metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages m324-m325

Di­aqua­bis­(N,N-di­ethyl­nicotinamide-κN1)bis­­(4-formyl­benzoato-κO1)manganese(II)

aDepartment of Chemistry, Kafkas University, 63100 Kars, Turkey, bDepartment of Physics, Karabük University, 78050 Karabük, Turkey, cDepartment of Chemistry, Atatürk University, 22240 Erzurum, Turkey, and dDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 26 January 2009; accepted 19 February 2009; online 25 February 2009)

The title compound, [Mn(C8H5O3)2(C10H14N2O)2(H2O)2], contains one MnII atom lying on an inversion centre, two 4-formyl­benzoate and two diethyl­nicotinamide ligands and two coordinated water mol­ecules. All ligands are monodentate. The four O atoms around the Mn atom form a slightly distorted equatorial plane, while the distorted octa­hedral coordination is completed by the two N atoms in the axial positions. An intra­molecular O—H⋯O hydrogen bond occurs in the complex. In the crystal structure, O—H⋯O hydrogen bonds link the mol­ecules through an R22(16) ring motif, forming a one-dimensional chain along the a axis. The ππ contact between the pyridyl rings [centroid–centroid distance = 3.629 (2) Å] may further stabilize the structure.

Related literature

For general background, see: Antolini et al. (1982[Antolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem. 21, 1391-1395.]); Nadzhafov et al. (1981[Nadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 124-128.]); Shnulin et al. (1981[Shnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409-1416.]). For related structures, see: Hökelek et al. (1995[Hökelek, T., Necefouglu, H. & Balcı, M. (1995). Acta Cryst. C51, 2020-2023.], 1997[Hökelek, T., Budak, K. & Necefouglu, H. (1997). Acta Cryst. C53, 1049-1051.], 2007[Hökelek, T., Çaylak, N. & Necefoğlu, H. (2007). Acta Cryst. E63, m2561-m2562.], 2008[Hökelek, T., Çaylak, N. & Necefoğlu, H. (2008). Acta Cryst. E64, m505-m506.]); Hökelek & Necefoğlu (1996[Hökelek, T. & Necefouglu, H. (1996). Acta Cryst. C52, 1128-1131.], 1997[Hökelek, T. & Necefouglu, H. (1997). Acta Cryst. C53, 187-189.], 2007[Hökelek, T. & Necefoğlu, H. (2007). Acta Cryst. E63, m821-m823.]). For hydrogen-bonding motifs, see: Bernstein et al. (1995[Bernstein, J., Davies, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C8H5O3)2(C10H14N2O)2(H2O)2]

  • Mr = 745.68

  • Triclinic, [P \overline 1]

  • a = 7.3266 (2) Å

  • b = 8.6618 (2) Å

  • c = 16.0687 (3) Å

  • α = 86.381 (8)°

  • β = 78.272 (7)°

  • γ = 68.618 (6)°

  • V = 929.67 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 294 K

  • 0.35 × 0.20 × 0.15 mm

Data collection
  • Rigaku R-AXIS RAPID-S diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.904, Tmax = 0.935

  • 18356 measured reflections

  • 3799 independent reflections

  • 3317 reflections with I > 2σ(I)

  • Rint = 0.071

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.157

  • S = 1.02

  • 3799 reflections

  • 246 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.77 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Selected bond lengths (Å)

Mn1—O1 2.1596 (18)
Mn1—O5 2.207 (2)
Mn1—N1 2.283 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H51⋯O4i 0.92 (3) 1.87 (3) 2.775 (3) 165 (4)
O5—H52⋯O2 0.93 (3) 1.77 (4) 2.669 (3) 162 (4)
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The structural functions and coordination relationships of the arylcarboxylates in transition metal complexes of benzoic acid derivatives change depending on the nature and position of the substituent groups on the benzene ring, the nature of the additional ligand molecules or solvents, and the medium of the synthesis (Nadzhafov et al., 1981; Shnulin et al., 1981). Transition metal complexes with biochemically active ligands frequently show interesting physical and/or chemical properties, and as a result, they may find applications in biological systems (Antolini et al., 1982). The structure determination of the title compound, (I), a manganese complex with two formylbenzoate (FOB) and two diethylnicotinamide (DENA) ligands and two water molecules, was undertaken in order to determine the properties of the ligands and also to compare the results obtained with those reported previously.

Compound (I) is a monomeric complex, with the MnII atom lying on a centre of symmetry. It contains two FOB and two DENA ligands and two water molecules (Fig. 1). All ligands are monodentate. The four O atoms [O1, O5, and the symmetry-related atoms, O1ii, O5ii; symmetry code: (ii) 1 - x, 1 - y, 1 - z] around the Mn atom form a slightly distorted equatorial plane, while the slightly distorted octahedral coordination is completed by the two N atoms of the DENA ligands (N1, N1ii) in the axial positions (Table 1 and Fig. 1). The intramolecular O—H···O hydrogen bond (Table 2) results in the formation of a six-membered ring (Mn1, O1, O2, O5, C1, H52), which adopts envelope conformation with C1 atom displaced by -0.235 (3) Å from the plane of the other five atoms.

The near equality of the C1—O1 [1.262 (3) Å] and C1—O2 [1.249 (3) Å] bonds in the carboxylate group indicates a delocalized bonding arrangement, rather than localized single and double bonds, and may be compared with the corresponding distances: 1.256 (6) and 1.245 (6) Å in [Mn(DENA)2(C7H4ClO2)2(H2O)2], (II), (Hökelek et al., 2008), 1.265 (6) and 1.275 (6) Å in [Mn(C9H10NO2)2(H2O)4].2H2O, (III), (Hökelek & Necefoğlu, 2007), 1.260 (4) and 1.252 (4) Å in [Zn(DENA)2(C7H4FO2)2(H2O)2], (IV), (Hökelek et al., 2007), 1.259 (9) and 1.273 (9) Å in [Cu2(DENA)2(C6H5COO)4], (V), (Hökelek et al., 1995), 1.279 (4) and 1.246 (4) Å in [Zn2(DENA)2(C7H5O3)4].2H2O, (VI), (Hökelek & Necefoğlu, 1996), 1.251 (6) and 1.254 (7) Å in [Co(DENA)2(C7H5O3)2(H2O)2], (VII), (Hökelek & Necefoğlu, 1997), 1.278 (3) and 1.246 (3) Å in [Cu(DENA)2(C7H4NO4)2(H2O)2], (VIII), (Hökelek et al., 1997). This may be due to the intramolecular O—H···O hydrogen bond involving the carboxylate O atom (Table 2). In (I), the average Mn—O bond length is 2.183 (2) Å and the Mn atom is displaced out of the least-squares plane of the carboxylate group (O1, C1, O2) by -0.859 (1) Å. They are reported as -0.890 (1) Å in (II) and 2.185 (4) and 1.365 (3) Å in (III). The dihedral angle between the planar carboxylate group and the benzene ring A (C2–C7) is 3.0 (2)°, while that between rings A and B (N1, C9–C13) is 80.0 (1)°.

In the crystal structure, intermolecular O—H···O hydrogen bonds (Table 2) link the molecules through a R22(16) ring motif (Bernstein et al., 1995) to form a one-dimensional chain along the a axis (Fig. 2). The π-π contact between the pyridyl rings of DENA ligands, Cg1···Cg1iii [symmetry code: (iii) -x, 2 - y, 1 - z; where Cg1 is the centroid of ring B] may further stabilize the structure, with centroid–centroid distance of 3.629 (2) Å.

Related literature top

For general background, see: Antolini et al. (1982); Nadzhafov et al. (1981); Shnulin et al. (1981). For related structures, see: Hökelek et al. (1995, 1997, 2007, 2008); Hökelek & Necefoğlu (1996, 1997, 2007). For hydrogen-bonding motifs, see: Bernstein et al. (1995).

Experimental top

The title compound was prepared by the reaction of Mn(SO4).H2O (1.69 g, 10 mmol) in H2O (50 ml) and DENA (3.56 g, 20 mmol) in H2O (15 ml) with sodium 4-formylbenzoate (3.44 g, 20 mmol) in H2O (50 ml). The mixture was filtered and set aside to crystallize at ambient temperature for several days, giving colourless single crystals.

Refinement top

H atoms of water molecule and formyl group were located on difference Fourier maps and refined isotropically, with restrains of O—H = 0.95 (2) and C—H = 0.96 (2) Å. The remaining H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic), 0.97 (methylene) and 0.96 (methyl) Å, and with Uiso(H) = xUeq(C), where x = 1.5 for methyl H atoms and 1.2 for the other H atoms.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 40% probability level. Hydrogen bonds are shown as dashed lines. [Symmetry code: (ii) 1 - x, 1 - y, 1 - z.]
[Figure 2] Fig. 2. A partial packing diagram of the title compound, showing hydrogen bonds (dashed lines) linking the molecules through the R22(16) ring motif. H atoms not involved in hydrogen bonds are omitted for clarity.
Diaquabis(N,N-diethylnicotinamide-κN1)bis(4- formylbenzoato-κO1)manganese(II) top
Crystal data top
[Mn(C8H5O3)2(C10H14N2O)2(H2O)2]Z = 1
Mr = 745.68F(000) = 391
Triclinic, P1Dx = 1.332 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3266 (2) ÅCell parameters from 2942 reflections
b = 8.6618 (2) Åθ = 2.5–26.4°
c = 16.0687 (3) ŵ = 0.42 mm1
α = 86.381 (8)°T = 294 K
β = 78.272 (7)°Block, colourless
γ = 68.618 (6)°0.35 × 0.20 × 0.15 mm
V = 929.67 (6) Å3
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
3799 independent reflections
Radiation source: fine-focus sealed tube3317 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
ω scansθmax = 26.4°, θmin = 2.5°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 99
Tmin = 0.904, Tmax = 0.935k = 1010
18356 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0681P)2 + 0.7177P]
where P = (Fo2 + 2Fc2)/3
3799 reflections(Δ/σ)max < 0.001
246 parametersΔρmax = 0.77 e Å3
3 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Mn(C8H5O3)2(C10H14N2O)2(H2O)2]γ = 68.618 (6)°
Mr = 745.68V = 929.67 (6) Å3
Triclinic, P1Z = 1
a = 7.3266 (2) ÅMo Kα radiation
b = 8.6618 (2) ŵ = 0.42 mm1
c = 16.0687 (3) ÅT = 294 K
α = 86.381 (8)°0.35 × 0.20 × 0.15 mm
β = 78.272 (7)°
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
3799 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3317 reflections with I > 2σ(I)
Tmin = 0.904, Tmax = 0.935Rint = 0.071
18356 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0583 restraints
wR(F2) = 0.157H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.77 e Å3
3799 reflectionsΔρmin = 0.32 e Å3
246 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.50000.50000.50000.04035 (19)
O10.5226 (3)0.6203 (2)0.60914 (12)0.0488 (5)
O20.2455 (3)0.6315 (3)0.70146 (14)0.0583 (5)
O30.9452 (5)0.6893 (5)0.95632 (19)0.1013 (11)
O40.2292 (3)0.8295 (3)0.37375 (14)0.0615 (6)
O50.2143 (3)0.4822 (3)0.56750 (14)0.0548 (5)
H510.209 (7)0.378 (3)0.579 (3)0.089 (13)*
H520.202 (7)0.529 (5)0.6197 (17)0.095 (14)*
N10.3151 (3)0.7460 (3)0.44777 (14)0.0440 (5)
N20.1135 (5)0.9208 (4)0.24863 (17)0.0644 (7)
C10.4205 (4)0.6295 (3)0.68336 (17)0.0439 (6)
C20.5205 (4)0.6365 (3)0.75573 (17)0.0428 (6)
C30.7119 (4)0.6417 (4)0.74021 (17)0.0473 (6)
H30.78060.63840.68450.057*
C40.8014 (5)0.6518 (4)0.80646 (19)0.0532 (7)
H40.92920.65600.79540.064*
C50.6993 (5)0.6556 (4)0.88983 (19)0.0551 (7)
C60.5098 (5)0.6475 (4)0.90521 (19)0.0579 (8)
H60.44240.64820.96090.069*
C70.4202 (4)0.6384 (4)0.83915 (18)0.0519 (7)
H70.29270.63360.85030.062*
C80.7904 (7)0.6678 (6)0.9615 (2)0.0760 (11)
H80.712 (5)0.658 (4)1.0166 (14)0.062 (10)*
C90.3345 (4)0.8906 (3)0.45861 (18)0.0470 (6)
H90.42750.89220.48990.056*
C100.2234 (5)1.0371 (4)0.4256 (2)0.0525 (7)
H100.24081.13540.43480.063*
C110.0859 (4)1.0359 (3)0.37870 (19)0.0498 (7)
H110.01021.13300.35500.060*
C120.0623 (4)0.8875 (3)0.36748 (17)0.0430 (6)
C130.1776 (4)0.7474 (3)0.40382 (17)0.0446 (6)
H130.15900.64840.39760.054*
C140.1018 (4)0.8756 (4)0.32858 (19)0.0495 (7)
C150.0357 (6)0.9707 (5)0.1895 (2)0.0743 (10)
H15A0.03231.07520.16410.089*
H15B0.12510.98920.22140.089*
C160.1546 (9)0.8495 (9)0.1215 (4)0.141 (3)
H16A0.25880.88370.08960.212*
H16B0.07020.84230.08450.212*
H16C0.21260.74290.14590.212*
C170.2907 (7)0.9202 (5)0.2173 (3)0.0779 (11)
H17A0.40940.96780.26070.093*
H17B0.30650.98900.16730.093*
C180.2717 (9)0.7511 (6)0.1959 (3)0.1023 (16)
H18A0.37990.75680.16920.153*
H18B0.27570.68730.24680.153*
H18C0.14700.69920.15760.153*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0401 (3)0.0417 (3)0.0406 (3)0.0139 (2)0.0145 (2)0.0073 (2)
O10.0549 (12)0.0520 (11)0.0436 (10)0.0219 (9)0.0147 (9)0.0043 (8)
O20.0448 (12)0.0728 (15)0.0577 (12)0.0197 (10)0.0128 (9)0.0024 (10)
O30.101 (2)0.160 (3)0.0737 (18)0.074 (2)0.0370 (16)0.0082 (18)
O40.0537 (13)0.0754 (15)0.0651 (13)0.0343 (11)0.0159 (10)0.0127 (11)
O50.0515 (12)0.0615 (14)0.0575 (13)0.0275 (10)0.0119 (10)0.0061 (10)
N10.0426 (12)0.0416 (12)0.0481 (12)0.0131 (10)0.0153 (10)0.0056 (9)
N20.0708 (18)0.0782 (19)0.0571 (15)0.0356 (15)0.0286 (13)0.0165 (13)
C10.0459 (15)0.0347 (13)0.0483 (15)0.0089 (11)0.0142 (12)0.0024 (10)
C20.0464 (14)0.0369 (13)0.0441 (14)0.0123 (11)0.0119 (11)0.0024 (10)
C30.0479 (15)0.0526 (16)0.0414 (14)0.0197 (13)0.0060 (11)0.0019 (11)
C40.0507 (16)0.0617 (18)0.0523 (16)0.0245 (14)0.0142 (13)0.0034 (13)
C50.0603 (18)0.0636 (19)0.0451 (15)0.0244 (15)0.0147 (13)0.0027 (13)
C60.0629 (19)0.070 (2)0.0395 (14)0.0251 (16)0.0068 (13)0.0039 (13)
C70.0466 (16)0.0579 (17)0.0485 (15)0.0167 (13)0.0080 (12)0.0025 (13)
C80.083 (3)0.106 (3)0.0521 (19)0.046 (2)0.0225 (18)0.0047 (19)
C90.0475 (15)0.0481 (15)0.0506 (15)0.0200 (12)0.0165 (12)0.0040 (12)
C100.0562 (17)0.0428 (15)0.0634 (18)0.0216 (13)0.0175 (14)0.0072 (13)
C110.0514 (16)0.0393 (14)0.0582 (17)0.0141 (12)0.0174 (13)0.0122 (12)
C120.0379 (13)0.0458 (15)0.0438 (14)0.0133 (11)0.0099 (10)0.0061 (11)
C130.0452 (14)0.0398 (14)0.0511 (15)0.0149 (11)0.0163 (12)0.0048 (11)
C140.0471 (15)0.0512 (16)0.0522 (16)0.0172 (13)0.0178 (12)0.0099 (12)
C150.087 (3)0.083 (3)0.058 (2)0.035 (2)0.0189 (18)0.0101 (18)
C160.115 (5)0.184 (7)0.129 (5)0.072 (5)0.023 (4)0.060 (5)
C170.090 (3)0.075 (2)0.082 (3)0.033 (2)0.046 (2)0.0196 (19)
C180.138 (4)0.085 (3)0.097 (3)0.039 (3)0.054 (3)0.004 (2)
Geometric parameters (Å, º) top
Mn1—O1i2.1596 (18)C6—H60.9300
Mn1—O12.1596 (18)C7—C61.377 (4)
Mn1—O52.207 (2)C7—H70.9300
Mn1—O5i2.207 (2)C8—H80.971 (18)
Mn1—N12.283 (2)C9—C101.375 (4)
Mn1—N1i2.283 (2)C9—H90.9300
O1—C11.262 (3)C10—H100.9300
O2—C11.249 (3)C11—C101.379 (4)
O3—C81.201 (5)C11—H110.9300
O4—C141.232 (4)C12—C111.385 (4)
O5—H510.924 (19)C12—C131.375 (4)
O5—H520.926 (19)C12—C141.500 (4)
N1—C91.337 (3)C13—H130.9300
N1—C131.339 (3)C15—C161.465 (7)
N2—C141.330 (4)C15—H15A0.9700
N2—C151.468 (5)C15—H15B0.9700
N2—C171.487 (4)C16—H16A0.9600
C2—C11.510 (4)C16—H16B0.9600
C2—C31.391 (4)C16—H16C0.9600
C2—C71.389 (4)C17—C181.477 (6)
C3—C41.381 (4)C17—H17A0.9700
C3—H30.9300C17—H17B0.9700
C4—H40.9300C18—H18A0.9600
C5—C41.391 (4)C18—H18B0.9600
C5—C61.386 (5)C18—H18C0.9600
C5—C81.470 (4)
O1i—Mn1—O1180.000 (1)O3—C8—C5126.0 (4)
O1i—Mn1—O589.23 (8)O3—C8—H8121 (2)
O1—Mn1—O590.77 (8)C5—C8—H8113 (2)
O1i—Mn1—O5i90.77 (8)N1—C9—C10123.1 (3)
O1—Mn1—O5i89.23 (8)N1—C9—H9118.4
O1i—Mn1—N1i92.23 (8)C10—C9—H9118.4
O1—Mn1—N192.23 (8)C9—C10—C11118.9 (3)
O1—Mn1—N1i87.77 (8)C9—C10—H10120.6
O1i—Mn1—N187.77 (8)C11—C10—H10120.6
O5—Mn1—O5i180.000 (1)C10—C11—C12118.8 (3)
O5—Mn1—N1i92.95 (8)C10—C11—H11120.6
O5i—Mn1—N1i87.05 (8)C12—C11—H11120.6
O5—Mn1—N187.05 (8)C11—C12—C14123.3 (2)
O5i—Mn1—N192.95 (8)C13—C12—C11118.3 (3)
N1i—Mn1—N1180.00 (10)C13—C12—C14117.8 (2)
Mn1—O5—H52101 (3)N1—C13—C12123.5 (3)
Mn1—O5—H51118 (3)N1—C13—H13118.3
H52—O5—H51106 (4)C12—C13—H13118.3
C1—O1—Mn1126.76 (18)O4—C14—N2121.2 (3)
C9—N1—C13117.3 (2)O4—C14—C12118.1 (3)
C9—N1—Mn1124.02 (18)N2—C14—C12120.6 (3)
C13—N1—Mn1118.65 (17)N2—C15—H15A108.7
C14—N2—C15124.7 (3)N2—C15—H15B108.7
C14—N2—C17117.3 (3)C16—C15—N2114.1 (4)
C15—N2—C17118.0 (3)C16—C15—H15A108.7
O1—C1—C2116.8 (2)C16—C15—H15B108.7
O2—C1—C2117.8 (2)H15A—C15—H15B107.6
O2—C1—O1125.4 (3)C15—C16—H16A109.5
C3—C2—C1120.9 (2)C15—C16—H16B109.5
C7—C2—C1119.8 (3)C15—C16—H16C109.5
C7—C2—C3119.3 (3)H16A—C16—H16B109.5
C2—C3—H3119.6H16A—C16—H16C109.5
C4—C3—C2120.9 (3)H16B—C16—H16C109.5
C4—C3—H3119.6N2—C17—H17A109.2
C3—C4—C5119.6 (3)N2—C17—H17B109.2
C3—C4—H4120.2C18—C17—N2111.8 (4)
C5—C4—H4120.2C18—C17—H17A109.2
C4—C5—C8120.7 (3)C18—C17—H17B109.2
C6—C5—C4119.5 (3)H17A—C17—H17B107.9
C6—C5—C8119.9 (3)C17—C18—H18A109.5
C5—C6—H6119.5C17—C18—H18B109.5
C7—C6—C5120.9 (3)C17—C18—H18C109.5
C7—C6—H6119.5H18A—C18—H18B109.5
C2—C7—H7120.1H18A—C18—H18C109.5
C6—C7—C2119.9 (3)H18B—C18—H18C109.5
C6—C7—H7120.1
O5—Mn1—O1—C113.3 (2)C3—C2—C1—O13.4 (4)
O5i—Mn1—O1—C1166.7 (2)C7—C2—C1—O1176.9 (2)
N1i—Mn1—O1—C179.6 (2)C3—C2—C1—O2177.3 (3)
N1—Mn1—O1—C1100.4 (2)C7—C2—C1—O22.5 (4)
O1i—Mn1—N1—C9148.3 (2)C1—C2—C3—C4178.6 (3)
O1—Mn1—N1—C931.7 (2)C7—C2—C3—C41.2 (4)
O1i—Mn1—N1—C1332.1 (2)C1—C2—C7—C6178.9 (3)
O1—Mn1—N1—C13147.9 (2)C3—C2—C7—C60.8 (4)
O5—Mn1—N1—C9122.4 (2)C2—C3—C4—C50.4 (5)
O5i—Mn1—N1—C957.6 (2)C6—C5—C4—C30.7 (5)
O5—Mn1—N1—C1357.2 (2)C8—C5—C4—C3179.5 (3)
O5i—Mn1—N1—C13122.8 (2)C4—C5—C6—C71.1 (5)
Mn1—O1—C1—O229.8 (4)C8—C5—C6—C7179.1 (4)
Mn1—O1—C1—C2149.49 (18)C4—C5—C8—O36.7 (7)
Mn1—N1—C9—C10179.1 (2)C6—C5—C8—O3173.4 (4)
C13—N1—C9—C101.2 (4)C2—C7—C6—C50.3 (5)
Mn1—N1—C13—C12178.0 (2)N1—C9—C10—C110.3 (5)
C9—N1—C13—C122.3 (4)C12—C11—C10—C90.9 (5)
C15—N2—C14—O4177.4 (3)C13—C12—C11—C100.0 (4)
C17—N2—C14—O42.5 (5)C14—C12—C11—C10171.0 (3)
C15—N2—C14—C125.6 (5)C11—C12—C13—N11.7 (4)
C17—N2—C14—C12174.4 (3)C14—C12—C13—N1173.2 (3)
C14—N2—C15—C16108.8 (5)C11—C12—C14—O4114.4 (3)
C17—N2—C15—C1671.1 (5)C11—C12—C14—N262.7 (4)
C14—N2—C17—C1878.2 (5)C13—C12—C14—O456.7 (4)
C15—N2—C17—C18101.7 (4)C13—C12—C14—N2126.3 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H51···O4ii0.92 (3)1.87 (3)2.775 (3)165 (4)
O5—H52···O20.93 (3)1.77 (4)2.669 (3)162 (4)
Symmetry code: (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Mn(C8H5O3)2(C10H14N2O)2(H2O)2]
Mr745.68
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)7.3266 (2), 8.6618 (2), 16.0687 (3)
α, β, γ (°)86.381 (8), 78.272 (7), 68.618 (6)
V3)929.67 (6)
Z1
Radiation typeMo Kα
µ (mm1)0.42
Crystal size (mm)0.35 × 0.20 × 0.15
Data collection
DiffractometerRigaku R-AXIS RAPID-S
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.904, 0.935
No. of measured, independent and
observed [I > 2σ(I)] reflections
18356, 3799, 3317
Rint0.071
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.157, 1.02
No. of reflections3799
No. of parameters246
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.77, 0.32

Computer programs: PROCESS-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Mn1—O12.1596 (18)Mn1—N12.283 (2)
Mn1—O52.207 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H51···O4i0.92 (3)1.87 (3)2.775 (3)165 (4)
O5—H52···O20.93 (3)1.77 (4)2.669 (3)162 (4)
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

The authors are indebted to the Department of Chemistry, Atatürk University, Erzurum, Turkey, for the use of X-ray diffractometer purchased under grant No. 2003/219 of the University Research Fund.

References

First citationAntolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem. 21, 1391–1395.  CSD CrossRef CAS Web of Science Google Scholar
First citationBernstein, J., Davies, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHökelek, T., Budak, K. & Necefouglu, H. (1997). Acta Cryst. C53, 1049–1051.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHökelek, T., Çaylak, N. & Necefoğlu, H. (2007). Acta Cryst. E63, m2561–m2562.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Çaylak, N. & Necefoğlu, H. (2008). Acta Cryst. E64, m505–m506.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T. & Necefouglu, H. (1996). Acta Cryst. C52, 1128–1131.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHökelek, T. & Necefouglu, H. (1997). Acta Cryst. C53, 187–189.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHökelek, T. & Necefoğlu, H. (2007). Acta Cryst. E63, m821–m823.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Necefouglu, H. & Balcı, M. (1995). Acta Cryst. C51, 2020–2023.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationNadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 124–128.  CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409–1416.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages m324-m325
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds