inorganic compounds
Silver europium(III) polyphosphate
aLaboratoire d'Application de la Chimie aux Ressources et, Substances Naturelles et á l'Environnement, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia, bUnité de Recherches de Matériaux de Terres Rares, Centre National de Recherches en Sciences des Matériaux, BP 95 Hammam-Lif 2050, Tunisia, and cLPCML–UMR 5620 CNRS/UCBL, Domaine Scientifique de la Doua, Université Claude Bernard Lyon 1 Batiment Alfred Kastler, 10 rue André-Marie Ampére, 69622 Villeurbanne Cedex, France
*Correspondence e-mail: Mounir.Ayadi@fsm.rnu.tn
Europium(III) silver polyphosphate, AgEu(PO3)4, was prepared by the method. The atomic arrangement is built up by infinite (PO3)n chains (periodicity of 4) extending along the c axis. These chains are joined to each other by EuO8 dodecahedra. The Ag+ cations are located in the voids of this arrangement and are surrounded by five oxygen atoms in a distorted [4+1] coordination.
Related literature
For isotypic AgNd(PO3)4, see: Trunov et al. (1990). For related structures, see: Yamada et al. (1974); Hashimoto et al. (1991); Horchani et al. (2003); Durif (1995); Averbuch-Pouchot & Bagieu-Beucher (1987); Férid (2006).
Experimental
Crystal data
|
Data collection: COLLECT (Nonius, 2001); cell DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536809004085/br2089sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809004085/br2089Isup2.hkl
Single crystals of AgEu(PO3)4 were prepared by
method. A mixture of Ag2CO3 (3 g), EuCl3.6H2O (0.5 g) and H3PO4(85%, 17 ml), was progressively heated in a vitreous carbon crucible to 473 K for 12 h. The temperature was then raised and kept at 600 K for 16 days after that, the furnance was slowly cooled until the room temperature. The product was washed with boiling water to separate colorless single crystals from phosphoric acid.The highest peak and the deepest hole are located 1.22Å and 0.73 Å, respectively, from Ag and Eu.
Data collection: COLLECT (Nonius, 2001); cell
DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS08 (Sheldrick, 2008); program(s) used to refine structure: SHELXL08 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL08 (Sheldrick, 2008).AgEu(PO3)4 | F(000) = 1064 |
Mr = 575.72 | Dx = 4.037 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 25 reflections |
a = 9.9654 (3) Å | θ = 2.4–30.1° |
b = 13.1445 (7) Å | µ = 9.37 mm−1 |
c = 7.2321 (3) Å | T = 298 K |
β = 90.42 (1)° | Prism, colorless |
V = 947.31 (7) Å3 | 0.19 × 0.18 × 0.17 mm |
Z = 4 |
Nonius KappaCCD diffractometer | 2019 independent reflections |
Radiation source: fine-focus sealed tube | 1704 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.042 |
ϕ and ω scans | θmax = 27.5°, θmin = 3.8° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −12→12 |
Tmin = 0.167, Tmax = 0.201 | k = −16→15 |
3371 measured reflections | l = −9→9 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | w = 1/[σ2(Fo2) + (0.0685P)2 + 1.0941P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.109 | (Δ/σ)max < 0.001 |
S = 1.03 | Δρmax = 2.43 e Å−3 |
2019 reflections | Δρmin = −2.06 e Å−3 |
164 parameters | Extinction correction: SHELXL08 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.00014 (2) |
AgEu(PO3)4 | V = 947.31 (7) Å3 |
Mr = 575.72 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 9.9654 (3) Å | µ = 9.37 mm−1 |
b = 13.1445 (7) Å | T = 298 K |
c = 7.2321 (3) Å | 0.19 × 0.18 × 0.17 mm |
β = 90.42 (1)° |
Nonius KappaCCD diffractometer | 2019 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1704 reflections with I > 2σ(I) |
Tmin = 0.167, Tmax = 0.201 | Rint = 0.042 |
3371 measured reflections |
R[F2 > 2σ(F2)] = 0.042 | 164 parameters |
wR(F2) = 0.109 | 0 restraints |
S = 1.03 | Δρmax = 2.43 e Å−3 |
2019 reflections | Δρmin = −2.06 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Eu | 0.52254 (4) | 0.78212 (2) | 0.51227 (4) | 0.01862 (19) | |
Ag | 0.43355 (7) | 0.77670 (5) | 1.00017 (8) | 0.0322 (2) | |
P1 | 0.25190 (18) | 0.90008 (12) | 1.2536 (2) | 0.0168 (4) | |
P2 | 0.19511 (18) | 0.87338 (12) | 1.6486 (2) | 0.0167 (4) | |
P3 | 0.79921 (18) | 0.90983 (12) | 1.2635 (2) | 0.0172 (4) | |
P4 | 0.73739 (18) | 0.88594 (12) | 0.8738 (2) | 0.0162 (4) | |
O1 | 0.1995 (5) | 0.8356 (3) | 1.1018 (6) | 0.0241 (11) | |
O2 | 0.3997 (5) | 0.8951 (4) | 1.2904 (7) | 0.0243 (11) | |
O3 | 0.2039 (5) | 1.0133 (3) | 1.2168 (7) | 0.0240 (11) | |
O4 | 0.1629 (5) | 0.8769 (3) | 1.4335 (6) | 0.0198 (10) | |
O5 | 0.3444 (5) | 0.8678 (4) | 1.6767 (7) | 0.0218 (10) | |
O6 | 0.1062 (6) | 0.7906 (3) | 1.7231 (6) | 0.0228 (11) | |
O7 | 0.8644 (5) | 1.0214 (3) | 1.2777 (7) | 0.0193 (10) | |
O8 | 0.9144 (5) | 0.8395 (3) | 1.2329 (6) | 0.0236 (10) | |
O9 | 0.7055 (5) | 0.8919 (3) | 1.4217 (6) | 0.0218 (10) | |
O10 | 0.7085 (5) | 0.9202 (3) | 1.0822 (6) | 0.0203 (10) | |
O11 | 0.8483 (5) | 0.8097 (3) | 0.8671 (7) | 0.0218 (10) | |
O12 | 0.6047 (5) | 0.8557 (3) | 0.7933 (6) | 0.0198 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Eu | 0.0183 (3) | 0.0189 (2) | 0.0186 (2) | −0.00063 (12) | −0.00048 (15) | −0.00108 (12) |
Ag | 0.0262 (4) | 0.0456 (4) | 0.0249 (3) | 0.0034 (2) | 0.0008 (2) | −0.0088 (2) |
P1 | 0.0201 (9) | 0.0138 (7) | 0.0165 (7) | −0.0001 (6) | 0.0005 (6) | 0.0001 (6) |
P2 | 0.0173 (9) | 0.0155 (8) | 0.0173 (8) | 0.0007 (6) | −0.0001 (6) | −0.0002 (6) |
P3 | 0.0206 (9) | 0.0143 (7) | 0.0168 (8) | 0.0004 (6) | −0.0017 (6) | −0.0002 (6) |
P4 | 0.0162 (9) | 0.0160 (8) | 0.0165 (8) | −0.0001 (6) | −0.0020 (6) | −0.0012 (6) |
O1 | 0.034 (3) | 0.019 (2) | 0.019 (2) | 0.004 (2) | −0.002 (2) | −0.0060 (19) |
O2 | 0.023 (3) | 0.026 (2) | 0.023 (2) | 0.000 (2) | −0.002 (2) | −0.002 (2) |
O3 | 0.028 (3) | 0.016 (2) | 0.028 (3) | 0.007 (2) | −0.004 (2) | 0.0052 (19) |
O4 | 0.019 (3) | 0.025 (2) | 0.016 (2) | 0.0000 (19) | −0.0004 (18) | 0.0039 (18) |
O5 | 0.017 (3) | 0.024 (2) | 0.025 (2) | 0.0021 (19) | −0.003 (2) | −0.007 (2) |
O6 | 0.029 (3) | 0.021 (2) | 0.018 (2) | −0.005 (2) | 0.000 (2) | 0.0038 (18) |
O7 | 0.013 (2) | 0.014 (2) | 0.031 (3) | −0.0005 (18) | 0.0063 (19) | −0.003 (2) |
O8 | 0.027 (3) | 0.018 (2) | 0.026 (2) | 0.003 (2) | −0.001 (2) | −0.002 (2) |
O9 | 0.027 (3) | 0.023 (2) | 0.016 (2) | −0.004 (2) | 0.0040 (19) | −0.0026 (18) |
O10 | 0.017 (2) | 0.020 (2) | 0.024 (2) | 0.0009 (19) | −0.0016 (18) | −0.0023 (19) |
O11 | 0.022 (3) | 0.018 (2) | 0.025 (2) | 0.007 (2) | −0.001 (2) | 0.002 (2) |
O12 | 0.023 (3) | 0.021 (2) | 0.015 (2) | 0.005 (2) | −0.0053 (19) | −0.0005 (18) |
Eu—O11i | 2.355 (5) | P2—O4 | 1.587 (5) |
Eu—O12 | 2.390 (4) | P2—O7vi | 1.598 (5) |
Eu—O9ii | 2.420 (5) | P3—O8 | 1.492 (5) |
Eu—O5ii | 2.422 (5) | P3—O9 | 1.500 (5) |
Eu—O1iii | 2.430 (5) | P3—O10 | 1.593 (5) |
Eu—O6iv | 2.451 (5) | P3—O7 | 1.607 (5) |
Eu—O2ii | 2.500 (5) | P4—O11 | 1.493 (5) |
Eu—O8i | 2.508 (5) | P4—O12 | 1.495 (5) |
Eu—Ag | 3.6453 (7) | P4—O3vii | 1.592 (5) |
Eu—Agii | 3.8025 (7) | P4—O10 | 1.602 (5) |
Ag—O8i | 2.470 (5) | O1—Euviii | 2.430 (5) |
Ag—O12 | 2.503 (5) | O2—Euv | 2.500 (5) |
Ag—O6iii | 2.511 (5) | O3—P4vii | 1.592 (5) |
Ag—O1 | 2.570 (5) | O5—Euv | 2.422 (5) |
Ag—Euv | 3.8025 (7) | O6—Euix | 2.451 (5) |
P1—O1 | 1.479 (5) | O6—Agviii | 2.511 (5) |
P1—O2 | 1.496 (6) | O7—P2vi | 1.598 (5) |
P1—O3 | 1.585 (5) | O8—Agx | 2.470 (5) |
P1—O4 | 1.609 (5) | O8—Eux | 2.508 (5) |
P2—O5 | 1.502 (5) | O9—Euv | 2.420 (5) |
P2—O6 | 1.505 (5) | O11—Eux | 2.355 (5) |
O11i—Eu—O12 | 146.43 (17) | O12—Ag—Eu | 40.66 (10) |
O11i—Eu—O9ii | 137.70 (16) | O6iii—Ag—Eu | 117.27 (12) |
O12—Eu—O9ii | 74.62 (16) | O1—Ag—Eu | 119.92 (10) |
O11i—Eu—O5ii | 85.21 (16) | O8i—Ag—Euv | 142.17 (11) |
O12—Eu—O5ii | 69.01 (16) | O12—Ag—Euv | 114.81 (10) |
O9ii—Eu—O5ii | 114.34 (16) | O6iii—Ag—Euv | 39.40 (11) |
O11i—Eu—O1iii | 108.89 (17) | O1—Ag—Euv | 85.49 (10) |
O12—Eu—O1iii | 77.74 (15) | Eu—Ag—Euv | 152.34 (2) |
O9ii—Eu—O1iii | 84.55 (16) | O1—P1—O2 | 116.6 (3) |
O5ii—Eu—O1iii | 134.29 (16) | O1—P1—O3 | 108.0 (3) |
O11i—Eu—O6iv | 70.99 (18) | O2—P1—O3 | 111.5 (3) |
O12—Eu—O6iv | 140.07 (18) | O1—P1—O4 | 107.3 (3) |
O9ii—Eu—O6iv | 74.93 (16) | O2—P1—O4 | 113.3 (3) |
O5ii—Eu—O6iv | 148.82 (17) | O3—P1—O4 | 98.4 (3) |
O1iii—Eu—O6iv | 74.24 (16) | O5—P2—O6 | 120.1 (3) |
O11i—Eu—O2ii | 70.26 (16) | O5—P2—O4 | 109.1 (3) |
O12—Eu—O2ii | 117.94 (15) | O6—P2—O4 | 104.9 (3) |
O9ii—Eu—O2ii | 80.70 (17) | O5—P2—O7vi | 111.5 (3) |
O5ii—Eu—O2ii | 71.45 (17) | O6—P2—O7vi | 106.6 (3) |
O1iii—Eu—O2ii | 154.17 (16) | O4—P2—O7vi | 103.2 (3) |
O6iv—Eu—O2ii | 81.49 (16) | O8—P3—O9 | 120.0 (3) |
O11i—Eu—O8i | 68.78 (16) | O8—P3—O10 | 111.3 (3) |
O12—Eu—O8i | 82.12 (15) | O9—P3—O10 | 106.8 (3) |
O9ii—Eu—O8i | 151.72 (16) | O8—P3—O7 | 105.3 (3) |
O5ii—Eu—O8i | 70.38 (16) | O9—P3—O7 | 110.4 (3) |
O1iii—Eu—O8i | 74.87 (16) | O10—P3—O7 | 101.6 (3) |
O6iv—Eu—O8i | 116.40 (15) | O11—P4—O12 | 117.5 (3) |
O2ii—Eu—O8i | 125.20 (17) | O11—P4—O3vii | 105.7 (3) |
O11i—Eu—Ag | 103.74 (12) | O12—P4—O3vii | 112.8 (3) |
O12—Eu—Ag | 43.03 (12) | O11—P4—O10 | 111.0 (3) |
O9ii—Eu—Ag | 117.57 (11) | O12—P4—O10 | 106.1 (3) |
O5ii—Eu—Ag | 49.41 (11) | O3vii—P4—O10 | 102.9 (3) |
O1iii—Eu—Ag | 84.88 (11) | P1—O1—Euviii | 144.5 (3) |
O6iv—Eu—Ag | 154.81 (10) | P1—O1—Ag | 93.9 (3) |
O2ii—Eu—Ag | 120.77 (12) | Euviii—O1—Ag | 112.98 (17) |
O8i—Eu—Ag | 42.51 (10) | P1—O2—Euv | 128.1 (3) |
O11i—Eu—Agii | 52.44 (12) | P1—O3—P4vii | 137.7 (4) |
O12—Eu—Agii | 155.75 (11) | P2—O4—P1 | 133.6 (3) |
O9ii—Eu—Agii | 85.32 (11) | P2—O5—Euv | 133.2 (3) |
O5ii—Eu—Agii | 108.69 (11) | P2—O6—Euix | 142.4 (3) |
O1iii—Eu—Agii | 114.28 (11) | P2—O6—Agviii | 115.3 (2) |
O6iv—Eu—Agii | 40.55 (12) | Euix—O6—Agviii | 100.06 (18) |
O2ii—Eu—Agii | 43.64 (11) | P2vi—O7—P3 | 131.3 (3) |
O8i—Eu—Agii | 120.64 (11) | P3—O8—Agx | 108.8 (3) |
Ag—Eu—Agii | 152.34 (2) | P3—O8—Eux | 145.5 (3) |
O8i—Ag—O12 | 80.67 (15) | Agx—O8—Eux | 94.16 (15) |
O8i—Ag—O6iii | 109.46 (15) | P3—O9—Euv | 140.7 (3) |
O12—Ag—O6iii | 93.64 (16) | P3—O10—P4 | 130.2 (3) |
O8i—Ag—O1 | 110.19 (16) | P4—O11—Eux | 150.8 (3) |
O12—Ag—O1 | 132.06 (14) | P4—O12—Eu | 137.3 (3) |
O6iii—Ag—O1 | 122.79 (16) | P4—O12—Ag | 118.8 (2) |
O8i—Ag—Eu | 43.33 (11) | Eu—O12—Ag | 96.31 (16) |
Symmetry codes: (i) x−1/2, −y+3/2, z−1/2; (ii) x, y, z−1; (iii) x+1/2, −y+3/2, z−1/2; (iv) x+1/2, −y+3/2, z−3/2; (v) x, y, z+1; (vi) −x+1, −y+2, −z+3; (vii) −x+1, −y+2, −z+2; (viii) x−1/2, −y+3/2, z+1/2; (ix) x−1/2, −y+3/2, z+3/2; (x) x+1/2, −y+3/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | AgEu(PO3)4 |
Mr | 575.72 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 298 |
a, b, c (Å) | 9.9654 (3), 13.1445 (7), 7.2321 (3) |
β (°) | 90.42 (1) |
V (Å3) | 947.31 (7) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 9.37 |
Crystal size (mm) | 0.19 × 0.18 × 0.17 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.167, 0.201 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3371, 2019, 1704 |
Rint | 0.042 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.109, 1.03 |
No. of reflections | 2019 |
No. of parameters | 164 |
Δρmax, Δρmin (e Å−3) | 2.43, −2.06 |
Computer programs: COLLECT (Nonius, 2001), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SHELXS08 (Sheldrick, 2008), SHELXL08 (Sheldrick, 2008), DIAMOND (Brandenburg, 1998).
Acknowledgements
This work is supported by the Ministry of Higher Education, Scientific Research and Technology of Tunisia.
References
Averbuch-Pouchot, M. T. & Bagieu-Beucher, M. (1987). Z. Anorg. Allg. Chem. 552, 171–180. CrossRef CAS Web of Science Google Scholar
Brandenburg, K. (1998). DIAMOND. University of Bonn, Germany. Google Scholar
Durif, A. (1995). In Crystal Chemistry of Condensed Phosphates. New York: Plenium Press. Google Scholar
Férid, M. (2006). In Etude des propriétés cristallochimiques et physiques des phosphates condensés de terres rares. Paris: Publibook. Google Scholar
Hashimoto, N., Takada, Y., Sato, K. & Ibuki, S. (1991). J. Lumin. 48–49, 893–897. CrossRef CAS Web of Science Google Scholar
Horchani, K., Gâcon, J. C., Férid, M., Trabelsi-Ayadi, M., Krachni, G. K. & Liu, G. K. (2003). Opt. Mater. 24, 169–174. Web of Science CrossRef CAS Google Scholar
Nonius (2001). COLLECT. Nonius BV, Delf, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Trunov, V. K., Anisimova, N. Yu., Karmanovskaya, N. B. & Chudinova, N. N. (1990). Izv. Akad. Nauk SSSR Neorg. Mater. 26, 1288–1290. CAS Google Scholar
Yamada, T., Otsuka, K. & Nakano, J. (1974). Appl. Phys. 45, 5096–5097. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the last decades, investigation of the synthesis and characterization of rare earth polyphosphates has gained much attention due to their potential applications in diverse areas such as phosphors and laser materials (Yamada et al., 1974; Hashimoto et al., 1991; Horchani et al., 2003). In aim to study the condensed phosphates of rare earth and monovalent cations of general formula MILn(PO3)4 (with MI = monovalent cation)(Durif, 1995), (Ln = Eu, Er, Yb), we have synthesized single crystals of silver europium polyphosphate and investigated its crystalline structure. The atomic arrangement of this structure is characterized by a three-dimensional framework built of (PO3)n chains that are formed by corner-sharing of PO4 tetrahedra. Eu3+ and Ag+ cations alternate in the middle of four such chains with Eu—Ag distances of 3.64 (7) Å (figures 1,3). The EuO8 dodecahedra are isolated from each other and the distances Eu—O are arranged in interval 2.355 (5)- 2.508 (5)Å (figure 2). The polyphosphate chains display two types of distances, P—O terminal ranging from 1.479 (5) to 1.505 (5)Å and P—O bridging, ranging from 1.585 (5)to 1.609 (5)Å. These distances are comparable with those repoted for other condensed phosphates (Durif, 1995; Averbuch-Pouchot & Bagieu Beucher, 1987; Férid (2006). The structural study reported for silver neodymium polyphosphate AgNd(PO3)4 (Trunov et al., 1990) showed that the compound crystallize in the P21/n space group and has similar unit cell prameters compared to AgEu(PO3)4.