organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o707-o708

6,6′-Di­eth­oxy-2,2′-[2,2-di­methylpropane-1,3-diylbis(nitrilo­methyl­idyne)]diphenol

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, School of Science, Payame Noor University (PNU), Ardakan, Yazd, Iran
*Correspondence e-mail: hkfun@usm.my

(Received 28 February 2009; accepted 2 March 2009; online 6 March 2009)

In the crystal structure, the title Schiff base compound, C23H30N2O4, exhibits crystallographic twofold rotation symmetry. The imino group is coplanar with the aromatic ring with an N—C—C—C torsion angle of -179.72 (9)°. An intra­molecular O—H⋯N hydrogen bond forms a six-membered ring, producing an S(6) ring motif. The dihedral angle between symmetry related benzene rings is 28.05 (5)°. The eth­oxy group makes a C—O—C—C torsion angle of −7.20 (16)° with the benzene ring. The crystal structure is stabilized by inter­molecular C—H⋯π inter­actions.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For information on Schiff base ligands, complexes and their applications, see, for example: Calligaris & Randaccio, (1987[Calligaris, M. & Randaccio, L. (1987). Comprehensive Coordination Chemistry, Vol. 2, edited by G. Wilkinson, pp. 715-738. London: Pergamon.]); Casellato & Vigato, (1977[Casellato, U. & Vigato, P. A. (1977). Coord. Chem. Rev. 23, 31-50.]); Pal et al. (2005[Pal, S., Barik, A. K., Gupta, S., Hazra, A., Kar, S. K., Peng, S.-M., Lee, G.-H., Butcher, R. J., El Fallah, M. S. & Ribas, J. (2005). Inorg. Chem. 44, 3880-3889.]); Reglinski et al. 2004[Reglinski, J., Taylor, M. K. & Kennedy, A. R. (2004). Acta Cryst. C60, o169-o172.]; Hou et al. (2001[Hou, B., Friedman, N., Ruhman, S., Sheves, M. & Ottolenghi, M. (2001). J. Phys. Chem. B, 105, 7042-7048.]); Ren et al. (2002[Ren, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410-419.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C23H30N2O4

  • Mr = 398.49

  • Monoclinic, C 2/c

  • a = 5.6523 (1) Å

  • b = 12.9591 (2) Å

  • c = 28.3771 (3) Å

  • β = 91.282 (1)°

  • V = 2078.07 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.43 × 0.22 × 0.04 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.880, Tmax = 0.997

  • 21349 measured reflections

  • 3560 independent reflections

  • 2743 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.128

  • S = 1.07

  • 3560 reflections

  • 134 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.85 2.5772 (12) 147
C11—H11ACg1i 0.96 2.87 3.6007 (12) 133
Symmetry code: (i) x-1, y, z. Cg1 is the centroid of the C1–C6 benzene ring.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The condensation of primary amines with carbonyl compounds yields Schiff base (Casellato & Vigato, 1977) that are still now regarded as one of the most potential group of chelators for facile preparations of metallo-organic hybrid materials. In the past two decades, the synthesis, structure and properties of Schiff base complexes have stimulated much interest for their noteworthy contributions in single molecule-based magnetism, materials science, catalysis of many reactions like carbonylation, hydroformylation, reduction, oxidation, epoxidation and hydrolysis, etc (Pal et al., 2005; Reglinski et al., 2004; Hou et al., 2001; Ren et al., 2002). This is due to the fact that Schiff bases offer opportunities for inducing substrate chirality, tuning the metal-centered electronic factor and enhancing the solubility and stability of either homogeneous or heterogeneous catalysts. Only a relatively small number of free Schiff base ligands have been characterized (Calligaris & Randaccio, 1987). As an extension of our work on the structural characterization of Schiff base compounds, the title compound, is reported here.

The molecule of the title compound, (Fig. 1), has a crystallographic twofold rotation symmetry. The atom C9 lies across a crystallographic twofold rotation symmetry. An intramolecular O—H···N hydrogen bond forms a six-membered ring, producing a S(6) ring motif (Bernstein et al. 1995). The dihedral angle between the symmetry related benzene rings is 28.05 (5)°. The ethoxy group makes a torsion angle (C11—O2—C2—C3) of -7.20 (16)° with the benzene ring. The N atom is in close proximity to the H atom of the methylene group of the diamine segment, with H8B—N1 distance of 2.70 Å. The crystal structure is stabilized by intermolecular C—H···π interactions [Cg1 is the centroid of the C1–C6 benzene ring] (Table 1).

Related literature top

For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For information on Schiff base ligands and complexes and their applications, see, for example: Calligaris & Randaccio, (1987); Casellato & Vigato, (1977); Pal et al. (2005); Reglinski et al. 2004; Hou et al. (2001); Ren et al. (2002). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). Cg1 is the centroid of the C1–C6 benzene ring.

Experimental top

The synthetic method has been described earlier (Reglinski et al., 2004), except that 3-ethoxysalicylaldehyde was used. Single crystals suitable for X-ray diffraction were obtained by evaporation of an methanol solution at room temperature.

Refinement top

H atom of the hydroxy group was positioned by a freely rotating O—H bond and constrained with a fixed distance of 0.82 Å. The rest of the hydrogen atoms were positioned geometrically with a riding model approximation with C—H = 0.93-0.97 Å and Uiso(H) = 1.2 or 1.5 (C & O). A rotating group model was used for the methyl group of the ethoxy segment.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels and 50% probability ellipsoids for non-H atoms. The suffix A corresponds to symmetry code (-x + 1, y, -z + 1/2).
6,6'-Diethoxy-2,2'-[2,2-dimethylpropane-1,3- diylbis(nitrilomethylidyne)]diphenol top
Crystal data top
C23H30N2O4F(000) = 856
Mr = 398.49Dx = 1.274 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5303 reflections
a = 5.6523 (1) Åθ = 2.9–31.8°
b = 12.9591 (2) ŵ = 0.09 mm1
c = 28.3771 (3) ÅT = 100 K
β = 91.282 (1)°Plate, yellow
V = 2078.07 (5) Å30.43 × 0.22 × 0.04 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3560 independent reflections
Radiation source: fine-focus sealed tube2743 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ϕ and ω scansθmax = 31.8°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 88
Tmin = 0.880, Tmax = 0.997k = 1819
21349 measured reflectionsl = 4241
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0621P)2 + 0.9557P]
where P = (Fo2 + 2Fc2)/3
3560 reflections(Δ/σ)max = 0.001
134 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C23H30N2O4V = 2078.07 (5) Å3
Mr = 398.49Z = 4
Monoclinic, C2/cMo Kα radiation
a = 5.6523 (1) ŵ = 0.09 mm1
b = 12.9591 (2) ÅT = 100 K
c = 28.3771 (3) Å0.43 × 0.22 × 0.04 mm
β = 91.282 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3560 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2743 reflections with I > 2σ(I)
Tmin = 0.880, Tmax = 0.997Rint = 0.042
21349 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.07Δρmax = 0.42 e Å3
3560 reflectionsΔρmin = 0.26 e Å3
134 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.21577 (13)0.86647 (6)0.42709 (3)0.01900 (18)
O10.07879 (14)0.77817 (6)0.36945 (3)0.01951 (18)
H10.18000.75800.35140.029*
N10.44608 (15)0.78978 (7)0.31751 (3)0.01556 (18)
C10.11143 (18)0.87962 (8)0.37834 (4)0.0150 (2)
C20.04483 (18)0.92916 (8)0.40916 (4)0.0157 (2)
C30.01574 (19)1.03346 (8)0.41899 (4)0.0180 (2)
H3A0.12151.06650.43860.022*
C40.1713 (2)1.08960 (8)0.39974 (4)0.0189 (2)
H4A0.18971.15930.40660.023*
C50.32737 (19)1.04064 (8)0.37052 (4)0.0168 (2)
H5A0.45311.07740.35820.020*
C60.29882 (18)0.93596 (8)0.35912 (3)0.01445 (19)
C70.46777 (18)0.88493 (8)0.32869 (3)0.0151 (2)
H7A0.59410.92250.31720.018*
C80.62015 (17)0.74010 (8)0.28797 (4)0.0149 (2)
H8A0.72490.69800.30750.018*
H8B0.71500.79250.27290.018*
C90.50000.67209 (11)0.25000.0132 (3)
C100.68697 (18)0.60294 (9)0.22779 (4)0.0175 (2)
H10A0.76020.56060.25180.026*
H10B0.80490.64510.21340.026*
H10C0.61300.55970.20430.026*
C110.36178 (19)0.90890 (9)0.46303 (4)0.0181 (2)
H11A0.45040.96750.45080.022*
H11B0.26470.93180.48960.022*
C120.5284 (2)0.82495 (9)0.47814 (4)0.0215 (2)
H12A0.63580.85220.50070.032*
H12B0.43920.76940.49210.032*
H12C0.61630.79980.45120.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0195 (4)0.0172 (4)0.0207 (4)0.0019 (3)0.0086 (3)0.0030 (3)
O10.0212 (4)0.0142 (4)0.0235 (4)0.0046 (3)0.0087 (3)0.0061 (3)
N10.0162 (4)0.0165 (4)0.0141 (4)0.0009 (3)0.0029 (3)0.0018 (3)
C10.0177 (5)0.0132 (5)0.0141 (4)0.0009 (3)0.0004 (3)0.0010 (3)
C20.0165 (4)0.0159 (5)0.0147 (4)0.0005 (4)0.0022 (3)0.0001 (4)
C30.0221 (5)0.0157 (5)0.0163 (5)0.0017 (4)0.0026 (4)0.0015 (4)
C40.0249 (5)0.0128 (5)0.0190 (5)0.0002 (4)0.0010 (4)0.0003 (4)
C50.0200 (5)0.0142 (5)0.0164 (4)0.0018 (4)0.0009 (4)0.0012 (4)
C60.0164 (4)0.0144 (5)0.0126 (4)0.0006 (3)0.0008 (3)0.0004 (3)
C70.0155 (4)0.0166 (5)0.0134 (4)0.0022 (3)0.0014 (3)0.0017 (3)
C80.0132 (4)0.0160 (5)0.0154 (4)0.0011 (3)0.0029 (3)0.0002 (3)
C90.0132 (6)0.0131 (6)0.0134 (6)0.0000.0034 (5)0.000
C100.0174 (5)0.0168 (5)0.0186 (5)0.0039 (4)0.0032 (4)0.0005 (4)
C110.0194 (5)0.0196 (5)0.0157 (4)0.0015 (4)0.0051 (4)0.0012 (4)
C120.0191 (5)0.0243 (6)0.0213 (5)0.0011 (4)0.0060 (4)0.0020 (4)
Geometric parameters (Å, º) top
O2—C21.3692 (12)C7—H7A0.9300
O2—C111.4357 (12)C8—C91.5382 (13)
O1—C11.3506 (12)C8—H8A0.9700
O1—H10.8200C8—H8B0.9700
N1—C71.2784 (13)C9—C101.5319 (13)
N1—C81.4568 (13)C9—C10i1.5319 (13)
C1—C61.4065 (14)C9—C8i1.5382 (13)
C1—C21.4112 (14)C10—H10A0.9600
C2—C31.3890 (15)C10—H10B0.9600
C3—C41.4039 (15)C10—H10C0.9600
C3—H3A0.9300C11—C121.5075 (16)
C4—C51.3789 (15)C11—H11A0.9700
C4—H4A0.9300C11—H11B0.9700
C5—C61.4031 (14)C12—H12A0.9600
C5—H5A0.9300C12—H12B0.9600
C6—C71.4601 (14)C12—H12C0.9600
C2—O2—C11117.29 (8)N1—C8—H8B109.4
C1—O1—H1109.5C9—C8—H8B109.4
C7—N1—C8120.45 (9)H8A—C8—H8B108.0
O1—C1—C6122.26 (9)C10—C9—C10i108.40 (12)
O1—C1—C2118.29 (9)C10—C9—C8i110.18 (6)
C6—C1—C2119.43 (9)C10i—C9—C8i108.99 (6)
O2—C2—C3125.73 (9)C10—C9—C8108.99 (6)
O2—C2—C1114.65 (9)C10i—C9—C8110.18 (6)
C3—C2—C1119.62 (9)C8i—C9—C8110.08 (12)
C2—C3—C4120.85 (10)C9—C10—H10A109.5
C2—C3—H3A119.6C9—C10—H10B109.5
C4—C3—H3A119.6H10A—C10—H10B109.5
C5—C4—C3119.54 (10)C9—C10—H10C109.5
C5—C4—H4A120.2H10A—C10—H10C109.5
C3—C4—H4A120.2H10B—C10—H10C109.5
C4—C5—C6120.77 (10)O2—C11—C12107.36 (9)
C4—C5—H5A119.6O2—C11—H11A110.2
C6—C5—H5A119.6C12—C11—H11A110.2
C5—C6—C1119.75 (9)O2—C11—H11B110.2
C5—C6—C7120.06 (9)C12—C11—H11B110.2
C1—C6—C7120.16 (9)H11A—C11—H11B108.5
N1—C7—C6121.55 (9)C11—C12—H12A109.5
N1—C7—H7A119.2C11—C12—H12B109.5
C6—C7—H7A119.2H12A—C12—H12B109.5
N1—C8—C9111.29 (7)C11—C12—H12C109.5
N1—C8—H8A109.4H12A—C12—H12C109.5
C9—C8—H8A109.4H12B—C12—H12C109.5
C11—O2—C2—C37.20 (15)O1—C1—C6—C5178.44 (10)
C11—O2—C2—C1172.54 (8)C2—C1—C6—C50.41 (15)
O1—C1—C2—O20.25 (14)O1—C1—C6—C70.50 (15)
C6—C1—C2—O2177.86 (9)C2—C1—C6—C7177.53 (9)
O1—C1—C2—C3180.00 (9)C8—N1—C7—C6178.59 (9)
C6—C1—C2—C31.89 (15)C5—C6—C7—N1179.73 (10)
O2—C2—C3—C4177.87 (10)C1—C6—C7—N12.34 (15)
C1—C2—C3—C41.86 (15)C7—N1—C8—C9136.31 (10)
C2—C3—C4—C50.31 (16)N1—C8—C9—C10166.89 (8)
C3—C4—C5—C61.21 (16)N1—C8—C9—C10i48.07 (11)
C4—C5—C6—C11.15 (15)N1—C8—C9—C8i72.16 (7)
C4—C5—C6—C7179.09 (9)C2—O2—C11—C12178.04 (9)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.852.5772 (12)147
C11—H11A···Cg1ii0.962.873.6007 (12)133
Symmetry code: (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC23H30N2O4
Mr398.49
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)5.6523 (1), 12.9591 (2), 28.3771 (3)
β (°) 91.282 (1)
V3)2078.07 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.43 × 0.22 × 0.04
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.880, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
21349, 3560, 2743
Rint0.042
(sin θ/λ)max1)0.742
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.128, 1.07
No. of reflections3560
No. of parameters134
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.26

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.82001.85002.5772 (12)147.00
C11—H11A···Cg1i0.96002.87003.6007 (12)133.00
Symmetry code: (i) x1, y, z.
 

Footnotes

Additional correspondence author: e-mail: hkargar@pnu.ac.ir.

Acknowledgements

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312). RK thanks Universiti Sains Malaysia for the award of a post-doctoral research fellowship. HK and AJ thank PNU for financial support. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCalligaris, M. & Randaccio, L. (1987). Comprehensive Coordination Chemistry, Vol. 2, edited by G. Wilkinson, pp. 715–738. London: Pergamon.  Google Scholar
First citationCasellato, U. & Vigato, P. A. (1977). Coord. Chem. Rev. 23, 31–50.  CrossRef CAS Web of Science Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHou, B., Friedman, N., Ruhman, S., Sheves, M. & Ottolenghi, M. (2001). J. Phys. Chem. B, 105, 7042–7048.  Web of Science CrossRef CAS Google Scholar
First citationPal, S., Barik, A. K., Gupta, S., Hazra, A., Kar, S. K., Peng, S.-M., Lee, G.-H., Butcher, R. J., El Fallah, M. S. & Ribas, J. (2005). Inorg. Chem. 44, 3880–3889.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationReglinski, J., Taylor, M. K. & Kennedy, A. R. (2004). Acta Cryst. C60, o169–o172.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRen, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410–419.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o707-o708
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds