organic compounds
A correction has been published for this article. To view the correction, click here.
(4S,5R,6R)-Methyl 4-hydroxy-4,5-isopropylidenedioxy-4,5,6,7-tetrahydro-1,2,3-triazolo[1,5-a]pyridine-3-carboxylate
aDepartment of Organic Chemistry, Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, England, and bDepartment of Chemical Crystallography, Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, England
*Correspondence e-mail: sarah.jenkinson@chem.ox.ac.uk'
X-ray crystallography confirmed the structure of the title triazole, C11H15N3O5, formed from a of a sugar azide with a brominated ylid. The was determined by the use of D-ribose as the starting material. The six-membered ring is in a half-chair conformation. The exists as chains of O—H⋯O hydrogen-bonded moleclues running parallel to the b axis.
Related literature
For imino sugars, see: Asano et al. (2000); Watson et al. (2001). For sugar tetrazoles, see: Brandstetter et al. (1995); Davis et al. (1995); Ermert et al. (1991). For sugar triazoles, see: Caravano et al. (2007); Krivopalov & Shkurko (2005); Krulle et al. (1997); Marco-Contelles & Rodriguez-Fernandez (2001, 2002); Oikonomakos (2002); Tatsuta et al. (1996). For related literature, see: Görbitz (1999); Larson (1970).
Experimental
Crystal data
|
Refinement
|
Data collection: COLLECT (Nonius, 2001).; cell DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.
Supporting information
10.1107/S1600536809006357/lh2778sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809006357/lh2778Isup2.hkl
The title compound was recrystallized by vapour diffusion from a mixture of ether and cyclohexane: m.p. 413–415 K; [α]D21 -140.7 (c, 1.01 in CHCl3).
In the absence of significant
Friedel pairs were merged and the was assigned from the starting material.The relatively large ratio of minimum to maximum corrections applied in the multiscan process (1:1.21) reflect changes in the illuminated volume of the crystal. Changes in illuminated volume were kept to a minimum, and were taken into account (Görbitz, 1999) by the multi-scan inter-frame scaling (DENZO/SCALEPACK, Otwinowski & Minor, 1997).
The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.
Data collection: COLLECT (Nonius, 2001).; cell
DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).C11H15N3O5 | F(000) = 284 |
Mr = 269.26 | Dx = 1.378 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2yb | Cell parameters from 1565 reflections |
a = 8.0587 (3) Å | θ = 5–27° |
b = 7.3797 (3) Å | µ = 0.11 mm−1 |
c = 10.9785 (5) Å | T = 150 K |
β = 96.2740 (18)° | Plate, colourless |
V = 648.99 (5) Å3 | 0.60 × 0.15 × 0.03 mm |
Z = 2 |
Nonius KappaCCD diffractometer | 1219 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.059 |
ω scans | θmax = 27.5°, θmin = 5.2° |
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) | h = −10→10 |
Tmin = 0.82, Tmax = 1.00 | k = −9→9 |
9525 measured reflections | l = −14→14 |
1595 independent reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.037 | Method = Modified Sheldrick w = 1/[σ2(F2) + (0.04P)2 + 0.06P], where P = [max(Fo2,0) + 2Fc2]/3 |
wR(F2) = 0.082 | (Δ/σ)max = 0.000083 |
S = 0.97 | Δρmax = 0.30 e Å−3 |
1595 reflections | Δρmin = −0.31 e Å−3 |
173 parameters | Extinction correction: Larson (1970), Equation 22 |
1 restraint | Extinction coefficient: 120 (30) |
Primary atom site location: structure-invariant direct methods |
C11H15N3O5 | V = 648.99 (5) Å3 |
Mr = 269.26 | Z = 2 |
Monoclinic, P21 | Mo Kα radiation |
a = 8.0587 (3) Å | µ = 0.11 mm−1 |
b = 7.3797 (3) Å | T = 150 K |
c = 10.9785 (5) Å | 0.60 × 0.15 × 0.03 mm |
β = 96.2740 (18)° |
Nonius KappaCCD diffractometer | 1595 independent reflections |
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) | 1219 reflections with I > 2σ(I) |
Tmin = 0.82, Tmax = 1.00 | Rint = 0.059 |
9525 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 1 restraint |
wR(F2) = 0.082 | H-atom parameters constrained |
S = 0.97 | Δρmax = 0.30 e Å−3 |
1595 reflections | Δρmin = −0.31 e Å−3 |
173 parameters |
x | y | z | Uiso*/Ueq | ||
O1 | 0.2044 (2) | 0.3385 (2) | 0.12370 (17) | 0.0348 | |
C2 | 0.3680 (3) | 0.2921 (3) | 0.0939 (2) | 0.0259 | |
C3 | 0.4700 (3) | 0.4559 (3) | 0.14365 (19) | 0.0263 | |
O4 | 0.3535 (2) | 0.6018 (2) | 0.12971 (16) | 0.0369 | |
C5 | 0.1853 (3) | 0.5296 (3) | 0.1071 (3) | 0.0371 | |
C6 | 0.1173 (3) | 0.5757 (4) | −0.0230 (3) | 0.0481 | |
C7 | 0.0820 (4) | 0.5983 (5) | 0.2022 (3) | 0.0711 | |
C8 | 0.5404 (3) | 0.4306 (3) | 0.27502 (19) | 0.0274 | |
N9 | 0.5115 (2) | 0.2809 (3) | 0.33823 (15) | 0.0314 | |
N10 | 0.5960 (3) | 0.2829 (4) | 0.45255 (16) | 0.0404 | |
N11 | 0.6780 (2) | 0.4367 (3) | 0.46271 (17) | 0.0393 | |
C12 | 0.6470 (3) | 0.5312 (3) | 0.35555 (19) | 0.0301 | |
C13 | 0.7152 (3) | 0.7105 (4) | 0.3339 (2) | 0.0347 | |
O14 | 0.6759 (2) | 0.7985 (3) | 0.24224 (16) | 0.0410 | |
O15 | 0.8253 (2) | 0.7650 (3) | 0.42672 (17) | 0.0493 | |
C16 | 0.8993 (4) | 0.9424 (5) | 0.4125 (3) | 0.0619 | |
C17 | 0.4111 (3) | 0.1253 (4) | 0.2922 (2) | 0.0340 | |
C18 | 0.4225 (3) | 0.1151 (3) | 0.1552 (2) | 0.0282 | |
O19 | 0.3191 (2) | −0.0250 (2) | 0.10143 (15) | 0.0345 | |
H21 | 0.3716 | 0.2823 | 0.0030 | 0.0326* | |
H31 | 0.5628 | 0.4800 | 0.0923 | 0.0335* | |
H62 | 0.1213 | 0.7081 | −0.0306 | 0.0684* | |
H61 | 0.0013 | 0.5339 | −0.0390 | 0.0679* | |
H63 | 0.1873 | 0.5166 | −0.0791 | 0.0683* | |
H72 | 0.0760 | 0.7296 | 0.1946 | 0.1122* | |
H71 | −0.0294 | 0.5466 | 0.1898 | 0.1121* | |
H73 | 0.1367 | 0.5658 | 0.2826 | 0.1119* | |
H163 | 0.9999 | 0.9506 | 0.4700 | 0.0913* | |
H162 | 0.9284 | 0.9553 | 0.3294 | 0.0911* | |
H161 | 0.8193 | 1.0353 | 0.4304 | 0.0913* | |
H172 | 0.2930 | 0.1423 | 0.3074 | 0.0432* | |
H171 | 0.4592 | 0.0151 | 0.3327 | 0.0435* | |
H181 | 0.5417 | 0.0915 | 0.1425 | 0.0336* | |
H191 | 0.3489 | −0.1327 | 0.1166 | 0.0521* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0270 (8) | 0.0198 (9) | 0.0582 (11) | 0.0004 (7) | 0.0067 (7) | 0.0020 (7) |
C2 | 0.0241 (11) | 0.0212 (11) | 0.0325 (11) | 0.0008 (10) | 0.0032 (8) | −0.0010 (11) |
C3 | 0.0298 (11) | 0.0224 (12) | 0.0259 (11) | 0.0021 (10) | −0.0007 (9) | 0.0011 (10) |
O4 | 0.0340 (9) | 0.0205 (9) | 0.0524 (11) | 0.0020 (8) | −0.0125 (7) | −0.0004 (8) |
C5 | 0.0267 (12) | 0.0178 (12) | 0.0658 (17) | 0.0013 (10) | 0.0007 (11) | −0.0001 (12) |
C6 | 0.0357 (13) | 0.0268 (14) | 0.0762 (19) | −0.0026 (12) | −0.0191 (13) | 0.0064 (14) |
C7 | 0.075 (2) | 0.041 (2) | 0.105 (3) | 0.0097 (18) | 0.0425 (19) | −0.0053 (19) |
C8 | 0.0270 (11) | 0.0247 (12) | 0.0305 (11) | 0.0084 (11) | 0.0040 (9) | −0.0028 (11) |
N9 | 0.0372 (10) | 0.0314 (11) | 0.0256 (9) | 0.0035 (10) | 0.0040 (8) | 0.0024 (9) |
N10 | 0.0491 (12) | 0.0475 (14) | 0.0241 (9) | 0.0073 (12) | 0.0023 (8) | 0.0009 (11) |
N11 | 0.0427 (11) | 0.0465 (14) | 0.0279 (10) | 0.0110 (12) | −0.0003 (8) | −0.0067 (11) |
C12 | 0.0294 (11) | 0.0315 (14) | 0.0283 (12) | 0.0091 (10) | −0.0011 (9) | −0.0061 (11) |
C13 | 0.0262 (11) | 0.0346 (14) | 0.0413 (14) | 0.0068 (11) | −0.0055 (10) | −0.0129 (12) |
O14 | 0.0382 (9) | 0.0298 (10) | 0.0524 (11) | 0.0004 (9) | −0.0062 (8) | −0.0029 (10) |
O15 | 0.0406 (10) | 0.0451 (13) | 0.0576 (11) | 0.0030 (9) | −0.0157 (8) | −0.0195 (10) |
C16 | 0.0454 (15) | 0.0440 (19) | 0.091 (2) | −0.0055 (16) | −0.0167 (14) | −0.0262 (18) |
C17 | 0.0404 (13) | 0.0262 (13) | 0.0366 (13) | 0.0005 (11) | 0.0099 (10) | 0.0045 (11) |
C18 | 0.0313 (11) | 0.0196 (12) | 0.0335 (12) | 0.0020 (10) | 0.0030 (9) | 0.0005 (10) |
O19 | 0.0413 (9) | 0.0137 (8) | 0.0481 (10) | 0.0003 (7) | 0.0036 (7) | −0.0011 (7) |
O1—C2 | 1.434 (3) | C8—C12 | 1.380 (3) |
O1—C5 | 1.429 (3) | N9—N10 | 1.361 (3) |
C2—C3 | 1.529 (3) | N9—C17 | 1.463 (3) |
C2—C18 | 1.512 (3) | N10—N11 | 1.312 (3) |
C2—H21 | 1.004 | N11—C12 | 1.367 (3) |
C3—O4 | 1.426 (3) | C12—C13 | 1.462 (4) |
C3—C8 | 1.503 (3) | C13—O14 | 1.211 (3) |
C3—H31 | 1.000 | C13—O15 | 1.338 (3) |
O4—C5 | 1.452 (3) | O15—C16 | 1.454 (4) |
C5—C6 | 1.512 (4) | C16—H163 | 0.973 |
C5—C7 | 1.494 (4) | C16—H162 | 0.971 |
C6—H62 | 0.981 | C16—H161 | 0.976 |
C6—H61 | 0.982 | C17—C18 | 1.519 (3) |
C6—H63 | 0.982 | C17—H172 | 0.992 |
C7—H72 | 0.973 | C17—H171 | 0.986 |
C7—H71 | 0.971 | C18—O19 | 1.416 (3) |
C7—H73 | 0.973 | C18—H181 | 1.001 |
C8—N9 | 1.339 (3) | O19—H191 | 0.842 |
C2—O1—C5 | 107.18 (19) | C3—C8—C12 | 133.8 (2) |
O1—C2—C3 | 101.66 (18) | N9—C8—C12 | 104.07 (19) |
O1—C2—C18 | 109.52 (18) | C8—N9—N10 | 111.8 (2) |
C3—C2—C18 | 113.92 (17) | C8—N9—C17 | 126.16 (18) |
O1—C2—H21 | 111.8 | N10—N9—C17 | 122.0 (2) |
C3—C2—H21 | 109.8 | N9—N10—N11 | 106.53 (19) |
C18—C2—H21 | 110.0 | N10—N11—C12 | 108.96 (19) |
C2—C3—O4 | 103.68 (16) | C8—C12—N11 | 108.7 (2) |
C2—C3—C8 | 112.1 (2) | C8—C12—C13 | 127.0 (2) |
O4—C3—C8 | 111.83 (18) | N11—C12—C13 | 124.4 (2) |
C2—C3—H31 | 110.2 | C12—C13—O14 | 123.5 (2) |
O4—C3—H31 | 109.2 | C12—C13—O15 | 112.2 (2) |
C8—C3—H31 | 109.6 | O14—C13—O15 | 124.3 (3) |
C3—O4—C5 | 109.44 (17) | C13—O15—C16 | 115.8 (2) |
O4—C5—O1 | 104.75 (19) | O15—C16—H163 | 108.0 |
O4—C5—C6 | 108.3 (2) | O15—C16—H162 | 109.4 |
O1—C5—C6 | 111.5 (2) | H163—C16—H162 | 109.5 |
O4—C5—C7 | 109.7 (2) | O15—C16—H161 | 108.8 |
O1—C5—C7 | 107.8 (2) | H163—C16—H161 | 110.4 |
C6—C5—C7 | 114.3 (2) | H162—C16—H161 | 110.6 |
C5—C6—H62 | 107.0 | N9—C17—C18 | 106.86 (19) |
C5—C6—H61 | 109.7 | N9—C17—H172 | 110.3 |
H62—C6—H61 | 109.7 | C18—C17—H172 | 109.6 |
C5—C6—H63 | 108.6 | N9—C17—H171 | 108.5 |
H62—C6—H63 | 111.3 | C18—C17—H171 | 110.0 |
H61—C6—H63 | 110.4 | H172—C17—H171 | 111.4 |
C5—C7—H72 | 107.7 | C17—C18—C2 | 110.60 (19) |
C5—C7—H71 | 110.2 | C17—C18—O19 | 110.65 (19) |
H72—C7—H71 | 110.0 | C2—C18—O19 | 108.43 (17) |
C5—C7—H73 | 108.6 | C17—C18—H181 | 108.0 |
H72—C7—H73 | 109.7 | C2—C18—H181 | 108.9 |
H71—C7—H73 | 110.5 | O19—C18—H181 | 110.2 |
C3—C8—N9 | 122.1 (2) | C18—O19—H191 | 117.7 |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H31···O19i | 1.00 | 2.42 | 3.339 (4) | 152 |
C16—H161···N10ii | 0.98 | 2.59 | 3.567 (4) | 174 |
O19—H191···O4iii | 0.84 | 1.96 | 2.782 (4) | 163 |
Symmetry codes: (i) −x+1, y+1/2, −z; (ii) x, y+1, z; (iii) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | C11H15N3O5 |
Mr | 269.26 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 150 |
a, b, c (Å) | 8.0587 (3), 7.3797 (3), 10.9785 (5) |
β (°) | 96.2740 (18) |
V (Å3) | 648.99 (5) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.11 |
Crystal size (mm) | 0.60 × 0.15 × 0.03 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) |
Tmin, Tmax | 0.82, 1.00 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9525, 1595, 1219 |
Rint | 0.059 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.082, 0.97 |
No. of reflections | 1595 |
No. of parameters | 173 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.30, −0.31 |
Computer programs: COLLECT (Nonius, 2001)., DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996).
D—H···A | D—H | H···A | D···A | D—H···A |
O19—H191···O4i | 0.84 | 1.96 | 2.782 (4) | 163 |
Symmetry code: (i) x, y−1, z. |
Acknowledgements
The authors wish to thank the Oxford University Crystallography Service for use of the instruments.
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Asano, N., Nash, R. J., Molyneux, R. J. & Fleet, G. W. J. (2000). Tetrahedron Asymmetry, 11, 1645–1680. Web of Science CrossRef CAS Google Scholar
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals Google Scholar
Brandstetter, T. W., Davis, B., Hyett, D., Smith, C., Hackett, L., Winchester, B. G. & Fleet, G. W. J. (1995). Tetrahedron Lett. 36, 7511–7514. CrossRef CAS Web of Science Google Scholar
Caravano, A., Baillieul, D., Ansiaux, C., Pan, W. D., Kovensky, J., Sinay, P. & Vincent, S. P. (2007). Tetrahedron, 63, 2070–2077. Web of Science CrossRef CAS Google Scholar
Davis, B., Brandstetter, T. W., Smith, C., Hackett, L., Winchester, B. G. & Fleet, G. W. J. (1995). Tetrahedron Lett. 36, 7507–7510. CrossRef CAS Web of Science Google Scholar
Ermert, P. & Vasella, A. (1991). Helv. Chim. Acta, 74, 2043–2053. CSD CrossRef CAS Web of Science Google Scholar
Görbitz, C. H. (1999). Acta Cryst. B55, 1090–1098. Web of Science CSD CrossRef IUCr Journals Google Scholar
Krivopalov, V. P. & Shkurko, O. P. (2005). Usp. Khim. 74, 369–410. CrossRef Google Scholar
Krulle, T. M., de la Fuente, C., Pickering, L., Aplin, R. A., Tsitsanou, K. E., Zographos, S. E., Oikonomakos, N. G., Nash, R. J., Griffiths, R. C. & Fleet, G. W. J. (1997). Tetrahedron Asymmetry, 8, 3807–3820. CrossRef CAS Web of Science Google Scholar
Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291–294. Copenhagen: Munksgaard. Google Scholar
Marco-Contelles, J. & Rodriguez-Fernandez, M. (2001). J. Org. Chem. 66, 3717–3725. Web of Science CrossRef PubMed CAS Google Scholar
Marco-Contelles, J. & Rodriguez-Fernandez, M. (2002). Tetrahedron Lett. 41, 381–384. Web of Science CrossRef Google Scholar
Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Oikonomakos, N. G. (2002). Curr. Protein Peptide Sci. 3, 561–586. Web of Science CrossRef CAS Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Tatsuta, K., Ikeda, Y. & Miura, S. (1996). J. Antibiot. 49, 836–838. CrossRef CAS PubMed Web of Science Google Scholar
Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England. Google Scholar
Watson, A. A., Fleet, G. W. J., Asano, N., Molyneux, R. J. & Nash, R. J. (2001). Phytochemistry, 56, 265–295. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Sugars with the ring oxygen replaced by nitrogen comprise a large family of both natural products and synthetic analogues which inhibit sugar metabolizing enzymes (Asano et al., 2000; Watson et al., 2001), including compounds which incorporate a tetrazole (Ermert et al., 1991; Davis et al., 1995; Brandstetter et al., 1995) or triazole (Tatsuta et al., 1996; Marco-Contelles & Rodriguez-Fernandez, 2002; Caravano et al., 2007; Krivpalov & Shkurko, 2007) fused to the pyranose ring. Some sugar triazoles have potential as glycogen phosphorylase inhibitors (Oikonomakos, 2002). Usually the synthesis of pyranose triazoles requires many steps (Marco-Contelles & Rodriguez-Fernandez, 2001; Krulle et al., 1997).
A single step synthesis (see Fig. 1) has been developed in which an azidolactol 1 was reacted with Ph3P=CBrCOOMe; the open chain form 2 underwent a Wittig reaction to give 3 which was followed by an intramolecular 1,3-dipolar addition of the azide to the alkene to afford 4. Subsequent elimination of HBr gave the target compound 5. The structure of the product 5, including the relative configuration of the three chiral centers was confirmed by X-ray crystallographic analysis. The absolute configuration was determined by the use of D-ribose as the starting material for the preparation of azidolactol 1.
The crystal structure of 5 exisits as chains of O—H···O hydrogen bonded moleclues lying parallel to the b-axis. Only classical hydrogen bonding has been considered. The 6-membered ring exists in a half-chair conformation.