metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­(5-fluoro-2-hy­droxy­benzoato-κO1)zinc(II)

aChemistry Department, Francis Marion University, Florence, South Carolina 29501, USA, and bDepartment of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
*Correspondence e-mail: lpeterson@fmarion.edu

(Received 9 February 2009; accepted 17 February 2009; online 28 February 2009)

The title compound, [Zn(C7H4FO3)2(H2O)2], is a monomeric ZnII complex. The ZnII atom, which lies on a twofold rotation axis, is situated in a distorted tetra­hedral environment composed of two monodentate carboxlyate O atoms and two water O atoms. O—H⋯O hydrogen bonds link these units, forming sheets that are stacked along the c axis.

Related literature

For general background, see: Ellsworth & zur Loye (2008[Ellsworth, J. M. & zur Loye, H.-C. (2008). Dalton Trans. pp. 5823-5835.]); Janiak (2003[Janiak, C. (2003). Dalton Trans. pp. 2781-2804.]); Mehrotra & Bohra (1983[Mehrotra, R. C. & Bohra, R. (1983). In Metal Carboxylates. London: Academic Press.]); Wasuke et al. (2005[Wasuke, M., Tomohiko, S., Tesushi, O., Chika, N. K. & Tohru, T. (2005). J. Solid State Chem. 178, 2555-2573.]). For related structures, see: Brownless et al. (1999[Brownless, J. B., Edwards, D. A. & Mahon, M. F. (1999). Inorg. Chim. Acta, 287, 89-94.]); Wang et al. (2006[Wang, Z., Zhang, H., Chen, Y., Huang, C., Sun, R., Cao, Y. & Yu, X. (2006). J. Solid State Chem. 179, 1536-1544.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C7H4FO3)2(H2O)2]

  • Mr = 411.61

  • Monoclinic, C 2/c

  • a = 15.3096 (10) Å

  • b = 5.4706 (4) Å

  • c = 17.7741 (12) Å

  • β = 91.674 (1)°

  • V = 1487.99 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.72 mm−1

  • T = 150 K

  • 0.16 × 0.12 × 0.05 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.893, Tmax = 1.000 (expected range = 0.820–0.918)

  • 8435 measured reflections

  • 1520 independent reflections

  • 1341 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.081

  • S = 1.09

  • 1520 reflections

  • 126 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zn1—O4 1.966 (2)
Zn1—O1 1.9716 (17)
O4—Zn1—O4i 100.61 (13)
O4—Zn1—O1 121.01 (8)
O4—Zn1—O1i 94.50 (8)
O1—Zn1—O1i 124.62 (11)
Symmetry code: (i) [-x+1, y, -z+{\script{3\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1 0.803 (18) 1.84 (2) 2.564 (3) 149 (3)
O4—H4A⋯O2ii 0.834 (18) 1.83 (2) 2.641 (3) 162 (3)
O4—H4B⋯O3iii 0.834 (19) 1.89 (2) 2.711 (3) 170 (4)
Symmetry codes: (ii) x, y-1, z; (iii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Metal carboxylate complexes have long been an extensively studied class of compounds (Mehrotra & Bohra, 1983), and in recent years they have become a major focus of study due to their potentally useful properties (Janiak, 2003; Wasuke et al., 2005). As a continuation of our own studies (Ellsworth & zur Loye, 2008), we report here the crystal structure of the title compound.

The structure of the title compound is built from the monomeric complex of formula Zn(5-fsalcyl)2(H2O)2 (Fig. 1) (5-fsalcyl = 5-fluorosalicylate). The asymmetric unit consists of one ZnII atom that lies on a twofold rotation axis, one 5-fsalcyl ligand, and one water molecule. The coordination environment of the ZnII atom is that of a distorted tetrahedron consisting of two equivalent O atoms from two monodentate carboxylates, and two equivalent O atoms from two water molecules. All four Zn—O bond distances fall within the normal range, with an average length of 1.969 (2) Å. It is worth noting that for the carboxylate O2 atom, the Zn···O2 distance of 2.692 (2)Å falls outside the range considered normal for a Zn—O coordination bond (Wang et al., 2006).

Due to its monodentate binding mode, the 5-fsalcyl carboxylate group adopts a highly asymmetrical configuration. This is manifested in a C1—O1 distance [1.289 (3) Å] for the coordinating O atom that is noticeably longer than the C1—O2 distance [1.246 (3) Å] corresponding to the noncoordinating O atom. In addition, the carboxylate group of the 5-fsalcyl ligand is twisted with a dihedral angle of 9.7 (2) ° with respect to the phenyl ring. As is typical for salicylates, the hydroxyl group of 5-fsalcyl is internally hydrogen bonded to its carboxylate O1 that is located on the same side of the ligand (Brownless et al., 1999).

The monomeric units are hydrogen bonded into chains that are themselves hydrogen bonded into sheets that are stacked along the c axis (Fig. 2).

Related literature top

For general background, see: Ellsworth & zur Loye (2008); Janiak (2003); Mehrotra & Bohra (1983); Wasuke et al. (2005). For related structures, see: Brownless et al. (1999); Wang et al. (2006).

Experimental top

All chemicals and solvents were purchased from commercial sources and used without further purification. 5-Fluorosalicylic acid (3 mmol) was added to 100 ml of water and subsequently brought to pH 6.5 by the addition of 3M NaOH with constant stirring. To this solution was added 10 ml of a 0.10 M solution of Zn(NO3)2.6H2O. Single crystals of the title compound were formed in four weeks after complete evaporation of the solution under ambient conditions.

Refinement top

H atoms bonded to C atoms were positioned geometrically and refined as riding atoms. O-bound H atoms were located in a difference Fourier map and refined isotropically, with their O—H distances restrained to 0.84 (2) Å.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are represented by dashed lines. [Symmetry code: (i) -x+1, y, -z+3/2.]
[Figure 2] Fig. 2. View of the crystal packing in the title compound. All H atoms except for those of water and the hydroxyl group are omitted for clarity. Hydrogen bonds are represented by dashed lines.
Diaquabis(5-fluoro-2-hydroxybenzoato-κO1)zinc(II) top
Crystal data top
[Zn(C7H4FO3)2(H2O)2]F(000) = 832
Mr = 411.61Dx = 1.837 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2066 reflections
a = 15.3096 (10) Åθ = 2.7–24.1°
b = 5.4706 (4) ŵ = 1.72 mm1
c = 17.7741 (12) ÅT = 150 K
β = 91.674 (1)°Plate, colorless
V = 1487.99 (18) Å30.16 × 0.12 × 0.05 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
1520 independent reflections
Radiation source: fine-focus sealed tube1341 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ϕ and ω scansθmax = 26.4°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1818
Tmin = 0.893, Tmax = 1.000k = 66
8435 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: mixed
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0397P)2 + 0.7409P]
where P = (Fo2 + 2Fc2)/3
1520 reflections(Δ/σ)max < 0.001
126 parametersΔρmax = 0.43 e Å3
3 restraintsΔρmin = 0.27 e Å3
Crystal data top
[Zn(C7H4FO3)2(H2O)2]V = 1487.99 (18) Å3
Mr = 411.61Z = 4
Monoclinic, C2/cMo Kα radiation
a = 15.3096 (10) ŵ = 1.72 mm1
b = 5.4706 (4) ÅT = 150 K
c = 17.7741 (12) Å0.16 × 0.12 × 0.05 mm
β = 91.674 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
1520 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1341 reflections with I > 2σ(I)
Tmin = 0.893, Tmax = 1.000Rint = 0.053
8435 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0353 restraints
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.43 e Å3
1520 reflectionsΔρmin = 0.27 e Å3
126 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50000.08063 (8)0.75000.01954 (15)
C10.56321 (16)0.4151 (5)0.65619 (14)0.0204 (5)
C20.62447 (16)0.5945 (5)0.62352 (14)0.0199 (5)
C30.71316 (16)0.6031 (5)0.64632 (14)0.0191 (5)
C40.76803 (16)0.7820 (5)0.61874 (14)0.0221 (6)
H40.82780.78640.63460.026*
C50.73553 (18)0.9533 (5)0.56829 (15)0.0246 (6)
H50.77241.07750.54950.029*
C60.64862 (18)0.9416 (5)0.54547 (15)0.0248 (6)
C70.59321 (16)0.7666 (5)0.57150 (14)0.0223 (6)
H70.53390.76240.55430.027*
O10.59620 (11)0.2481 (3)0.69963 (10)0.0233 (4)
O20.48283 (11)0.4310 (3)0.64435 (11)0.0265 (4)
F10.61747 (11)1.1088 (3)0.49488 (10)0.0391 (5)
O30.74885 (12)0.4400 (4)0.69676 (11)0.0266 (4)
H30.7120 (18)0.341 (5)0.7060 (18)0.044 (10)*
O40.42296 (13)0.1489 (4)0.69475 (13)0.0305 (5)
H4A0.437 (2)0.271 (5)0.6700 (16)0.039 (10)*
H4B0.3689 (13)0.132 (8)0.691 (2)0.068 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0113 (2)0.0184 (2)0.0290 (3)0.0000.00249 (16)0.000
C10.0169 (13)0.0199 (13)0.0245 (14)0.0015 (10)0.0036 (10)0.0063 (11)
C20.0174 (12)0.0209 (13)0.0214 (13)0.0025 (11)0.0021 (10)0.0012 (11)
C30.0149 (12)0.0239 (14)0.0186 (13)0.0015 (10)0.0019 (10)0.0007 (11)
C40.0118 (12)0.0293 (15)0.0252 (14)0.0026 (11)0.0016 (10)0.0009 (12)
C50.0224 (14)0.0238 (15)0.0277 (14)0.0068 (11)0.0065 (11)0.0003 (12)
C60.0233 (14)0.0255 (15)0.0256 (14)0.0021 (12)0.0000 (11)0.0056 (12)
C70.0151 (13)0.0263 (14)0.0253 (14)0.0005 (11)0.0013 (10)0.0008 (12)
O10.0150 (9)0.0239 (10)0.0312 (10)0.0009 (8)0.0054 (7)0.0060 (8)
O20.0121 (9)0.0233 (10)0.0443 (12)0.0014 (8)0.0025 (8)0.0025 (9)
F10.0282 (9)0.0390 (10)0.0500 (11)0.0008 (8)0.0028 (8)0.0232 (9)
O30.0132 (9)0.0315 (11)0.0350 (11)0.0020 (8)0.0020 (8)0.0111 (9)
O40.0139 (10)0.0277 (11)0.0497 (13)0.0020 (8)0.0017 (9)0.0155 (10)
Geometric parameters (Å, º) top
Zn1—O41.966 (2)C4—C51.380 (4)
Zn1—O4i1.966 (2)C4—H40.9500
Zn1—O11.9716 (17)C5—C61.381 (4)
Zn1—O1i1.9717 (17)C5—H50.9500
C1—O21.246 (3)C6—F11.359 (3)
C1—O11.289 (3)C6—C71.369 (4)
C1—C21.487 (4)C7—H70.9500
C2—C71.394 (4)O3—H30.803 (18)
C2—C31.406 (4)O4—H4A0.834 (18)
C3—O31.367 (3)O4—H4B0.834 (19)
C3—C41.388 (4)
O4—Zn1—O4i100.61 (13)C5—C4—H4120.1
O4—Zn1—O1121.01 (8)C3—C4—H4120.1
O4i—Zn1—O194.50 (8)C4—C5—C6119.0 (2)
O4—Zn1—O1i94.50 (8)C4—C5—H5120.5
O4i—Zn1—O1i121.01 (8)C6—C5—H5120.5
O1—Zn1—O1i124.62 (11)F1—C6—C7119.0 (2)
O2—C1—O1121.2 (2)F1—C6—C5118.7 (2)
O2—C1—C2121.3 (2)C7—C6—C5122.3 (2)
O1—C1—C2117.4 (2)C6—C7—C2119.5 (2)
C7—C2—C3118.6 (2)C6—C7—H7120.3
C7—C2—C1119.8 (2)C2—C7—H7120.3
C3—C2—C1121.6 (2)C1—O1—Zn1108.44 (15)
O3—C3—C4117.2 (2)C3—O3—H3108 (2)
O3—C3—C2122.1 (2)Zn1—O4—H4A128 (2)
C4—C3—C2120.7 (2)Zn1—O4—H4B123 (3)
C5—C4—C3119.9 (2)H4A—O4—H4B109 (4)
O2—C1—C2—C77.8 (4)C4—C5—C6—F1179.0 (2)
O1—C1—C2—C7174.9 (2)C4—C5—C6—C70.4 (4)
O2—C1—C2—C3169.2 (2)F1—C6—C7—C2179.9 (2)
O1—C1—C2—C38.1 (4)C5—C6—C7—C20.7 (4)
C7—C2—C3—O3179.6 (2)C3—C2—C7—C61.5 (4)
C1—C2—C3—O33.3 (4)C1—C2—C7—C6175.6 (2)
C7—C2—C3—C41.2 (4)O2—C1—O1—Zn18.5 (3)
C1—C2—C3—C4175.8 (2)C2—C1—O1—Zn1168.89 (17)
O3—C3—C4—C5179.3 (2)O4—Zn1—O1—C173.68 (18)
C2—C3—C4—C50.1 (4)O4i—Zn1—O1—C1178.91 (17)
C3—C4—C5—C60.7 (4)O1i—Zn1—O1—C148.07 (15)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O10.80 (2)1.84 (2)2.564 (3)149 (3)
O4—H4A···O2ii0.83 (2)1.83 (2)2.641 (3)162 (3)
O4—H4B···O3iii0.83 (2)1.89 (2)2.711 (3)170 (4)
Symmetry codes: (ii) x, y1, z; (iii) x1/2, y1/2, z.

Experimental details

Crystal data
Chemical formula[Zn(C7H4FO3)2(H2O)2]
Mr411.61
Crystal system, space groupMonoclinic, C2/c
Temperature (K)150
a, b, c (Å)15.3096 (10), 5.4706 (4), 17.7741 (12)
β (°) 91.674 (1)
V3)1487.99 (18)
Z4
Radiation typeMo Kα
µ (mm1)1.72
Crystal size (mm)0.16 × 0.12 × 0.05
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.893, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8435, 1520, 1341
Rint0.053
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.081, 1.09
No. of reflections1520
No. of parameters126
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.27

Computer programs: SMART (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Zn1—O41.966 (2)Zn1—O11.9716 (17)
O4—Zn1—O4i100.61 (13)O4—Zn1—O1i94.50 (8)
O4—Zn1—O1121.01 (8)O1—Zn1—O1i124.62 (11)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O10.803 (18)1.84 (2)2.564 (3)149 (3)
O4—H4A···O2ii0.834 (18)1.83 (2)2.641 (3)162 (3)
O4—H4B···O3iii0.834 (19)1.89 (2)2.711 (3)170 (4)
Symmetry codes: (ii) x, y1, z; (iii) x1/2, y1/2, z.
 

Acknowledgements

Financial support from the National Science Foundation, awards CHE-0714555 and CHE-0714439, is gratefully acknowledged.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrownless, J. B., Edwards, D. A. & Mahon, M. F. (1999). Inorg. Chim. Acta, 287, 89–94.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEllsworth, J. M. & zur Loye, H.-C. (2008). Dalton Trans. pp. 5823–5835.  Web of Science CrossRef Google Scholar
First citationJaniak, C. (2003). Dalton Trans. pp. 2781–2804.  Web of Science CrossRef Google Scholar
First citationMehrotra, R. C. & Bohra, R. (1983). In Metal Carboxylates. London: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Z., Zhang, H., Chen, Y., Huang, C., Sun, R., Cao, Y. & Yu, X. (2006). J. Solid State Chem. 179, 1536–1544.  Web of Science CSD CrossRef CAS Google Scholar
First citationWasuke, M., Tomohiko, S., Tesushi, O., Chika, N. K. & Tohru, T. (2005). J. Solid State Chem. 178, 2555–2573.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds