organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Bis(4-bromo­benzyl­­idene)-2,2-di­methyl­propane-1,3-di­amine

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, School of Science, Payame Noor University (PNU), Ardakan, Yazd, Iran
*Correspondence e-mail: hkfun@usm.my

(Received 2 March 2009; accepted 5 March 2009; online 14 March 2009)

The mol­ecule of the title compound, C19H20Br2N2, is a potential bidentate Schiff base ligand. The two benzene rings are inclined at a dihedral angle of 30.85 (8)°. An inter­esting feature of the crystal structure is a weak inter­molecular Br⋯Br [3.4752 (4) Å] inter­action which is shorter than the sum of the van der Waals radii of the Br atoms and links neighbouring mol­ecules into chains along the c axis. The crystal structure is further stabilized by inter­molecular C—H⋯π inter­actions.

Related literature

For details of hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555- 1573.]). For related structure see, for example: Li et al. (2005[Li, Y.-G., Zhu, H.-L., Chen, X.-Z. & Song, Y. (2005). Acta Cryst. E61, o4156-o4157.]); Bomfim et al. (2005[Bomfim, J. A. S., Wardell, J. L., Low, J. N., Skakle, J. M. S. & Glidewell, C. (2005). Acta Cryst. C61, o53-o56.]); Glidewell et al. (2005[Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. E61, o3551-o3553.], 2006[Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2006). Acta Cryst. C62, o1-o4.]); Sun et al. (2004[Sun, Y.-X., You, Z.-L. & Zhu, H.-L. (2004). Acta Cryst. E60, o1707-o1708.]); Fun et al. (2008[Fun, H.-K., Kargar, H. & Kia, R. (2008). Acta Cryst. E64, o1308.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C19H20Br2N2

  • Mr = 436.19

  • Orthorhombic, P 21 21 21

  • a = 5.6687 (1) Å

  • b = 7.7919 (2) Å

  • c = 41.5932 (9) Å

  • V = 1837.17 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.41 mm−1

  • T = 100 K

  • 0.45 × 0.44 × 0.12 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.229, Tmax = 0.586

  • 38732 measured reflections

  • 9454 independent reflections

  • 7585 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.079

  • S = 1.03

  • 9454 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 1.04 e Å−3

  • Δρmin = −0.61 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3971 Friedel pairs

  • Flack parameter: 0.019 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4ACg1i 0.95 2.85 3.5630 (18) 132
C13—H13ACg2ii 0.95 2.74 3.4648 (18) 134
Symmetry codes: (i) [x+{\script{7\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [-x-1, y+{\script{1\over 2}}, -z+{\script{5\over 2}}]. Cg1 and Cg2 are the centroids of the C1–C6 and C9–C17 benzene rings, respectively.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff bases are one of most prevalent mixed-donor ligands in the field of coordination chemistry. They play an important role in the development of coordination chemistry related to catalysis and enzymatic reactions, magnetism, and supramolecular architectures. Structures of Schiff bases derived from substituted benzaldehydes and closely related to the title compound have been reported previously (Li et al., 2005; Bomfim et al., 2005; Glidewell et al., 2005, 2006; Sun et al., 2004; Fun et al., 2008).

In the title compound, Fig. 1, intramolecular C—H···N hydrogen bonds forms five-membered rings, producing S(5) ring motifs (Bernstein et al., 1995). The two benzene rings make a dihedral angle of 30.85 (8)°. The crystal structure is further stabilized by weak intermolecular C—H···π interactions [Cg1 and Cg2 are the centroids of the C1–C6 and C12–C17 benzene rings] (Table 1). The interesting feature of the crystal structure is weak intermolecular Br···Br [3.4752 (4) Å; symmetry code: 5/2 - x, 1 - y, -1/2 + z] interaction which is shorter than the sum of the van der Waals radius of Br atoms and link neighbouring molecules into chains along the c axis (Fig. 2).

Related literature top

For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For the Flack parameter see, Flack (1983). For related structure see, for example: Li et al. (2005); Bomfim et al. (2005); Glidewell et al. (2005, 2006); Sun et al. (2004); Fun et al. (2008). For stability of the temperature controller used for data collection, see: Cosier & Glazer (1986). Cg1 and Cg2 are the centroids of the C1–C6 and C9–C17 benzene rings, respectively.

Experimental top

The synthetic method has been described earlier (Fun et al., 2008), except that 4-bromobenzaldehyde was used. Single crystals suitable for X-ray diffraction were obtained by evaporation of an ethanol solution at room temperature.

Refinement top

All of the hydrogen atoms were positioned geometrically and refined using a riding model approximation with C—H = 0.95–0.99 Å and Uiso(H) = 1.2 or 1.5Ueq(C). In the presence of the sufficient anomalous scattering, the absoulte configuration was determined (3971 Friedel pairs).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels and 50% probability ellipsoids for non-H atoms. Intramolecular hydrogen bond is shown as dashed line.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed down the a- axis showing chains along the c-axis by Br···Br interactions.
N,N'-Bis(4-bromobenzylidene)-2,2-dimethylpropane-1,3-diamine top
Crystal data top
C19H20Br2N2F(000) = 872
Mr = 436.19Dx = 1.577 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 9987 reflections
a = 5.6687 (1) Åθ = 2.7–35.5°
b = 7.7919 (2) ŵ = 4.41 mm1
c = 41.5932 (9) ÅT = 100 K
V = 1837.17 (7) Å3Block, colourless
Z = 40.45 × 0.44 × 0.12 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
9454 independent reflections
Radiation source: fine-focus sealed tube7585 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ϕ and ω scansθmax = 37.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 99
Tmin = 0.229, Tmax = 0.586k = 1013
38732 measured reflectionsl = 7155
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.079 w = 1/[σ2(Fo2) + (0.0316P)2 + 0.2032P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.011
9454 reflectionsΔρmax = 1.04 e Å3
208 parametersΔρmin = 0.61 e Å3
0 restraintsAbsolute structure: Flack (1983), 3971 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.019 (6)
Crystal data top
C19H20Br2N2V = 1837.17 (7) Å3
Mr = 436.19Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.6687 (1) ŵ = 4.41 mm1
b = 7.7919 (2) ÅT = 100 K
c = 41.5932 (9) Å0.45 × 0.44 × 0.12 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
9454 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
7585 reflections with I > 2σ(I)
Tmin = 0.229, Tmax = 0.586Rint = 0.049
38732 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.079Δρmax = 1.04 e Å3
S = 1.03Δρmin = 0.61 e Å3
9454 reflectionsAbsolute structure: Flack (1983), 3971 Friedel pairs
208 parametersAbsolute structure parameter: 0.019 (6)
0 restraints
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.59060 (4)0.70918 (3)0.679860 (5)0.03041 (5)
Br21.02132 (3)0.35735 (2)1.095005 (4)0.02216 (4)
N10.9734 (3)0.7039 (2)0.82239 (4)0.0214 (3)
N20.8180 (3)0.6175 (2)0.93830 (4)0.0198 (3)
C11.0509 (3)0.5599 (2)0.74067 (5)0.0203 (3)
H1A0.90620.49910.73880.024*
C21.1894 (4)0.5835 (3)0.71353 (5)0.0219 (3)
H2A1.14100.54030.69320.026*
C31.4013 (3)0.6720 (2)0.71684 (4)0.0212 (3)
C41.4767 (3)0.7348 (2)0.74652 (4)0.0197 (3)
H4A1.62300.79350.74840.024*
C51.3353 (3)0.7104 (3)0.77327 (4)0.0184 (3)
H5A1.38480.75280.79360.022*
C61.1191 (3)0.6235 (2)0.77059 (4)0.0180 (3)
C70.9574 (3)0.6067 (2)0.79820 (5)0.0198 (3)
H7A0.83860.52080.79780.024*
C80.8001 (3)0.6814 (3)0.84805 (4)0.0209 (3)
H8A0.69960.58080.84320.025*
H8B0.69720.78390.84910.025*
C90.9225 (3)0.6548 (2)0.88094 (4)0.0179 (3)
C100.7242 (3)0.6457 (2)0.90606 (4)0.0188 (3)
H10A0.63330.75420.90570.023*
H10B0.61520.55100.90050.023*
C110.6955 (3)0.5293 (2)0.95790 (4)0.0178 (3)
H11A0.54860.48410.95090.021*
C120.7732 (3)0.4951 (2)0.99097 (4)0.0165 (3)
C130.6324 (3)0.3938 (2)1.01110 (5)0.0184 (3)
H13A0.48610.35141.00330.022*
C140.7025 (3)0.3543 (3)1.04224 (4)0.0196 (3)
H14A0.60500.28671.05580.024*
C150.9177 (3)0.4158 (2)1.05301 (4)0.0184 (3)
C161.0606 (3)0.5189 (2)1.03375 (4)0.0192 (3)
H16A1.20630.56161.04170.023*
C170.9877 (3)0.5583 (2)1.00290 (4)0.0193 (3)
H17A1.08380.62890.98970.023*
C181.0856 (3)0.8053 (3)0.88844 (5)0.0241 (4)
H18A1.16150.78660.90930.036*
H18B0.99350.91170.88910.036*
H18C1.20650.81420.87170.036*
C191.0619 (4)0.4868 (3)0.88061 (5)0.0244 (4)
H19A1.13930.47060.90150.037*
H19B1.18160.49130.86360.037*
H19C0.95440.39080.87650.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02919 (10)0.04538 (12)0.01667 (8)0.00266 (9)0.00467 (7)0.00429 (9)
Br20.02804 (9)0.02117 (7)0.01728 (8)0.00042 (7)0.00430 (7)0.00085 (7)
N10.0223 (6)0.0248 (7)0.0169 (6)0.0017 (6)0.0014 (6)0.0021 (6)
N20.0204 (7)0.0234 (8)0.0155 (7)0.0001 (6)0.0011 (5)0.0003 (6)
C10.0215 (8)0.0207 (8)0.0189 (8)0.0001 (6)0.0015 (6)0.0033 (6)
C20.0239 (8)0.0251 (8)0.0168 (8)0.0028 (7)0.0041 (7)0.0041 (7)
C30.0228 (7)0.0233 (9)0.0176 (8)0.0044 (6)0.0029 (6)0.0023 (6)
C40.0183 (7)0.0218 (7)0.0190 (7)0.0006 (6)0.0004 (6)0.0019 (6)
C50.0194 (7)0.0208 (8)0.0150 (7)0.0003 (7)0.0011 (6)0.0011 (7)
C60.0209 (7)0.0170 (8)0.0161 (7)0.0012 (6)0.0000 (6)0.0006 (6)
C70.0178 (7)0.0216 (8)0.0199 (8)0.0008 (6)0.0005 (6)0.0034 (6)
C80.0181 (7)0.0277 (10)0.0168 (8)0.0001 (6)0.0012 (6)0.0024 (7)
C90.0160 (7)0.0201 (7)0.0175 (7)0.0003 (6)0.0006 (5)0.0009 (6)
C100.0186 (7)0.0221 (7)0.0157 (7)0.0007 (6)0.0008 (6)0.0019 (8)
C110.0191 (7)0.0186 (8)0.0157 (7)0.0003 (6)0.0002 (6)0.0017 (6)
C120.0181 (7)0.0161 (7)0.0152 (7)0.0006 (6)0.0006 (6)0.0013 (6)
C130.0166 (7)0.0197 (8)0.0189 (8)0.0009 (6)0.0002 (6)0.0003 (6)
C140.0206 (7)0.0205 (7)0.0178 (8)0.0013 (7)0.0020 (6)0.0015 (7)
C150.0226 (8)0.0186 (7)0.0141 (7)0.0027 (6)0.0013 (6)0.0020 (6)
C160.0176 (8)0.0191 (7)0.0208 (8)0.0016 (6)0.0004 (6)0.0026 (6)
C170.0206 (7)0.0192 (7)0.0180 (7)0.0022 (7)0.0004 (7)0.0009 (6)
C180.0212 (8)0.0259 (9)0.0251 (9)0.0045 (7)0.0019 (7)0.0011 (8)
C190.0246 (9)0.0235 (8)0.0250 (9)0.0057 (7)0.0037 (7)0.0021 (7)
Geometric parameters (Å, º) top
Br1—C31.8978 (19)C9—C191.529 (3)
Br2—C151.8983 (18)C9—C101.536 (2)
N1—C71.263 (2)C10—H10A0.9900
N1—C81.462 (2)C10—H10B0.9900
N2—C111.272 (2)C11—C121.469 (3)
N2—C101.459 (2)C11—H11A0.9500
C1—C21.387 (3)C12—C131.400 (3)
C1—C61.394 (3)C12—C171.402 (3)
C1—H1A0.9500C13—C141.389 (3)
C2—C31.392 (3)C13—H13A0.9500
C2—H2A0.9500C14—C151.385 (3)
C3—C41.395 (3)C14—H14A0.9500
C4—C51.384 (2)C15—C161.394 (3)
C4—H4A0.9500C16—C171.383 (3)
C5—C61.404 (3)C16—H16A0.9500
C5—H5A0.9500C17—H17A0.9500
C6—C71.475 (3)C18—H18A0.9800
C7—H7A0.9500C18—H18B0.9800
C8—C91.548 (3)C18—H18C0.9800
C8—H8A0.9900C19—H19A0.9800
C8—H8B0.9900C19—H19B0.9800
C9—C181.525 (3)C19—H19C0.9800
C7—N1—C8117.50 (17)C9—C10—H10A109.3
C11—N2—C10118.11 (16)N2—C10—H10B109.3
C2—C1—C6121.48 (17)C9—C10—H10B109.3
C2—C1—H1A119.3H10A—C10—H10B108.0
C6—C1—H1A119.3N2—C11—C12122.30 (17)
C1—C2—C3118.26 (18)N2—C11—H11A118.9
C1—C2—H2A120.9C12—C11—H11A118.9
C3—C2—H2A120.9C13—C12—C17118.72 (17)
C2—C3—C4121.73 (18)C13—C12—C11119.43 (16)
C2—C3—Br1118.89 (15)C17—C12—C11121.84 (17)
C4—C3—Br1119.37 (14)C14—C13—C12121.29 (17)
C5—C4—C3119.03 (17)C14—C13—H13A119.4
C5—C4—H4A120.5C12—C13—H13A119.4
C3—C4—H4A120.5C15—C14—C13118.47 (17)
C4—C5—C6120.53 (16)C15—C14—H14A120.8
C4—C5—H5A119.7C13—C14—H14A120.8
C6—C5—H5A119.7C14—C15—C16121.70 (17)
C1—C6—C5118.96 (16)C14—C15—Br2119.15 (14)
C1—C6—C7119.40 (17)C16—C15—Br2119.15 (14)
C5—C6—C7121.56 (16)C17—C16—C15119.17 (17)
N1—C7—C6121.50 (17)C17—C16—H16A120.4
N1—C7—H7A119.3C15—C16—H16A120.4
C6—C7—H7A119.3C16—C17—C12120.63 (17)
N1—C8—C9111.10 (15)C16—C17—H17A119.7
N1—C8—H8A109.4C12—C17—H17A119.7
C9—C8—H8A109.4C9—C18—H18A109.5
N1—C8—H8B109.4C9—C18—H18B109.5
C9—C8—H8B109.4H18A—C18—H18B109.5
H8A—C8—H8B108.0C9—C18—H18C109.5
C18—C9—C19110.28 (15)H18A—C18—H18C109.5
C18—C9—C10109.88 (15)H18B—C18—H18C109.5
C19—C9—C10110.16 (15)C9—C19—H19A109.5
C18—C9—C8110.46 (16)C9—C19—H19B109.5
C19—C9—C8109.78 (16)H19A—C19—H19B109.5
C10—C9—C8106.20 (14)C9—C19—H19C109.5
N2—C10—C9111.43 (14)H19A—C19—H19C109.5
N2—C10—H10A109.3H19B—C19—H19C109.5
C6—C1—C2—C30.4 (3)C11—N2—C10—C9146.93 (17)
C1—C2—C3—C40.7 (3)C18—C9—C10—N261.5 (2)
C1—C2—C3—Br1178.88 (14)C19—C9—C10—N260.2 (2)
C2—C3—C4—C50.9 (3)C8—C9—C10—N2178.99 (16)
Br1—C3—C4—C5178.64 (14)C10—N2—C11—C12179.41 (16)
C3—C4—C5—C60.1 (3)N2—C11—C12—C13178.58 (17)
C2—C1—C6—C51.2 (3)N2—C11—C12—C170.2 (3)
C2—C1—C6—C7175.36 (17)C17—C12—C13—C140.6 (3)
C4—C5—C6—C10.9 (3)C11—C12—C13—C14178.16 (17)
C4—C5—C6—C7175.54 (17)C12—C13—C14—C150.8 (3)
C8—N1—C7—C6177.89 (16)C13—C14—C15—C161.7 (3)
C1—C6—C7—N1157.81 (18)C13—C14—C15—Br2178.06 (14)
C5—C6—C7—N118.7 (3)C14—C15—C16—C171.2 (3)
C7—N1—C8—C9126.29 (18)Br2—C15—C16—C17178.54 (14)
N1—C8—C9—C1857.0 (2)C15—C16—C17—C120.2 (3)
N1—C8—C9—C1964.8 (2)C13—C12—C17—C161.1 (3)
N1—C8—C9—C10176.10 (15)C11—C12—C17—C16177.63 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18C···N10.982.592.929 (3)101
C4—H4A···Cg1i0.952.853.5630 (18)132
C13—H13A···Cg2ii0.952.743.4648 (18)134
Symmetry codes: (i) x+7/2, y+1/2, z+1; (ii) x1, y+1/2, z+5/2.

Experimental details

Crystal data
Chemical formulaC19H20Br2N2
Mr436.19
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)5.6687 (1), 7.7919 (2), 41.5932 (9)
V3)1837.17 (7)
Z4
Radiation typeMo Kα
µ (mm1)4.41
Crystal size (mm)0.45 × 0.44 × 0.12
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.229, 0.586
No. of measured, independent and
observed [I > 2σ(I)] reflections
38732, 9454, 7585
Rint0.049
(sin θ/λ)max1)0.857
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.079, 1.03
No. of reflections9454
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.04, 0.61
Absolute structureFlack (1983), 3971 Friedel pairs
Absolute structure parameter0.019 (6)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18C···N10.98002.59002.929 (3)101.00
C4—H4A···Cg1i0.95002.85003.5630 (18)132.00
C13—H13A···Cg2ii0.95002.74003.4648 (18)134.00
Symmetry codes: (i) x+7/2, y+1/2, z+1; (ii) x1, y+1/2, z+5/2.
 

Acknowledgements

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship. HK thanks PNU for financial support. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555– 1573.  CrossRef CAS Web of Science Google Scholar
First citationBomfim, J. A. S., Wardell, J. L., Low, J. N., Skakle, J. M. S. & Glidewell, C. (2005). Acta Cryst. C61, o53–o56.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Kargar, H. & Kia, R. (2008). Acta Cryst. E64, o1308.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. E61, o3551–o3553.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2006). Acta Cryst. C62, o1–o4.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLi, Y.-G., Zhu, H.-L., Chen, X.-Z. & Song, Y. (2005). Acta Cryst. E61, o4156–o4157.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y.-X., You, Z.-L. & Zhu, H.-L. (2004). Acta Cryst. E60, o1707–o1708.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds