metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages m326-m327

Di­aqua­bis­(N,N-di­ethyl­nicotinamide-κN1)bis­­(4-formyl­benzoato-κO)nickel(II)

aKafkas University, Department of Chemistry, 63100 Kars, Turkey, bKarabük University, Department of Physics, 78050 Karabük, Turkey, cAtatürk University, Department of Chemistry, 22240 Erzurum, Turkey, and dHacettepe University, Department of Physics, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 9 February 2009; accepted 20 February 2009; online 25 February 2009)

In the title centrosymmetric mononuclear NiII compound, [Ni(C8H5O3)2(C10H14N2O)2(H2O)2], the central NiII atom is coordinated by two O atoms from two 4-formyl­benzoate (FOB) ligands, two O atoms from two water mol­ecules and two N atoms from two diethyl­nicotinamide (DENA) ligands. The coordination geometry is slightly distorted octa­hedral, with four O atoms in the equatorial plane and two N atoms in axial positions. Intra­molecular O—H⋯O hydrogen bonds are observed. In the crystal structure, mol­ecules are linked into chains along the a axis by inter­molecular O—H⋯O hydrogen bonds. The structure is further stabilized by ππ inter­actions between the pyridine rings of DENA units, with a centroid–centroid distance of 3.668 (2) Å.

Related literature

For general background, see: Antolini et al. (1982[Antolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem. 21, 1391-1395.]); Bigoli et al. (1972[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.]); Nadzhafov et al. (1981[Nadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 124-128.]); Shnulin et al. (1981[Shnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409-1416.]). For related structures, see: Hökelek et al. (1995[Hökelek, T., Necefouglu, H. & Balcı, M. (1995). Acta Cryst. C51, 2020-2023.], 1997[Hökelek, T., Budak, K. & Necefouglu, H. (1997). Acta Cryst. C53, 1049-1051.], 2007[Hökelek, T., Çaylak, N. & Necefoğlu, H. (2007). Acta Cryst. E63, m2561-m2562.], 2008[Hökelek, T., Çaylak, N. & Necefoğlu, H. (2008). Acta Cryst. E64, m505-m506.]); Hökelek & Necefouglu (1996[Hökelek, T. & Necefouglu, H. (1996). Acta Cryst. C52, 1128-1131.], 1997[Hökelek, T. & Necefouglu, H. (1997). Acta Cryst. C53, 187-189.]); Hökelek & Necefoğlu (2007[Hökelek, T. & Necefoğlu, H. (2007). Acta Cryst. E63, m821-m823.]); Sertçelik et al. (2009[Sertçelik, M., Tercan, B., Şahin, E., Necefoğlu, H. & Hökelek, T. (2009). Acta Cryst. E65, m324-m325.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C8H5O3)2(C10H14N2O)2(H2O)2]

  • Mr = 749.43

  • Triclinic, [P \overline 1]

  • a = 7.2909 (2) Å

  • b = 8.6883 (3) Å

  • c = 15.9037 (4) Å

  • α = 85.034 (5)°

  • β = 78.576 (4)°

  • γ = 67.594 (3)°

  • V = 912.85 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.59 mm−1

  • T = 294 K

  • 0.35 × 0.20 × 0.15 mm

Data collection
  • Rigaku R-AXIS RAPID-S diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.870, Tmax = 0.918

  • 19676 measured reflections

  • 3740 independent reflections

  • 2797 reflections with I > 2σ(I)

  • Rint = 0.098

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.122

  • S = 1.04

  • 3740 reflections

  • 242 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Selected bond lengths (Å)

O5—Ni1 2.084 (2)
Ni1—O1 2.069 (2)
Ni1—N1 2.100 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H51⋯O4i 0.84 (2) 1.97 (2) 2.796 (4) 170 (3)
O5—H52⋯O2 0.85 (3) 1.81 (3) 2.646 (4) 168 (4)
Symmetry code: (i) x-1, y, z.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The nicotinic acid derivative N,N-diethylnicotinamide (DENA) is an important respiratory stimulant (Bigoli et al., 1972). The structural functions and coordination relationships of the arylcarboxylate ion in transition metal complexes of benzoic acid derivatives change depending on the nature and position of the substituent groups on the benzene ring, the nature of the additional ligand molecule or solvent, and the medium of the synthesis (Nadzhafov et al., 1981; Shnulin et al., 1981). Transition metal complexes with biochemically active ligands frequently show interesting physical and/or chemical properties, as a result they may find applications in biological systems (Antolini et al., 1982). The structure determination of the title compound, a nickel complex with two formylbenzoate (FOB), two diethylnicotinamide (DENA) ligands and two water molecules, was undertaken in order to determine the properties of the ligands and also to compare the results obtained with those reported previously.

The title compound is a monomeric complex, with the NiII atom on a centre of symmetry (Fig. 1). All ligands are monodentate. The four O atoms (O1, O5, and the symmetry-related atoms, O1', O5') lie in the equatorial plane around the Ni1 atom forming a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination is completed by the two N atoms of the DENA ligands (N1, N1') in the axial positions (Table 1 and Fig. 1). An intramolecular O—H···O hydrogen bond (Table 2) results in the formation of a six-membered ring Ni1/O1/O2/O5/C1/H52 ring.

The near equality of the C1—O1 [1.263 (4) Å] and C1—O2 [1.249 (4) Å] bonds in the carboxylate group indicates a delocalized bonding arrangement, rather than localized single and double bonds, and may be compared with the corresponding distances: 1.262 (3) and 1.249 (3) Å in [Mn(DENA)2(C8H5O3)2(H2O)2] (Sertçelik et al., 2009), 1.256 (6) and 1.245 (6) Å in [Mn(DENA)2(C7H4ClO2)2(H2O)2] (Hökelek et al., 2008), 1.265 (6) and 1.275 (6) Å in [Mn(C9H10NO2)2(H2O)4].2H2O (Hökelek & Necefoğlu, 2007), 1.260 (4) and 1.252 (4) Å in [Zn(DENA)2(C7H4FO2)2(H2O)2] (Hökelek et al., 2007), 1.259 (9) and 1.273 (9) Å in Cu2(DENA)2(C6H5COO)4 (Hökelek et al., 1995), 1.279 (4) and 1.246 (4) Å in [Zn2(DENA)2(C7H5O3)4].2H2O (Hökelek & Necefoğlu, 1996), 1.251 (6) and 1.254 (7) Å in [Co(DENA)2(C7H5O3)2(H2O)2] (Hökelek & Necefoğlu, 1997), 1.278 (3) and 1.246 (3) Å in [Cu(DENA)2(C7H4NO4)2(H2O)2] (Hökelek et al., 1997). The average Ni—O bond length in the title complex is 2.077 (3) Å and the Ni1 atom is displaced out of the least-squares plane of the carboxylate group (O1/C1/O2) by 0.732 (1) Å. The dihedral angle between the planar carboxylate group and the C2-C7 benzene ring is 4.3 (3)°.

In the crystal structure, intermolecular O—H···O hydrogen bonds (Table 1) link the molecules into infinite chains (Fig. 2) along the a axis, which may be effective in the stabilization of the structure. A π-π contact is also observed between the pyridine rings (N1/C9—C13, centroid Cg1) of DENA units, with a Cg1···Cg1i [symmetry code: (i) 1-x, -1-y, -z] distance of 3.668 (2) Å.

Related literature top

For general backgroud, see: Antolini et al. (1982); Bigoli et al. (1972); Nadzhafov et al. (1981); Shnulin et al. (1981). For related structures, see: Hökelek et al. (1995, 1997, 2007, 2008); Hökelek & Necefouglu (1996, 1997); Hökelek & Necefoğlu (2007); Sertçelik et al. (2009).

Experimental top

The title compound was prepared by the reaction of Ni(SO4)H2O (1.73 g, 10 mmol) in H2O (50 ml) and DENA (3.56 g, 20 mmol) in H2O (15 ml) with sodium 4-formylbenzoate (3.44 g, 20 mmol) in H2O (50 ml). The mixture was filtered and set aside to crystallize at ambient temperature for several days, giving green single crystals.

Refinement top

H atoms of water molecule were located in a difference Fourier map and refined isotropically, with O–H and H···H distances restrained to 0.84 (1) Å and 1.37 (2) Å, respectively. The remaining H atoms were positioned geometrically with C—H = 0.93, 0.97 and 0.96 Å, for aromatic, methylene and methyl H atoms and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H atoms and x = 1.2 for all other H atoms.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines. Primed atoms are generated by the symmetry operator (-x, -y, -z).
[Figure 2] Fig. 2. A partial packing diagram of the title compound viewed down the a axis, showing hydrogen bonds (dotted lines) linking the molecules into chains. H atoms not involved in hydrogen bonding have been omitted.
Diaquabis(N,N-diethylnicotinamide-κN1)bis(4- formylbenzoato-κO)nickel(II) top
Crystal data top
[Ni(C8H5O3)2(C10H14N2O)2(H2O)2]Z = 1
Mr = 749.43F(000) = 394
Triclinic, P1Dx = 1.363 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2909 (2) ÅCell parameters from 4227 reflections
b = 8.6883 (3) Åθ = 2.5–26.4°
c = 15.9037 (4) ŵ = 0.59 mm1
α = 85.034 (5)°T = 294 K
β = 78.576 (4)°Prism, green
γ = 67.594 (3)°0.35 × 0.20 × 0.15 mm
V = 912.85 (5) Å3
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
3740 independent reflections
Radiation source: fine-focus sealed tube2797 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.098
ω scansθmax = 26.4°, θmin = 2.5°
Absorption correction: multi-scan
(Blessing, 1995)
h = 99
Tmin = 0.870, Tmax = 0.918k = 1010
19676 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0235P)2 + 0.8051P]
where P = (Fo2 + 2Fc2)/3
3740 reflections(Δ/σ)max = 0.001
242 parametersΔρmax = 0.50 e Å3
3 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Ni(C8H5O3)2(C10H14N2O)2(H2O)2]γ = 67.594 (3)°
Mr = 749.43V = 912.85 (5) Å3
Triclinic, P1Z = 1
a = 7.2909 (2) ÅMo Kα radiation
b = 8.6883 (3) ŵ = 0.59 mm1
c = 15.9037 (4) ÅT = 294 K
α = 85.034 (5)°0.35 × 0.20 × 0.15 mm
β = 78.576 (4)°
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
3740 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
2797 reflections with I > 2σ(I)
Tmin = 0.870, Tmax = 0.918Rint = 0.098
19676 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0623 restraints
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.50 e Å3
3740 reflectionsΔρmin = 0.31 e Å3
242 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O50.2711 (4)0.0197 (4)0.06069 (16)0.0494 (6)
H520.284 (6)0.028 (4)0.1070 (13)0.069 (14)*
H510.260 (6)0.1180 (19)0.074 (2)0.072 (15)*
Ni10.00000.00000.00000.03948 (19)
O10.0244 (3)0.1122 (3)0.10462 (14)0.0465 (6)
O20.2567 (4)0.1272 (3)0.19683 (16)0.0569 (7)
N10.1775 (4)0.2306 (3)0.04762 (17)0.0427 (7)
O40.7320 (4)0.3311 (3)0.12366 (16)0.0579 (7)
C10.0812 (5)0.1254 (4)0.1788 (2)0.0430 (8)
C120.4355 (5)0.3815 (4)0.1297 (2)0.0423 (8)
C130.3191 (5)0.2372 (4)0.0918 (2)0.0433 (8)
H130.34010.13980.09740.052*
C70.2092 (5)0.1420 (4)0.2370 (2)0.0467 (8)
H70.27870.13840.18100.056*
C90.1550 (5)0.3738 (4)0.0380 (2)0.0467 (8)
H90.05930.37220.00670.056*
C20.0178 (5)0.1355 (4)0.2521 (2)0.0420 (8)
N20.6115 (5)0.4182 (4)0.2506 (2)0.0617 (9)
C30.0823 (5)0.1368 (4)0.3360 (2)0.0502 (9)
H30.20930.13040.34720.060*
C110.4075 (5)0.5277 (4)0.1196 (2)0.0477 (9)
H110.48240.62690.14450.057*
O30.4414 (5)0.1916 (5)0.4558 (2)0.0974 (11)
C140.6023 (5)0.3740 (4)0.1690 (2)0.0474 (9)
C40.0071 (6)0.1476 (5)0.4030 (2)0.0559 (10)
H40.06060.14830.45910.067*
C60.2976 (5)0.1538 (5)0.3041 (2)0.0523 (9)
H60.42510.15920.29320.063*
C100.2674 (5)0.5233 (4)0.0723 (2)0.0505 (9)
H100.24830.62020.06350.061*
C50.1956 (6)0.1575 (5)0.3878 (2)0.0533 (9)
C170.7912 (7)0.4225 (6)0.2841 (3)0.0746 (13)
H17A0.80470.49120.33560.090*
H17B0.91190.47230.24170.090*
C150.4604 (7)0.4666 (6)0.3106 (3)0.0740 (13)
H15A0.36890.48230.27850.089*
H15B0.52850.57250.33730.089*
C160.3433 (9)0.3450 (9)0.3777 (4)0.137 (3)
H16A0.24140.37970.41190.206*
H16B0.28040.23830.35180.206*
H16C0.43090.33670.41340.206*
C80.2863 (7)0.1717 (6)0.4606 (3)0.0767 (13)
H80.21590.16450.51540.092*
C180.7725 (8)0.2525 (6)0.3038 (3)0.0961 (17)
H18A0.89380.25820.32120.144*
H18B0.66000.20680.34940.144*
H18C0.75180.18270.25370.144*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O50.0454 (14)0.0569 (17)0.0485 (16)0.0216 (13)0.0106 (12)0.0032 (14)
Ni10.0359 (3)0.0445 (4)0.0398 (4)0.0152 (3)0.0123 (3)0.0044 (3)
O10.0473 (14)0.0542 (15)0.0420 (14)0.0207 (12)0.0141 (11)0.0019 (11)
O20.0440 (14)0.0733 (18)0.0544 (15)0.0224 (13)0.0070 (12)0.0074 (13)
N10.0374 (15)0.0452 (17)0.0475 (17)0.0160 (13)0.0122 (12)0.0030 (13)
O40.0500 (15)0.0703 (18)0.0611 (16)0.0315 (14)0.0132 (13)0.0098 (14)
C10.0424 (19)0.0387 (19)0.046 (2)0.0103 (15)0.0139 (16)0.0022 (15)
C120.0368 (18)0.050 (2)0.0411 (19)0.0174 (16)0.0105 (15)0.0058 (16)
C130.0418 (18)0.0436 (19)0.047 (2)0.0158 (16)0.0144 (16)0.0009 (16)
C70.048 (2)0.053 (2)0.0386 (19)0.0192 (17)0.0045 (15)0.0002 (16)
C90.046 (2)0.054 (2)0.046 (2)0.0236 (18)0.0159 (16)0.0037 (17)
C20.0421 (19)0.0426 (19)0.0410 (19)0.0144 (16)0.0106 (15)0.0013 (15)
N20.061 (2)0.080 (2)0.057 (2)0.0371 (18)0.0232 (16)0.0143 (18)
C30.044 (2)0.057 (2)0.048 (2)0.0182 (18)0.0081 (16)0.0019 (18)
C110.0444 (19)0.046 (2)0.051 (2)0.0137 (17)0.0145 (16)0.0106 (17)
O30.101 (3)0.155 (3)0.069 (2)0.076 (3)0.0352 (19)0.005 (2)
C140.044 (2)0.050 (2)0.050 (2)0.0176 (17)0.0140 (17)0.0077 (17)
C40.062 (2)0.066 (3)0.038 (2)0.024 (2)0.0041 (17)0.0028 (18)
C60.051 (2)0.061 (2)0.051 (2)0.0257 (19)0.0137 (17)0.0005 (18)
C100.054 (2)0.046 (2)0.057 (2)0.0224 (18)0.0179 (18)0.0045 (17)
C50.058 (2)0.062 (2)0.044 (2)0.025 (2)0.0139 (18)0.0018 (18)
C170.081 (3)0.078 (3)0.076 (3)0.033 (3)0.038 (2)0.014 (2)
C150.081 (3)0.092 (3)0.057 (3)0.040 (3)0.019 (2)0.009 (2)
C160.102 (5)0.176 (7)0.131 (5)0.059 (5)0.026 (4)0.069 (5)
C80.081 (3)0.106 (4)0.054 (3)0.042 (3)0.024 (2)0.003 (2)
C180.128 (5)0.085 (4)0.094 (4)0.046 (3)0.049 (3)0.002 (3)
Geometric parameters (Å, º) top
O5—Ni12.084 (2)N2—C171.496 (5)
O5—H520.85 (3)C3—C41.380 (5)
O5—H510.84 (2)C3—H30.93
Ni1—O12.069 (2)C11—C101.371 (5)
Ni1—O1i2.069 (2)C11—H110.93
Ni1—O5i2.084 (2)O3—C81.194 (5)
Ni1—N12.100 (3)C4—C51.382 (5)
Ni1—N1i2.100 (3)C4—H40.93
O1—C11.263 (4)C6—C51.386 (5)
O2—C11.249 (4)C6—H60.93
N1—C91.340 (4)C10—H100.93
N1—C131.341 (4)C5—C81.478 (5)
O4—C141.227 (4)C17—C181.486 (6)
C1—C21.511 (4)C17—H17A0.97
C12—C131.384 (4)C17—H17B0.97
C12—C111.389 (5)C15—C161.459 (6)
C12—C141.498 (4)C15—H15A0.97
C13—H130.93C15—H15B0.97
C7—C61.380 (4)C16—H16A0.96
C7—C21.391 (4)C16—H16B0.96
C7—H70.93C16—H16C0.96
C9—C101.379 (5)C8—H80.93
C9—H90.93C18—H18A0.96
C2—C31.388 (5)C18—H18B0.96
N2—C141.328 (4)C18—H18C0.96
N2—C151.473 (5)
Ni1—O5—H5298 (3)C10—C11—C12118.8 (3)
Ni1—O5—H51113 (3)C10—C11—H11120.6
H52—O5—H51106 (2)C12—C11—H11120.6
O1—Ni1—O1i180.00 (6)O4—C14—N2121.3 (3)
O1—Ni1—O592.91 (10)O4—C14—C12118.6 (3)
O1i—Ni1—O587.09 (10)N2—C14—C12120.1 (3)
O1—Ni1—O5i87.09 (10)C3—C4—C5121.0 (3)
O1i—Ni1—O5i92.91 (10)C3—C4—H4119.5
O5—Ni1—O5i180.00 (19)C5—C4—H4119.5
O1—Ni1—N188.53 (10)C7—C6—C5119.8 (3)
O1i—Ni1—N191.47 (10)C7—C6—H6120.1
O5—Ni1—N193.76 (10)C5—C6—H6120.1
O5i—Ni1—N186.24 (10)C11—C10—C9119.3 (3)
O1—Ni1—N1i91.47 (10)C11—C10—H10120.3
O1i—Ni1—N1i88.53 (10)C9—C10—H10120.3
O5—Ni1—N1i86.24 (10)C4—C5—C6119.4 (3)
O5i—Ni1—N1i93.76 (10)C4—C5—C8119.8 (4)
N1—Ni1—N1i180.0 (2)C6—C5—C8120.8 (4)
C1—O1—Ni1126.8 (2)C18—C17—N2111.3 (4)
C9—N1—C13117.2 (3)C18—C17—H17A109.4
C9—N1—Ni1123.6 (2)N2—C17—H17A109.4
C13—N1—Ni1119.3 (2)C18—C17—H17B109.4
O2—C1—O1125.9 (3)N2—C17—H17B109.4
O2—C1—C2117.7 (3)H17A—C17—H17B108.0
O1—C1—C2116.3 (3)C16—C15—N2113.6 (4)
C13—C12—C11118.2 (3)C16—C15—H15A108.8
C13—C12—C14117.4 (3)N2—C15—H15A108.8
C11—C12—C14123.8 (3)C16—C15—H15B108.8
N1—C13—C12123.4 (3)N2—C15—H15B108.8
N1—C13—H13118.3H15A—C15—H15B107.7
C12—C13—H13118.3C15—C16—H16A109.5
C6—C7—C2120.9 (3)C15—C16—H16B109.5
C6—C7—H7119.6H16A—C16—H16B109.5
C2—C7—H7119.6C15—C16—H16C109.5
N1—C9—C10123.0 (3)H16A—C16—H16C109.5
N1—C9—H9118.5H16B—C16—H16C109.5
C10—C9—H9118.5O3—C8—C5126.2 (4)
C3—C2—C7119.0 (3)O3—C8—H8116.9
C3—C2—C1119.8 (3)C5—C8—H8116.9
C7—C2—C1121.2 (3)C17—C18—H18A109.5
C14—N2—C15125.2 (3)C17—C18—H18B109.5
C14—N2—C17117.6 (3)H18A—C18—H18B109.5
C15—N2—C17117.1 (3)C17—C18—H18C109.5
C4—C3—C2119.9 (3)H18A—C18—H18C109.5
C4—C3—H3120.1H18B—C18—H18C109.5
C2—C3—H3120.1
O5—Ni1—O1—C110.8 (3)C7—C2—C3—C41.2 (5)
O5i—Ni1—O1—C1169.2 (3)C1—C2—C3—C4179.4 (3)
N1—Ni1—O1—C182.9 (3)C13—C12—C11—C100.4 (5)
N1i—Ni1—O1—C197.1 (3)C14—C12—C11—C10171.1 (3)
O1—Ni1—N1—C9146.8 (3)C15—N2—C14—O4178.1 (4)
O1i—Ni1—N1—C933.2 (3)C17—N2—C14—O43.2 (6)
O5—Ni1—N1—C954.0 (3)C15—N2—C14—C124.0 (6)
O5i—Ni1—N1—C9126.0 (3)C17—N2—C14—C12174.7 (3)
O1—Ni1—N1—C1331.7 (2)C13—C12—C14—O457.3 (5)
O1i—Ni1—N1—C13148.3 (2)C11—C12—C14—O4114.3 (4)
O5—Ni1—N1—C13124.5 (3)C13—C12—C14—N2124.7 (4)
O5i—Ni1—N1—C1355.5 (3)C11—C12—C14—N263.7 (5)
Ni1—O1—C1—O226.2 (5)C2—C3—C4—C50.1 (6)
Ni1—O1—C1—C2152.2 (2)C2—C7—C6—C50.7 (5)
C9—N1—C13—C122.3 (5)C12—C11—C10—C91.6 (5)
Ni1—N1—C13—C12176.3 (2)N1—C9—C10—C110.8 (6)
C11—C12—C13—N11.6 (5)C3—C4—C5—C61.0 (6)
C14—C12—C13—N1173.7 (3)C3—C4—C5—C8179.0 (4)
C13—N1—C9—C101.1 (5)C7—C6—C5—C40.7 (6)
Ni1—N1—C9—C10177.5 (3)C7—C6—C5—C8179.4 (4)
C6—C7—C2—C31.6 (5)C14—N2—C17—C1878.7 (5)
C6—C7—C2—C1179.0 (3)C15—N2—C17—C18102.4 (5)
O2—C1—C2—C33.7 (5)C14—N2—C15—C16110.3 (5)
O1—C1—C2—C3174.9 (3)C17—N2—C15—C1671.0 (6)
O2—C1—C2—C7177.0 (3)C4—C5—C8—O3175.0 (5)
O1—C1—C2—C74.5 (5)C6—C5—C8—O35.1 (7)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H51···O4ii0.84 (2)1.97 (2)2.796 (4)170 (3)
O5—H52···O20.85 (3)1.81 (3)2.646 (4)168 (4)
Symmetry code: (ii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Ni(C8H5O3)2(C10H14N2O)2(H2O)2]
Mr749.43
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)7.2909 (2), 8.6883 (3), 15.9037 (4)
α, β, γ (°)85.034 (5), 78.576 (4), 67.594 (3)
V3)912.85 (5)
Z1
Radiation typeMo Kα
µ (mm1)0.59
Crystal size (mm)0.35 × 0.20 × 0.15
Data collection
DiffractometerRigaku R-AXIS RAPID-S
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.870, 0.918
No. of measured, independent and
observed [I > 2σ(I)] reflections
19676, 3740, 2797
Rint0.098
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.122, 1.04
No. of reflections3740
No. of parameters242
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.50, 0.31

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
O5—Ni12.084 (2)Ni1—N12.100 (3)
Ni1—O12.069 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H51···O4i0.84 (2)1.97 (2)2.796 (4)170 (3)
O5—H52···O20.85 (3)1.81 (3)2.646 (4)168 (4)
Symmetry code: (i) x1, y, z.
 

Acknowledgements

The authors are indebted to the Department of Chemistry, Atatürk University, Erzurum, Turkey, for the use of the X-ray diffractometer purchased under grant No. 2003/219 of the University Research Fund.

References

First citationAntolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem. 21, 1391–1395.  CSD CrossRef CAS Web of Science Google Scholar
First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHökelek, T., Budak, K. & Necefouglu, H. (1997). Acta Cryst. C53, 1049–1051.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHökelek, T., Çaylak, N. & Necefoğlu, H. (2007). Acta Cryst. E63, m2561–m2562.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Çaylak, N. & Necefoğlu, H. (2008). Acta Cryst. E64, m505–m506.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T. & Necefouglu, H. (1996). Acta Cryst. C52, 1128–1131.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHökelek, T. & Necefouglu, H. (1997). Acta Cryst. C53, 187–189.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHökelek, T. & Necefoğlu, H. (2007). Acta Cryst. E63, m821–m823.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Necefouglu, H. & Balcı, M. (1995). Acta Cryst. C51, 2020–2023.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 124–128.  CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSertçelik, M., Tercan, B., Şahin, E., Necefoğlu, H. & Hökelek, T. (2009). Acta Cryst. E65, m324–m325.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409–1416.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages m326-m327
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds