organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2-Pyridylmethylene­amino)de­hydro­abietylamine

aInstitute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, People's Republic of China, and bCollege of Landscape Architecture and Art, Jiangxi Agriculture University, Nanchang 330045, People's Republic of China
*Correspondence e-mail: rxping2001@163.com

(Received 31 December 2008; accepted 12 March 2009; online 19 March 2009)

The title compound {systematic name: 1-[(1R,4aS,10aR)-7-isopropyl-1,2,3,4,4a,9,10,10a-octa­hydro­phenanthren-1-yl]-N-[(E)-2-pyridylmethyleneamino]methanamine}, C26H33N2, has been synthesized from dehydro­abietylamine. The two cyclo­hexane rings form a trans ring junction with classic chair and half-chair conformations, respectively, whereas the benzene and pyridine rings are almost planar, and the dihedral angle between them is 80.4°. The two methyl groups directly attached to the tricyclic nucleus are on the same side of the tricyclic hydro­phenanthrene structure.

Related literature

For the biological activity of a related compound, , see: Cannon (1952[Cannon, L. C. (1952). US Patent No. 2 585 436.]); Heinrich (1981[Heinrich, P. (1981). German Patent No. 300 768 224.]); Kalser & Scheer (1976[Kalser, A. & Scheer, M. (1976). US Patent No. 3 969 397.]); Rao, Song & He (2008[Rao, X. P., Song, Z. Q. & He, L. (2008). Heteroat. Chem. 19, 512-516.]); Rao, Song, He & Jia (2008[Rao, X. P., Song, Z. Q., He, L. & Jia, W. H. (2008). Chem. Pharm. Bull. 56, 1575-1578.]); Wilkerson et al. (1991[Wilkerson, W. W., Delucca, I. & Galbraith, W. (1991). Eur. J. Med. Chem. 26, 667-676.], 1993[Wilkerson, W. W., Galbraith, W. & Delucca, I. (1993). Bioorg. Med. Chem. Lett. 3, 2087-2092.]). For the crystal structure of a related compound, see: Rao et al. (2006[Rao, X.-P., Song, Z.-Q., Gong, Y., Yao, X.-J. & Shang, S.-B. (2006). Acta Cryst. E62, o3450-o3451.], 2007[Rao, X. P., Song, Z. Q. & Gao, H. (2007). Chem. Ind. For. Prod. 27, 97-99.]); Rao, Song, Jia & Shang (2008[Rao, X. P., Song, Z. Q., Jia, W. H. & Shang, S. B. (2008). Chemistry, 71, 723-730.]).

[Scheme 1]

Experimental

Crystal data
  • C26H33N2

  • Mr = 373.54

  • Monoclinic, P 21

  • a = 11.294 (2) Å

  • b = 6.0870 (12) Å

  • c = 16.129 (3) Å

  • β = 98.71 (3)°

  • V = 1096.0 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.951, Tmax = 0.974

  • 2478 measured reflections

  • 2357 independent reflections

  • 1434 reflections with I > 2σ(I)

  • Rint = 0.045

  • 3 standard reflections every 200 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.188

  • S = 1.00

  • 2357 reflections

  • 253 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Dehydroabietylamine is a highly interesting compound for its special structure and wide range of applications (Rao, Song, He & Jia, 2008). As an excellent chiral resolving agent, dehydroabietylamine is successful applied in the coalescent of Penicillin (Cannon,1952) and the synthesis of dihydroxyphenylalanine (Kalser et al., 1976). Dehydroabietylamine derivatives exhibited broad spectrum of biological properties including antibacterial, antifungal, and antipenetrant activities (Heinrich, 1981; Wilkerson et al., 1991; Wilkerson et al., 1993; Rao et al., 2007; Rao, Song, & He, 2008; Rao, Song, Jia & Shang, 2008)). Although much attention has been paid to dehydroabietylamine derivatives, the crystal structure of the title compound has not yet been reported. In this paper, we present the crystal structure of the title compound.

The title structure is compared with previously found structure 4-chloro-2-{(E)-[(1R,4aS,10aR)-7-isopropyl-1,4a-dimethyl-1,2, 3,4,4a,9,10,10a-octahydrophenanthren-1-yl] methyliminomethyl} phenol (Rao et al., 2006). They exhibited the same configurations with each other. As shown in Fig.1, the title compound contains four crystrallographically rings, the two cyclohexane rings (rings C and B) form a trans ring junction with classic chair and half-chair conformations, respectively. The benzene ring and the pyridine ring (rings A and D) are almost planar. The two methyl groups directly attached to the tricyclic nucleus are on the same side of the tricyclic hydrophenanthrene structure, and the two methyl groups are in the axis position of the cyclohexane ring, the bond lengths and bond angles in the molecule are in normal ranges.

Related literature top

For related literature, see: Cannon (1952); Heinrich (1981); Kalser & Scheer (1976); Rao et al. (2006, 2007); Rao, Song & He (2008); Rao, Song, He & Jia (2008); Rao, Song, Jia & Shang (2008); Wilkerson et al. (1991, 1993).

Experimental top

The title compound was prepared by the reaction of dehydroabietylamine (0.1 mol) and pyridylaldehyde (0.1 mol) in ethanol (100 ml) under 353.5 K for 4 h. Single crystals of the title compound were obtained by solvent evaporation [m.p. 372K].

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.96Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms, and C—H = 0.97–0.98Å and Uiso(H) = 1.2Ueq(C) for all other H atoms. The high Flack value was resulted by the crystal quality.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with H atoms represented by small spheres of arbitrary radius and displacement ellipsoids at the 30% probability level.
1-[(1R,4aS,10aR)-7-isopropyl-1,2,3,4,4a,9,10,10a- octahydrophenanthren-1-yl]-N-[(E)-2- pyridylmethyleneamino]methanamine top
Crystal data top
C26H33N2F(000) = 406
Mr = 373.54Dx = 1.132 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 25 reflections
a = 11.294 (2) Åθ = 10–13°
b = 6.0870 (12) ŵ = 0.07 mm1
c = 16.129 (3) ÅT = 293 K
β = 98.71 (3)°Block, white
V = 1096.0 (4) Å30.30 × 0.20 × 0.10 mm
Z = 2
Data collection top
Enraf–Nonius CAD-4
diffractometer
1434 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.045
Graphite monochromatorθmax = 26.0°, θmin = 1.3°
ω/2θ scansh = 013
Absorption correction: ψ scan
(North et al., 1968)
k = 07
Tmin = 0.951, Tmax = 0.974l = 1919
2478 measured reflections3 standard reflections every 200 reflections
2357 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.188H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
2357 reflections(Δ/σ)max < 0.001
253 parametersΔρmax = 0.19 e Å3
1 restraintΔρmin = 0.20 e Å3
Crystal data top
C26H33N2V = 1096.0 (4) Å3
Mr = 373.54Z = 2
Monoclinic, P21Mo Kα radiation
a = 11.294 (2) ŵ = 0.07 mm1
b = 6.0870 (12) ÅT = 293 K
c = 16.129 (3) Å0.30 × 0.20 × 0.10 mm
β = 98.71 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1434 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.045
Tmin = 0.951, Tmax = 0.9743 standard reflections every 200 reflections
2478 measured reflections intensity decay: none
2357 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0641 restraint
wR(F2) = 0.188H-atom parameters constrained
S = 1.00Δρmax = 0.19 e Å3
2357 reflectionsΔρmin = 0.20 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2116 (4)0.1781 (8)0.1368 (2)0.0616 (12)
N20.0270 (5)0.4047 (9)0.3125 (3)0.0814 (15)
C10.6341 (7)0.9761 (12)0.3876 (4)0.108 (3)
H1B0.56471.05190.35980.162*
H1C0.68610.94070.34770.162*
H1D0.67581.06840.43070.162*
C20.7016 (5)0.6441 (12)0.4723 (4)0.088 (2)
H2B0.67500.51390.49750.132*
H2C0.74360.73690.51510.132*
H2D0.75430.60410.43330.132*
C30.5953 (5)0.7653 (10)0.4268 (3)0.0653 (15)
H3A0.54690.80990.46950.078*
C40.5153 (5)0.6250 (9)0.3642 (3)0.0560 (14)
C50.3996 (4)0.5769 (10)0.3732 (3)0.0602 (15)
H5A0.36900.63030.41970.072*
C60.3280 (4)0.4524 (9)0.3157 (3)0.0541 (13)
H6A0.24950.42610.32390.065*
C70.3671 (4)0.3638 (8)0.2458 (3)0.0455 (11)
C80.4870 (4)0.4045 (9)0.2362 (3)0.0519 (12)
C90.5572 (4)0.5346 (10)0.2954 (3)0.0604 (14)
H9A0.63600.56230.28830.072*
C100.2857 (4)0.2215 (8)0.1825 (3)0.0444 (11)
C110.3278 (4)0.2466 (8)0.0964 (2)0.0433 (10)
H11A0.32900.40540.08650.052*
C120.4589 (4)0.1745 (10)0.1029 (3)0.0636 (15)
H12A0.46580.02180.12000.076*
H12B0.48400.18630.04820.076*
C130.5392 (5)0.3102 (14)0.1640 (3)0.092 (2)
H13A0.61850.33560.15760.110*
C140.1547 (4)0.2973 (9)0.1759 (3)0.0534 (13)
H14A0.12600.26720.22840.064*
H14B0.15070.45470.16660.064*
C150.0736 (4)0.1820 (11)0.1046 (3)0.0639 (15)
H15A0.07390.02510.11520.077*
H15B0.00780.23490.10220.077*
C160.1160 (4)0.2251 (9)0.0222 (3)0.0538 (13)
H16A0.10990.38140.01060.065*
H16B0.06290.15010.02170.065*
C170.2442 (4)0.1517 (8)0.0188 (3)0.0482 (12)
C180.2950 (5)0.0156 (9)0.2187 (3)0.0686 (16)
H18A0.26720.01710.27210.103*
H18B0.37690.06330.22560.103*
H18C0.24660.11280.18080.103*
C190.2519 (5)0.1014 (9)0.0118 (3)0.0617 (15)
H19A0.22740.16780.06040.093*
H19B0.33290.14320.00820.093*
H19C0.20020.15000.03760.093*
C200.2829 (4)0.2563 (10)0.0602 (3)0.0568 (13)
H20A0.27530.41470.05710.068*
H20B0.36650.22230.06150.068*
C210.1584 (5)0.3134 (10)0.1878 (3)0.0612 (14)
H21A0.16540.46260.17560.073*
C220.0852 (4)0.2423 (10)0.2665 (3)0.0559 (13)
C230.0394 (6)0.3452 (14)0.3848 (4)0.094 (2)
H23A0.08070.45440.41760.113*
C240.0503 (6)0.1341 (14)0.4132 (4)0.085 (2)
H24A0.09810.10100.46380.102*
C250.0104 (6)0.0273 (12)0.3659 (4)0.0780 (18)
H25A0.00540.17230.38430.094*
C260.0784 (5)0.0259 (11)0.2916 (3)0.0672 (15)
H26A0.11960.08240.25820.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.074 (3)0.052 (3)0.055 (2)0.001 (2)0.000 (2)0.007 (2)
N20.091 (4)0.069 (4)0.079 (3)0.008 (3)0.008 (3)0.003 (3)
C10.152 (7)0.067 (5)0.095 (5)0.038 (5)0.014 (4)0.001 (4)
C20.084 (4)0.077 (5)0.092 (4)0.001 (4)0.027 (3)0.013 (4)
C30.073 (4)0.058 (4)0.062 (3)0.005 (3)0.003 (3)0.007 (3)
C40.067 (3)0.047 (3)0.049 (3)0.006 (3)0.006 (2)0.003 (2)
C50.066 (3)0.063 (4)0.051 (3)0.004 (3)0.008 (3)0.001 (3)
C60.056 (3)0.052 (3)0.054 (3)0.001 (3)0.005 (2)0.007 (3)
C70.055 (3)0.037 (3)0.043 (2)0.002 (2)0.004 (2)0.009 (2)
C80.050 (3)0.053 (3)0.051 (3)0.002 (3)0.001 (2)0.005 (3)
C90.049 (3)0.066 (4)0.064 (3)0.012 (3)0.002 (2)0.005 (3)
C100.044 (2)0.033 (3)0.054 (2)0.001 (2)0.003 (2)0.009 (2)
C110.046 (2)0.033 (2)0.050 (2)0.001 (2)0.0013 (19)0.001 (2)
C120.049 (3)0.075 (4)0.066 (3)0.001 (3)0.006 (2)0.016 (3)
C130.049 (3)0.146 (7)0.083 (4)0.026 (4)0.020 (3)0.055 (5)
C140.050 (3)0.052 (3)0.060 (3)0.000 (2)0.013 (2)0.004 (3)
C150.043 (2)0.078 (4)0.069 (3)0.001 (3)0.000 (2)0.001 (3)
C160.049 (3)0.047 (3)0.061 (3)0.000 (3)0.005 (2)0.005 (3)
C170.055 (3)0.030 (2)0.059 (3)0.002 (2)0.005 (2)0.001 (2)
C180.087 (4)0.046 (3)0.068 (3)0.012 (3)0.002 (3)0.019 (3)
C190.067 (3)0.041 (3)0.073 (3)0.003 (3)0.002 (3)0.004 (3)
C200.067 (3)0.050 (3)0.053 (3)0.008 (3)0.005 (2)0.002 (3)
C210.068 (3)0.054 (3)0.061 (3)0.001 (3)0.008 (3)0.006 (3)
C220.061 (3)0.053 (3)0.053 (3)0.002 (3)0.007 (2)0.006 (3)
C230.089 (5)0.088 (6)0.094 (5)0.014 (4)0.021 (4)0.016 (5)
C240.087 (4)0.098 (6)0.065 (4)0.029 (4)0.001 (3)0.001 (4)
C250.102 (5)0.063 (4)0.067 (4)0.014 (4)0.008 (3)0.005 (4)
C260.076 (4)0.060 (4)0.064 (3)0.005 (3)0.007 (3)0.003 (3)
Geometric parameters (Å, º) top
N1—C211.251 (6)C12—H12A0.9700
N1—C201.449 (6)C12—H12B0.9700
N2—C231.337 (8)C13—H13A0.9300
N2—C221.345 (7)C14—C151.528 (7)
C1—C31.523 (9)C14—H14A0.9700
C1—H1B0.9600C14—H14B0.9700
C1—H1C0.9600C15—C161.501 (6)
C1—H1D0.9600C15—H15A0.9700
C2—C31.502 (8)C15—H15B0.9700
C2—H2B0.9600C16—C171.524 (6)
C2—H2C0.9600C16—H16A0.9700
C2—H2D0.9600C16—H16B0.9700
C3—C41.513 (7)C17—C201.545 (7)
C3—H3A0.9800C17—C191.548 (7)
C4—C51.368 (7)C18—H18A0.9600
C4—C91.386 (7)C18—H18B0.9600
C5—C61.364 (7)C18—H18C0.9600
C5—H5A0.9300C19—H19A0.9600
C6—C71.381 (6)C19—H19B0.9600
C6—H6A0.9300C19—H19C0.9600
C7—C81.407 (6)C20—H20A0.9700
C7—C101.534 (6)C20—H20B0.9700
C8—C91.392 (7)C21—C221.473 (7)
C8—C131.498 (7)C21—H21A0.9300
C9—H9A0.9300C22—C261.376 (8)
C10—C141.537 (6)C23—C241.363 (10)
C10—C111.543 (6)C23—H23A0.9300
C10—C181.555 (7)C24—C251.363 (9)
C11—C121.532 (6)C24—H24A0.9300
C11—C171.560 (6)C25—C261.361 (8)
C11—H11A0.9800C25—H25A0.9300
C12—C131.485 (7)C26—H26A0.9300
C21—N1—C20119.6 (5)C15—C14—H14A109.2
C23—N2—C22116.4 (6)C10—C14—H14A109.2
C3—C1—H1B109.5C15—C14—H14B109.2
C3—C1—H1C109.5C10—C14—H14B109.2
H1B—C1—H1C109.5H14A—C14—H14B107.9
C3—C1—H1D109.5C16—C15—C14110.5 (4)
H1B—C1—H1D109.5C16—C15—H15A109.5
H1C—C1—H1D109.5C14—C15—H15A109.5
C3—C2—H2B109.5C16—C15—H15B109.5
C3—C2—H2C109.5C14—C15—H15B109.5
H2B—C2—H2C109.5H15A—C15—H15B108.1
C3—C2—H2D109.5C15—C16—C17114.4 (4)
H2B—C2—H2D109.5C15—C16—H16A108.7
H2C—C2—H2D109.5C17—C16—H16A108.7
C2—C3—C4113.7 (5)C15—C16—H16B108.7
C2—C3—C1110.9 (6)C17—C16—H16B108.7
C4—C3—C1112.2 (4)H16A—C16—H16B107.6
C2—C3—H3A106.5C16—C17—C20107.4 (4)
C4—C3—H3A106.5C16—C17—C19111.0 (4)
C1—C3—H3A106.5C20—C17—C19108.9 (4)
C5—C4—C9116.6 (5)C16—C17—C11108.9 (4)
C5—C4—C3122.3 (5)C20—C17—C11107.2 (4)
C9—C4—C3121.1 (5)C19—C17—C11113.1 (4)
C6—C5—C4121.6 (5)C10—C18—H18A109.5
C6—C5—H5A119.2C10—C18—H18B109.5
C4—C5—H5A119.2H18A—C18—H18B109.5
C5—C6—C7122.8 (5)C10—C18—H18C109.5
C5—C6—H6A118.6H18A—C18—H18C109.5
C7—C6—H6A118.6H18B—C18—H18C109.5
C6—C7—C8116.9 (4)C17—C19—H19A109.5
C6—C7—C10122.0 (4)C17—C19—H19B109.5
C8—C7—C10121.1 (4)H19A—C19—H19B109.5
C9—C8—C7118.9 (4)C17—C19—H19C109.5
C9—C8—C13120.0 (4)H19A—C19—H19C109.5
C7—C8—C13121.1 (4)H19B—C19—H19C109.5
C4—C9—C8123.2 (5)N1—C20—C17112.2 (4)
C4—C9—H9A118.4N1—C20—H20A109.2
C8—C9—H9A118.4C17—C20—H20A109.2
C7—C10—C14110.5 (4)N1—C20—H20B109.2
C7—C10—C11107.9 (3)C17—C20—H20B109.2
C14—C10—C11109.4 (3)H20A—C20—H20B107.9
C7—C10—C18105.9 (3)N1—C21—C22121.6 (5)
C14—C10—C18108.3 (4)N1—C21—H21A119.2
C11—C10—C18114.7 (4)C22—C21—H21A119.2
C12—C11—C10109.6 (4)N2—C22—C26122.7 (5)
C12—C11—C17114.2 (4)N2—C22—C21115.0 (5)
C10—C11—C17117.0 (4)C26—C22—C21122.2 (5)
C12—C11—H11A104.9N2—C23—C24123.9 (7)
C10—C11—H11A104.9N2—C23—H23A118.0
C17—C11—H11A104.9C24—C23—H23A118.0
C13—C12—C11111.9 (5)C25—C24—C23118.6 (6)
C13—C12—H12A109.2C25—C24—H24A120.7
C11—C12—H12A109.2C23—C24—H24A120.7
C13—C12—H12B109.2C26—C25—C24119.4 (7)
C11—C12—H12B109.2C26—C25—H25A120.3
H12A—C12—H12B107.9C24—C25—H25A120.3
C12—C13—C8117.2 (4)C25—C26—C22119.0 (6)
C12—C13—H13A121.4C25—C26—H26A120.5
C8—C13—H13A121.4C22—C26—H26A120.5
C15—C14—C10112.1 (4)
C2—C3—C4—C5115.6 (6)C9—C8—C13—C12179.5 (6)
C1—C3—C4—C5117.5 (6)C7—C8—C13—C120.5 (9)
C2—C3—C4—C963.0 (7)C7—C10—C14—C15171.7 (4)
C1—C3—C4—C963.9 (7)C11—C10—C14—C1553.0 (5)
C9—C4—C5—C62.2 (8)C18—C10—C14—C1572.6 (5)
C3—C4—C5—C6179.2 (5)C10—C14—C15—C1658.8 (6)
C4—C5—C6—C71.1 (8)C14—C15—C16—C1758.4 (6)
C5—C6—C7—C80.9 (7)C15—C16—C17—C20166.7 (4)
C5—C6—C7—C10179.1 (5)C15—C16—C17—C1974.4 (6)
C6—C7—C8—C91.8 (7)C15—C16—C17—C1150.8 (6)
C10—C7—C8—C9180.0 (5)C12—C11—C17—C16176.9 (4)
C6—C7—C8—C13178.2 (5)C10—C11—C17—C1646.9 (5)
C10—C7—C8—C130.0 (8)C12—C11—C17—C2067.1 (5)
C5—C4—C9—C81.3 (8)C10—C11—C17—C20162.8 (4)
C3—C4—C9—C8179.9 (5)C12—C11—C17—C1952.9 (6)
C7—C8—C9—C40.7 (8)C10—C11—C17—C1977.1 (5)
C13—C8—C9—C4179.2 (6)C21—N1—C20—C17124.8 (5)
C6—C7—C10—C1432.6 (6)C16—C17—C20—N163.6 (5)
C8—C7—C10—C14149.3 (4)C19—C17—C20—N156.7 (6)
C6—C7—C10—C11152.2 (4)C11—C17—C20—N1179.5 (4)
C8—C7—C10—C1129.7 (6)C20—N1—C21—C22179.8 (4)
C6—C7—C10—C1884.5 (5)C23—N2—C22—C260.3 (9)
C8—C7—C10—C1893.6 (5)C23—N2—C22—C21179.4 (5)
C7—C10—C11—C1258.8 (5)N1—C21—C22—N2175.8 (5)
C14—C10—C11—C12179.2 (4)N1—C21—C22—C265.1 (8)
C18—C10—C11—C1259.0 (5)C22—N2—C23—C240.2 (11)
C7—C10—C11—C17169.0 (4)N2—C23—C24—C250.4 (12)
C14—C10—C11—C1748.7 (5)C23—C24—C25—C260.9 (10)
C18—C10—C11—C1773.2 (5)C24—C25—C26—C220.7 (9)
C10—C11—C12—C1360.7 (6)N2—C22—C26—C250.1 (9)
C17—C11—C12—C13165.7 (5)C21—C22—C26—C25178.9 (5)
C11—C12—C13—C829.8 (8)

Experimental details

Crystal data
Chemical formulaC26H33N2
Mr373.54
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)11.294 (2), 6.0870 (12), 16.129 (3)
β (°) 98.71 (3)
V3)1096.0 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.951, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
2478, 2357, 1434
Rint0.045
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.188, 1.00
No. of reflections2357
No. of parameters253
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.20

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).

 

Acknowledgements

This research was supported by grants from the National Natural Science Foundation of China (grant No. 30771690) and the Forestry Commonwealth Industry Special Foundation of China (grant No. 200704008).

References

First citationCannon, L. C. (1952). US Patent No. 2 585 436.  Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHeinrich, P. (1981). German Patent No. 300 768 224.  Google Scholar
First citationKalser, A. & Scheer, M. (1976). US Patent No. 3 969 397.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRao, X. P., Song, Z. Q. & Gao, H. (2007). Chem. Ind. For. Prod. 27, 97–99.  CAS Google Scholar
First citationRao, X.-P., Song, Z.-Q., Gong, Y., Yao, X.-J. & Shang, S.-B. (2006). Acta Cryst. E62, o3450–o3451.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRao, X. P., Song, Z. Q. & He, L. (2008). Heteroat. Chem. 19, 512–516.  Web of Science CrossRef CAS Google Scholar
First citationRao, X. P., Song, Z. Q., He, L. & Jia, W. H. (2008). Chem. Pharm. Bull. 56, 1575–1578.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRao, X. P., Song, Z. Q., Jia, W. H. & Shang, S. B. (2008). Chemistry, 71, 723–730.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilkerson, W. W., Delucca, I. & Galbraith, W. (1991). Eur. J. Med. Chem. 26, 667–676.  CrossRef CAS Web of Science Google Scholar
First citationWilkerson, W. W., Galbraith, W. & Delucca, I. (1993). Bioorg. Med. Chem. Lett. 3, 2087–2092.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds