180
O1W—H1W⋯O5 0.85 1.81 2.657 (8) 180
O1W—H2W⋯O12Aiv 0.85 2.14 2.990 (9) 180
Symmetry codes: (i) x-1, y, z; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) x+1, y, z; (iv) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Transition metal Schiff-base complexes have been intensively studied owing to their interesting physical and chemical properties, including magnetic, optics and catalysis (Ward et al.). Herein, we report a crystal structure of an MnII complex incorporating the Schiff-base ligand, (E)-2-(2-hydroxy-3-methoxybenzylideneamino)-2-(hydroxymethyl)propane-1,3-diol.

The asymmetric unit (Fig. 1) comprises one [MnL2] complex, two uncoordinated methanol molecules and one lattice water molecule. The coordination geometry of MnII is distorted octahedral, with the N atoms of the two ligands trans to each other. The Mn—O and Mn—N bond distances are in the normal range compared to similar reported complexes (for example, Wang et al., 2007). A complex network of O—H···O hydrogen bonds is formed between the complexes and the lattice methanol and water molecules.

Related literature top

For Schiff-base complexes of transition metals, see: Ward (2007). For synthesis details and a related structure, see: Wang et al. (2007).

Experimental top

The Schiff-base ligand (HL) was synthesized according to the reported literature procedure (Wang et al.). The title complex was then prepared by refluxing HL (0.050 g, 0.2 mmol) and MnSO4.H2O in the mixed solvent system CH3OH:H2O (4:1) until all solid was dissolved. The solution was then cooled to room temperature and filtered. Crystals for diffraction analysis were obtained by slow evaporation of the filtrate. Elemental analysis calculated: C 48.05, H 6.47, N 4.31%; found: C 49.89, H 6.39, N 4.28%.

Refinement top

H atoms bound to C atoms were refined using a riding model with C—H = 0.93 Å, Uiso(H) = 1.2Ueq(C) for aromatic H atoms, C—H = 0.96 Å, Uiso(H) = 1.5Ueq(C) for methyl H atoms and C—H = 0.97 Å, Uiso(H) = 1.2Ueq(C) for methylene H atoms. H atoms bound to most of the O atoms were located in difference Fourier maps and refined with O—H restrained to be 0.85 (1) Å and with Uiso(H) = 1.5Ueq(O). The exceptions were for the disordered C—OH groups and the lattice water molecules: in these cases, the H atoms were placed so as to form reasonable H-bonds with O—H = 0.85 Å and refined as riding with Uiso(H) = 1.5Ueq(O). The C—O bonds of the disordered C—OH groups and the lattice methanol molecules were restrained to a common refined value with an uncertainty of 0.02 %A.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure with displacement ellipsoids at 30% probability for non-H atoms.
Bis{2-methoxy-6-[tris(hydroxymethyl)methyliminomethyl]phenolato- κ3O,N,O'}manganese(II) dimethanol solvate hemihydrate top
Crystal data top
[Mn(C12H16NO5)2]·2CH4O·0.5H2OF(000) = 1344
Mr = 636.55Dx = 1.420 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5287 reflections
a = 8.141 (2) Åθ = 2.0–25.3°
b = 18.130 (5) ŵ = 0.51 mm1
c = 20.211 (6) ÅT = 293 K
β = 93.590 (4)°Block, pink
V = 2977.2 (14) Å30.12 × 0.10 × 0.09 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5287 independent reflections
Radiation source: fine-focus sealed tube4036 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 25.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 99
Tmin = 0.941, Tmax = 0.955k = 2117
14576 measured reflectionsl = 2224
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0796P)2 + 1.8727P]
where P = (Fo2 + 2Fc2)/3
5287 reflections(Δ/σ)max = 0.001
416 parametersΔρmax = 0.93 e Å3
16 restraintsΔρmin = 0.65 e Å3
Crystal data top
[Mn(C12H16NO5)2]·2CH4O·0.5H2OV = 2977.2 (14) Å3
Mr = 636.55Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.141 (2) ŵ = 0.51 mm1
b = 18.130 (5) ÅT = 293 K
c = 20.211 (6) Å0.12 × 0.10 × 0.09 mm
β = 93.590 (4)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5287 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
4036 reflections with I > 2σ(I)
Tmin = 0.941, Tmax = 0.955Rint = 0.031
14576 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05116 restraints
wR(F2) = 0.148H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.93 e Å3
5287 reflectionsΔρmin = 0.65 e Å3
416 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.8762 (6)0.5053 (3)0.3266 (3)0.0813 (14)
H1A0.98120.50900.35090.122*
H1B0.88760.51900.28130.122*
H1C0.83680.45550.32850.122*
C20.6105 (4)0.56122 (19)0.32411 (18)0.0476 (8)
C30.5514 (5)0.5215 (2)0.26979 (19)0.0574 (10)
H3A0.61840.48700.25060.069*
C40.3910 (6)0.5330 (2)0.24340 (18)0.0604 (10)
H4A0.35070.50590.20680.072*
C50.2934 (5)0.5839 (2)0.27131 (17)0.0521 (9)
H5A0.18730.59190.25300.062*
C60.3507 (4)0.62479 (18)0.32757 (16)0.0440 (8)
C70.5118 (4)0.61434 (18)0.35482 (16)0.0430 (8)
C80.2333 (4)0.67685 (19)0.35280 (17)0.0450 (8)
H8A0.13250.68130.32880.054*
C90.1240 (4)0.76952 (19)0.42168 (17)0.0447 (8)
C100.1292 (4)0.7749 (2)0.49750 (18)0.0524 (9)
H10A0.06620.81720.51060.063*
H10B0.08130.73090.51570.063*
C110.0517 (4)0.7489 (2)0.3971 (2)0.0596 (10)
H11A0.12830.78520.41240.071*
H11B0.06080.74860.34900.071*
C120.1665 (5)0.8444 (2)0.39232 (19)0.0563 (9)
H12B0.08160.87960.40210.068*
H12C0.26940.86170.41370.068*
C130.5914 (9)1.0165 (3)0.3854 (3)0.1014 (18)
H13A0.52341.02190.34520.152*
H13B0.70171.03150.37800.152*
H13C0.54881.04670.41940.152*
C140.6726 (6)0.9237 (2)0.46473 (19)0.0594 (10)
C150.7689 (7)0.9712 (2)0.5036 (2)0.0746 (13)
H15A0.78471.01940.48940.090*
C160.8427 (6)0.9479 (2)0.5637 (2)0.0721 (12)
H16A0.90860.98000.58950.087*
C170.8178 (5)0.8778 (2)0.58459 (19)0.0547 (9)
H17A0.86570.86290.62540.066*
C180.7211 (4)0.82661 (19)0.54598 (17)0.0445 (8)
C190.6493 (4)0.84878 (19)0.48343 (16)0.0428 (8)
C200.7043 (4)0.75505 (19)0.57352 (17)0.0441 (8)
H20A0.76610.74560.61290.053*
C210.6069 (5)0.63052 (19)0.5864 (2)0.0567 (10)
C220.4262 (5)0.6059 (2)0.5794 (2)0.0630 (11)
H22A0.41840.55440.59180.076*
H22B0.36240.63460.60900.076*
C230.6610 (6)0.6332 (3)0.6597 (2)0.0782 (14)
H23A0.64970.58440.67860.094*
H23B0.77640.64680.66460.094*
C240.7115 (19)0.5685 (9)0.5636 (8)0.076 (4)0.50
H24A0.82260.58710.56090.092*0.50
H24B0.71560.53080.59770.092*0.50
O120.6698 (8)0.5379 (3)0.5091 (3)0.0742 (17)0.50
H120.64350.57010.47970.111*0.50
C24A0.7240 (16)0.5822 (9)0.5488 (10)0.076 (4)0.50
H24C0.71270.53290.56660.092*0.50
H24D0.67700.58030.50350.092*0.50
O12A0.8824 (6)0.5918 (3)0.5439 (3)0.0722 (16)0.50
H12A0.88990.61680.50870.108*0.50
C250.5935 (11)0.8441 (6)0.2719 (4)0.169 (4)
H25A0.55630.89420.26720.254*
H25B0.58710.82050.22930.254*
H25C0.70540.84360.29000.254*
C260.2701 (11)0.8216 (4)0.7004 (3)0.131 (3)
H26A0.36130.83420.73070.197*
H26B0.18660.79760.72410.197*
H26C0.22560.86560.67990.197*
Mn10.45435 (5)0.71273 (2)0.46924 (2)0.02874 (16)
N10.2550 (3)0.71681 (14)0.40435 (14)0.0407 (6)
N20.6132 (3)0.70187 (14)0.55018 (14)0.0433 (7)
O10.7639 (3)0.55283 (16)0.35476 (15)0.0694 (8)
O20.5780 (3)0.65014 (15)0.40653 (13)0.0586 (7)
O30.5054 (6)0.8104 (4)0.3093 (2)0.159 (2)
H30.545 (8)0.814 (5)0.3492 (7)0.239*
O40.2975 (3)0.78214 (14)0.52223 (12)0.0496 (6)
H40.297 (6)0.782 (2)0.5650 (6)0.074*
O50.0915 (3)0.67810 (19)0.42156 (19)0.0826 (10)
H50.193 (2)0.668 (3)0.414 (3)0.124*
O60.1812 (4)0.84266 (19)0.32360 (14)0.0779 (9)
H60.279 (2)0.829 (3)0.316 (3)0.117*
O70.5916 (5)0.94260 (17)0.40552 (15)0.0847 (10)
O80.5665 (3)0.80546 (13)0.44233 (11)0.0475 (6)
O90.3196 (7)0.7771 (3)0.65421 (19)0.145 (2)
H90.383 (6)0.7408 (19)0.664 (5)0.218*
O100.3606 (3)0.61528 (15)0.51303 (15)0.0656 (8)
H100.294 (5)0.590 (2)0.488 (2)0.098*
O110.5671 (5)0.6847 (2)0.69558 (16)0.0911 (10)
H110.591 (8)0.679 (4)0.7369 (9)0.137*
O1W0.0648 (7)0.5679 (4)0.4852 (4)0.0806 (18)0.50
H1W0.01470.60320.46500.121*0.50
H2W0.07950.52240.47700.121*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.068 (3)0.080 (3)0.097 (4)0.026 (2)0.023 (3)0.006 (3)
C20.048 (2)0.0451 (19)0.050 (2)0.0014 (16)0.0098 (15)0.0001 (16)
C30.078 (3)0.046 (2)0.049 (2)0.0068 (19)0.0133 (19)0.0072 (16)
C40.090 (3)0.052 (2)0.038 (2)0.002 (2)0.0006 (19)0.0120 (16)
C50.064 (2)0.051 (2)0.0411 (19)0.0031 (17)0.0026 (16)0.0061 (16)
C60.0481 (19)0.0430 (18)0.0411 (18)0.0053 (15)0.0042 (14)0.0057 (14)
C70.0434 (18)0.0434 (18)0.0429 (18)0.0056 (14)0.0078 (14)0.0078 (14)
C80.0393 (18)0.050 (2)0.0450 (19)0.0023 (15)0.0040 (14)0.0103 (16)
C90.0371 (17)0.0474 (19)0.049 (2)0.0034 (14)0.0014 (14)0.0109 (15)
C100.0397 (18)0.065 (2)0.053 (2)0.0014 (16)0.0040 (15)0.0099 (17)
C110.0356 (19)0.071 (3)0.072 (3)0.0055 (18)0.0029 (17)0.018 (2)
C120.062 (2)0.049 (2)0.056 (2)0.0033 (18)0.0075 (18)0.0038 (17)
C130.143 (5)0.072 (3)0.091 (4)0.009 (3)0.019 (4)0.032 (3)
C140.082 (3)0.049 (2)0.048 (2)0.010 (2)0.0109 (19)0.0011 (17)
C150.115 (4)0.047 (2)0.063 (3)0.026 (2)0.009 (3)0.0032 (19)
C160.096 (3)0.055 (2)0.065 (3)0.032 (2)0.002 (2)0.018 (2)
C170.063 (2)0.053 (2)0.048 (2)0.0133 (18)0.0015 (17)0.0143 (17)
C180.0418 (18)0.047 (2)0.0447 (19)0.0047 (15)0.0031 (14)0.0075 (15)
C190.0405 (17)0.0482 (19)0.0404 (18)0.0071 (15)0.0072 (14)0.0087 (15)
C200.0417 (18)0.0465 (19)0.0434 (18)0.0017 (15)0.0040 (14)0.0038 (15)
C210.053 (2)0.0377 (19)0.078 (3)0.0042 (16)0.0116 (19)0.0085 (18)
C220.058 (2)0.053 (2)0.078 (3)0.0117 (19)0.007 (2)0.013 (2)
C230.075 (3)0.065 (3)0.091 (3)0.010 (2)0.026 (3)0.034 (3)
C240.055 (3)0.036 (5)0.140 (8)0.009 (3)0.016 (4)0.009 (6)
O120.086 (4)0.059 (4)0.077 (4)0.007 (3)0.000 (3)0.006 (3)
C24A0.055 (3)0.036 (5)0.140 (8)0.009 (3)0.016 (4)0.009 (6)
O12A0.053 (3)0.066 (4)0.096 (5)0.003 (3)0.010 (3)0.018 (3)
C250.160 (8)0.275 (12)0.074 (4)0.007 (8)0.019 (5)0.042 (6)
C260.208 (9)0.096 (5)0.090 (4)0.016 (5)0.006 (5)0.001 (4)
Mn10.0227 (2)0.0306 (3)0.0325 (3)0.00272 (17)0.00254 (16)0.00772 (18)
N10.0329 (14)0.0443 (15)0.0449 (16)0.0037 (11)0.0017 (11)0.0078 (12)
N20.0392 (15)0.0403 (15)0.0499 (16)0.0038 (12)0.0022 (12)0.0013 (12)
O10.0516 (16)0.0741 (19)0.083 (2)0.0111 (14)0.0072 (14)0.0217 (15)
O20.0378 (13)0.0666 (16)0.0705 (17)0.0002 (12)0.0023 (12)0.0337 (14)
O30.114 (3)0.299 (7)0.064 (3)0.080 (4)0.003 (2)0.000 (4)
O40.0462 (13)0.0615 (15)0.0408 (13)0.0030 (11)0.0002 (11)0.0082 (12)
O50.0400 (15)0.088 (2)0.119 (3)0.0172 (16)0.0023 (16)0.007 (2)
O60.089 (2)0.092 (2)0.0502 (17)0.0103 (19)0.0159 (16)0.0114 (15)
O70.128 (3)0.0641 (19)0.0599 (19)0.0113 (19)0.0078 (18)0.0153 (15)
O80.0468 (13)0.0554 (14)0.0400 (13)0.0114 (11)0.0000 (10)0.0050 (10)
O90.159 (4)0.228 (6)0.047 (2)0.108 (4)0.002 (2)0.008 (3)
O100.0547 (16)0.0536 (17)0.085 (2)0.0118 (13)0.0213 (14)0.0063 (14)
O110.098 (3)0.118 (3)0.0554 (19)0.015 (2)0.0102 (18)0.020 (2)
O1W0.050 (3)0.067 (4)0.123 (5)0.010 (3)0.000 (3)0.010 (4)
Geometric parameters (Å, º) top
C1—O11.402 (5)C19—O81.300 (4)
C1—H1A0.960C20—N21.288 (4)
C1—H1B0.960C20—H20A0.930
C1—H1C0.960C21—N21.488 (4)
C2—O11.367 (5)C21—C241.500 (10)
C2—C31.374 (5)C21—C231.521 (6)
C2—C71.422 (5)C21—C24A1.531 (9)
C3—C41.395 (6)C21—C221.535 (5)
C3—H3A0.930C22—O101.422 (5)
C4—C51.363 (5)C22—H22A0.970
C4—H4A0.930C22—H22B0.970
C5—C61.412 (5)C23—O111.432 (7)
C5—H5A0.930C23—H23A0.970
C6—C71.403 (5)C23—H23B0.970
C6—C81.458 (5)C24—O121.261 (13)
C7—O21.316 (4)C24—H24A0.970
C8—N11.272 (4)C24—H24B0.970
C8—H8A0.930O12—H120.850
C9—N11.490 (4)C24A—O12A1.311 (12)
C9—C121.530 (5)C24A—H24C0.970
C9—C111.531 (5)C24A—H24D0.970
C9—C101.533 (5)O12A—H12A0.850
C10—O41.435 (4)C25—O31.234 (8)
C10—H10A0.970C25—H25A0.960
C10—H10B0.970C25—H25B0.960
C11—O51.421 (5)C25—H25C0.960
C11—H11A0.970C26—O91.316 (7)
C11—H11B0.970C26—H26A0.960
C12—O61.402 (5)C26—H26B0.960
C12—H12B0.970C26—H26C0.960
C12—H12C0.970Mn1—O82.005 (2)
C13—O71.400 (5)Mn1—O22.017 (2)
C13—H13A0.960Mn1—N12.023 (3)
C13—H13B0.960Mn1—N22.030 (3)
C13—H13C0.960Mn1—O42.129 (2)
C14—O71.373 (5)Mn1—O102.138 (3)
C14—C151.377 (6)O3—H30.86 (1)
C14—C191.426 (5)O4—H40.87 (1)
C15—C161.388 (6)O5—H50.85 (1)
C15—H15A0.930O6—H60.86 (1)
C16—C171.358 (6)O9—H90.85 (1)
C16—H16A0.930O10—H100.85 (1)
C17—C181.419 (5)O11—H110.85 (1)
C17—H17A0.930O1W—H1W0.850
C18—C191.417 (5)O1W—H2W0.850
C18—C201.422 (5)
O1—C1—H1A109.5N2—C21—C24A102.2 (8)
O1—C1—H1B109.5C23—C21—C24A110.5 (9)
H1A—C1—H1B109.5N2—C21—C22105.7 (3)
O1—C1—H1C109.5C24—C21—C22108.2 (7)
H1A—C1—H1C109.5C23—C21—C22108.5 (4)
H1B—C1—H1C109.5C24A—C21—C22114.2 (7)
O1—C2—C3124.6 (3)O10—C22—C21110.7 (3)
O1—C2—C7113.8 (3)O10—C22—H22A109.5
C3—C2—C7121.6 (3)C21—C22—H22A109.5
C2—C3—C4120.0 (3)O10—C22—H22B109.5
C2—C3—H3A120.0C21—C22—H22B109.5
C4—C3—H3A120.0H22A—C22—H22B108.1
C5—C4—C3119.9 (3)O11—C23—C21112.5 (3)
C5—C4—H4A120.0O11—C23—H23A109.1
C3—C4—H4A120.0C21—C23—H23A109.1
C4—C5—C6121.1 (4)O11—C23—H23B109.1
C4—C5—H5A119.4C21—C23—H23B109.1
C6—C5—H5A119.4H23A—C23—H23B107.8
C7—C6—C5119.9 (3)O12—C24—C21118.1 (12)
C7—C6—C8124.6 (3)O12—C24—H24A107.8
C5—C6—C8115.5 (3)C21—C24—H24A107.8
O2—C7—C6124.8 (3)O12—C24—H24B107.8
O2—C7—C2117.8 (3)C21—C24—H24B107.8
C6—C7—C2117.4 (3)H24A—C24—H24B107.1
N1—C8—C6126.5 (3)C24—O12—H12110.5
N1—C8—H8A116.8O12A—C24A—C21127.4 (11)
C6—C8—H8A116.8O12A—C24A—H24C105.5
N1—C9—C12107.2 (3)C21—C24A—H24C105.5
N1—C9—C11115.8 (3)O12A—C24A—H24D105.5
C12—C9—C11108.7 (3)C21—C24A—H24D105.5
N1—C9—C10107.5 (3)H24C—C24A—H24D106.0
C12—C9—C10109.8 (3)C24A—O12A—H12A104.8
C11—C9—C10107.8 (3)O3—C25—H25A109.7
O4—C10—C9108.7 (3)O3—C25—H25B109.1
O4—C10—H10A110.0H25A—C25—H25B109.5
C9—C10—H10A110.0O3—C25—H25C109.7
O4—C10—H10B110.0H25A—C25—H25C109.5
C9—C10—H10B110.0H25B—C25—H25C109.5
H10A—C10—H10B108.3O9—C26—H26A109.8
O5—C11—C9109.7 (3)O9—C26—H26B109.5
O5—C11—H11A109.7H26A—C26—H26B109.5
C9—C11—H11A109.7O9—C26—H26C109.1
O5—C11—H11B109.7H26A—C26—H26C109.5
C9—C11—H11B109.7H26B—C26—H26C109.5
H11A—C11—H11B108.2O8—Mn1—O292.73 (11)
O6—C12—C9113.5 (3)O8—Mn1—N198.86 (10)
O6—C12—H12B108.9O2—Mn1—N191.42 (10)
C9—C12—H12B108.9O8—Mn1—N291.25 (10)
O6—C12—H12C108.9O2—Mn1—N297.70 (11)
C9—C12—H12C108.9N1—Mn1—N2166.06 (11)
H12B—C12—H12C107.7O8—Mn1—O486.48 (10)
O7—C13—H13A109.5O2—Mn1—O4170.91 (10)
O7—C13—H13B109.5N1—Mn1—O479.77 (10)
H13A—C13—H13B109.5N2—Mn1—O491.37 (11)
O7—C13—H13C109.5O8—Mn1—O10170.32 (10)
H13A—C13—H13C109.5O2—Mn1—O1090.02 (12)
H13B—C13—H13C109.5N1—Mn1—O1090.34 (10)
O7—C14—C15124.5 (4)N2—Mn1—O1079.18 (10)
O7—C14—C19113.8 (3)O4—Mn1—O1092.25 (11)
C15—C14—C19121.7 (4)C8—N1—C9119.5 (3)
C14—C15—C16120.6 (4)C8—N1—Mn1125.1 (2)
C14—C15—H15A119.7C9—N1—Mn1115.3 (2)
C16—C15—H15A119.7C20—N2—C21120.5 (3)
C17—C16—C15119.5 (4)C20—N2—Mn1123.1 (2)
C17—C16—H16A120.2C21—N2—Mn1116.1 (2)
C15—C16—H16A120.2C2—O1—C1119.0 (3)
C16—C17—C18121.9 (4)C7—O2—Mn1125.5 (2)
C16—C17—H17A119.0C25—O3—H3110 (3)
C18—C17—H17A119.0C10—O4—Mn1111.1 (2)
C19—C18—C17119.3 (3)C10—O4—H4107 (3)
C19—C18—C20124.3 (3)Mn1—O4—H4123 (3)
C17—C18—C20116.4 (3)C11—O5—H5112 (4)
O8—C19—C18124.5 (3)C12—O6—H6109 (4)
O8—C19—C14118.6 (3)C14—O7—C13118.9 (4)
C18—C19—C14116.9 (3)C19—O8—Mn1124.0 (2)
N2—C20—C18127.4 (3)C26—O9—H9121 (7)
N2—C20—H20A116.3C22—O10—Mn1111.5 (2)
C18—C20—H20A116.3C22—O10—H10133 (4)
N2—C21—C24117.6 (8)Mn1—O10—H10115 (4)
N2—C21—C23115.8 (3)C23—O11—H11109 (5)
C24—C21—C23100.8 (7)H1W—O1W—H2W135.0
O1—C2—C3—C4178.2 (4)C12—C9—N1—Mn187.7 (3)
C7—C2—C3—C40.1 (6)C11—C9—N1—Mn1150.8 (3)
C2—C3—C4—C50.4 (6)C10—C9—N1—Mn130.2 (3)
C3—C4—C5—C61.1 (6)O8—Mn1—N1—C8105.0 (3)
C4—C5—C6—C71.3 (6)O2—Mn1—N1—C812.0 (3)
C4—C5—C6—C8179.4 (3)N2—Mn1—N1—C8119.0 (5)
C5—C6—C7—O2179.1 (3)O4—Mn1—N1—C8170.3 (3)
C8—C6—C7—O20.1 (6)O10—Mn1—N1—C878.0 (3)
C5—C6—C7—C20.8 (5)O8—Mn1—N1—C977.4 (2)
C8—C6—C7—C2180.0 (3)O2—Mn1—N1—C9170.4 (2)
O1—C2—C7—O21.9 (5)N2—Mn1—N1—C958.6 (5)
C3—C2—C7—O2179.8 (3)O4—Mn1—N1—C97.4 (2)
O1—C2—C7—C6178.2 (3)O10—Mn1—N1—C999.6 (2)
C3—C2—C7—C60.1 (5)C18—C20—N2—C21178.5 (3)
C7—C6—C8—N14.2 (6)C18—C20—N2—Mn15.1 (5)
C5—C6—C8—N1176.6 (3)C24—C21—N2—C2098.6 (8)
N1—C9—C10—O445.2 (4)C23—C21—N2—C2020.6 (5)
C12—C9—C10—O471.1 (4)C24A—C21—N2—C2099.6 (8)
C11—C9—C10—O4170.7 (3)C22—C21—N2—C20140.6 (3)
N1—C9—C11—O556.9 (4)C24—C21—N2—Mn187.6 (8)
C12—C9—C11—O5177.6 (3)C23—C21—N2—Mn1153.2 (3)
C10—C9—C11—O563.4 (4)C24A—C21—N2—Mn186.6 (7)
N1—C9—C12—O657.4 (4)C22—C21—N2—Mn133.2 (4)
C11—C9—C12—O668.5 (4)O8—Mn1—N2—C2016.8 (3)
C10—C9—C12—O6173.8 (3)O2—Mn1—N2—C20109.7 (3)
O7—C14—C15—C16178.2 (5)N1—Mn1—N2—C20119.9 (4)
C19—C14—C15—C162.1 (7)O4—Mn1—N2—C2069.7 (3)
C14—C15—C16—C170.7 (8)O10—Mn1—N2—C20161.8 (3)
C15—C16—C17—C181.4 (7)O8—Mn1—N2—C21169.6 (3)
C16—C17—C18—C190.6 (6)O2—Mn1—N2—C2176.7 (3)
C16—C17—C18—C20179.8 (4)N1—Mn1—N2—C2153.8 (6)
C17—C18—C19—O8175.9 (3)O4—Mn1—N2—C21103.9 (3)
C20—C18—C19—O83.6 (5)O10—Mn1—N2—C2111.9 (3)
C17—C18—C19—C143.2 (5)C3—C2—O1—C15.7 (6)
C20—C18—C19—C14177.3 (3)C7—C2—O1—C1176.1 (4)
O7—C14—C19—O84.6 (5)C6—C7—O2—Mn112.7 (5)
C15—C14—C19—O8175.2 (4)C2—C7—O2—Mn1167.4 (2)
O7—C14—C19—C18176.3 (3)O8—Mn1—O2—C7114.8 (3)
C15—C14—C19—C184.0 (6)N1—Mn1—O2—C715.9 (3)
C19—C18—C20—N26.2 (6)N2—Mn1—O2—C7153.6 (3)
C17—C18—C20—N2174.2 (3)O10—Mn1—O2—C774.5 (3)
N2—C21—C22—O1044.7 (4)C9—C10—O4—Mn140.2 (3)
C24—C21—C22—O1082.1 (8)O8—Mn1—O4—C10118.6 (2)
C23—C21—C22—O10169.4 (3)N1—Mn1—O4—C1019.0 (2)
C24A—C21—C22—O1066.9 (10)N2—Mn1—O4—C10150.2 (2)
N2—C21—C23—O1157.4 (5)O10—Mn1—O4—C1071.0 (2)
C24—C21—C23—O11174.6 (8)C15—C14—O7—C136.8 (7)
C24A—C21—C23—O11173.0 (7)C19—C14—O7—C13173.5 (4)
C22—C21—C23—O1161.1 (4)C18—C19—O8—Mn123.1 (5)
N2—C21—C24—O1271.5 (16)C14—C19—O8—Mn1157.7 (3)
C23—C21—C24—O12161.8 (13)O2—Mn1—O8—C19123.4 (3)
C22—C21—C24—O1248.1 (16)N1—Mn1—O8—C19144.7 (3)
N2—C21—C24A—O12A64 (2)N2—Mn1—O8—C1925.6 (3)
C23—C21—C24A—O12A60 (2)O4—Mn1—O8—C1965.7 (3)
C22—C21—C24A—O12A177.2 (15)C21—C22—O10—Mn136.8 (4)
C6—C8—N1—C9177.6 (3)O2—Mn1—O10—C22112.2 (3)
C6—C8—N1—Mn14.9 (5)N1—Mn1—O10—C22156.3 (3)
C12—C9—N1—C894.5 (4)N2—Mn1—O10—C2214.4 (3)
C11—C9—N1—C826.9 (5)O4—Mn1—O10—C2276.6 (3)
C10—C9—N1—C8147.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O80.86 (1)1.89 (1)2.706 (5)160 (4)
O4—H4···O90.86 (1)1.80 (1)2.664 (5)174 (5)
O5—H5···O2i0.85 (1)1.89 (1)2.736 (4)173 (6)
O6—H6···O30.86 (1)1.89 (1)2.737 (7)172 (6)
O9—H9···O110.85 (1)1.89 (1)2.712 (5)162 (4)
O10—H10···O1W0.86 (1)1.90 (4)2.585 (6)136 (5)
O11—H11···O6ii0.85 (1)1.90 (2)2.739 (4)169 (7)
O12—H12···O20.852.122.967 (7)180
O12A—H12A···O5iii0.852.102.946 (7)180
O1W—H1W···O50.851.812.657 (8)180
O1W—H2W···O12Aiv0.852.142.990 (9)180
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y+3/2, z+1/2; (iii) x+1, y, z; (iv) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Mn(C12H16NO5)2]·2CH4O·0.5H2O
Mr636.55
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.141 (2), 18.130 (5), 20.211 (6)
β (°) 93.590 (4)
V3)2977.2 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.51
Crystal size (mm)0.12 × 0.10 × 0.09
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.941, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
14576, 5287, 4036
Rint0.031
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.148, 1.05
No. of reflections5287
No. of parameters416
No. of restraints16
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.93, 0.65

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O80.86 (1)1.885 (10)2.706 (5)160 (4)
O4—H4···O90.86 (1)1.802 (12)2.664 (5)174 (5)
O5—H5···O2i0.85 (1)1.886 (13)2.736 (4)173 (6)
O6—H6···O30.86 (1)1.886 (9)2.737 (7)172 (6)
O9—H9···O110.85 (1)1.888 (10)2.712 (5)162 (4)
O10—H10···O1W0.86 (1)1.90 (4)2.585 (6)136 (5)
O11—H11···O6ii0.85 (1)1.897 (18)2.739 (4)169 (7)
O12—H12···O20.852.122.967 (7)180.0
O12A—H12A···O5iii0.852.102.946 (7)179.8
O1W—H1W···O50.851.812.657 (8)179.6
O1W—H2W···O12Aiv0.852.142.990 (9)179.6
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y+3/2, z+1/2; (iii) x+1, y, z; (iv) x+1, y+1, z+1.
 

Acknowledgements

Financial support from the Natural Science Foundation of China (grant Nos. 20171028 and 20325105), the National Ministry of Science and Technology of China (grant No. 2001CB6105-07), and the Ministry of Education of China, Shandong University, is gratefully acknowledged.

References

First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Q., Li, X., Wang, X. & Zhang, Y. (2007). Acta Cryst. E63, m2537.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWard, M. D. (2007). Coord. Chem. Rev. 251, 1663–1677.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages m293-m294
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds