organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6,8-Dihydr­­oxy-3-methyl­isocoumarin

aSchool of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China, bCollege of Science, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China, and cCollege of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, Henan 471022, People's Republic of China
*Correspondence e-mail: changyun@ouc.edu.cn

(Received 4 February 2009; accepted 5 March 2009; online 11 March 2009)

The title compound, C10H8O4, was isolated from the fermentation culture of the endophytic fungus Cephalo­sporium sp. In the crystal structure, mol­ecules are connected into a one-dimensional chain along [101] by inter­molecular O—H⋯O hydrogen bonds involving the hydroxyl and carbonyl functionalities. The chains are linked by non-classical C—H⋯O inter­actions, forming extended two-dimensional layers approximately parallel to (11[\overline{2}]).

Related literature

For new bioactive secondary metabolites from marine fungi, see: Shao et al. (2007[Shao, C. L., She, Z. G., Guo, Z. Y., Peng, H., Cai, X. L., Zhou, S. N., Gu, Y. C. & Lin, Y. C. (2007). Magn. Reson. Chem. 45, 434-438.]). For the investigation of an endophytic strain Cephalosporium sp., see: Wei et al. (2008[Wei, M. Y., Li, S. D., Chen, X. T., Shao, C. L., She, Z. G. & Lin, Y. C. (2008). Chem. Res. Appl. 20, 790-792.]); Hemingway et al. (1977[Hemingway, R. W., McGraw, G. W. & Barras, S. J. (1977). J. Agric. Food Chem. 25, 717-722.]); Kendall et al. (1989[Kendall, J. K., Fisher, T. H., Schultz, H. P. & Schultz, T. P. (1989). J. Org. Chem. 54, 4218-4220.]). For crystal structures with non-classical C—H⋯O inter­actions, see: Nangia (2002[Nangia, A. (2002). CrystEngComm, 4, 93-101.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8O4

  • Mr = 192.16

  • Monoclinic, P 21 /c

  • a = 3.8201 (7) Å

  • b = 15.710 (3) Å

  • c = 14.196 (2) Å

  • β = 92.668 (2)°

  • V = 851.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 291 K

  • 0.27 × 0.20 × 0.19 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.969, Tmax = 0.978

  • 4781 measured reflections

  • 1586 independent reflections

  • 1272 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.094

  • S = 1.04

  • 1586 reflections

  • 131 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O2i 0.82 1.96 2.7225 (15) 155
C5—H5⋯O4ii 0.93 2.60 3.4659 (19) 155
Symmetry codes: (i) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x-1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Endophytic fungi have proven to be a rich source of novel structural compounds with interesting biological activities and a high level of biodiversity. In the course of our search for new or bioactive secondary metabolites from the marine fungi (Shao et al., 2007). we have investigated an endophytic strain Cephalosporium sp. (Wei et al., 2008). The title compound was previously isolated from the organic extracts of the fungus Ceratocystis minor (Hemingway et al., 1977), and elucidated on the basic of spectroscopic analysis (Kendall et al., 1989). Herein, the title compound was isolated from the fermentation culture of the endophytic fungus Cephalosporium sp., and its crystal structure is reported.

The asymmetric unit of the title compound contains one independent molecule (Fig. 1), in which the bond lengths and angles are within the expected ranges. The structural analysis reveals that the most relevant feature is the arrangement of the molecules, which are connected to form a one-dimensional chain along the [101] direction, by the formation of intermolecular O—H···O hydrogen bonds. Furthermore, weak non-conventional intermolecular C—H···O interactions are observed (Nangia, 2002), in which C5—H5 is a donor and O4 is an acceptor. These interactions consolidate the crystal packing. Details of hydrogen bonds are given in Table 1.

Related literature top

For new bioactive secondary metabolites from marine fungi, see: Shao et al. (2007). For the investigation of an endophytic strain Cephalosporium sp., see: Wei et al. (2008); Hemingway et al. (1977); Kendall et al. (1989). For crystal structures with non-conventional C—H···O interactions, see: Nangia (2002).

Experimental top

A strain of fungus Cephalosporium sp. (No. 2090) was deposited in the School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, People's Republic of China. Culture conditions: GYT medium (glucose 10 g/L, peptone 2 g/L, yeast extract 1 g/L, NaCl 2.5 g/L) and incubation at 298 K for 4 weeks. The cultures (70 L) were filtered through cheesecloth. The filtrate was concentrated to 3 L below 323 K, extracted five times by shaking with an equal volume of ethyl acetate. The extract was evaporated under reduced pressure below 323 K. The combined organic extracts were chromatographed on silica-gel, eluting with petroleum ether/ethyl acetate, to yield the title compound. Crystals were obtained by evaporation of an ethyl acetate solution.

Refinement top

All H atoms were positioned geometrically and treated as riding, with C—H bond lengths constrained to 0.93 (aromatic CH), 0.96 (methyl CH3), and 0.82 Å (hydroxyl OH), and with Uiso(H) = 1.5Ueq(carrier atom) or for CH3 and OH groups and Uiso(H) = 1.2Ueq(carrier C) otherwise.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick 2008); molecular graphics: SHELXTL (Sheldrick 2008); software used to prepare material for publication: SHELXTL (Sheldrick 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title molecule with atom numbering scheme and 30% probability displacement ellipsoids for non-hydrogen atoms.
[Figure 2] Fig. 2. View of the 2D layers formed by intermolecular O—H···O hydrogen bonds and weak non-conventional intermolecular C—H···O interactions.
6,8-Dihydroxy-3-methylisocoumarin top
Crystal data top
C10H8O4F(000) = 400
Mr = 192.16Dx = 1.500 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1738 reflections
a = 3.8201 (7) Åθ = 2.6–25.5°
b = 15.710 (3) ŵ = 0.12 mm1
c = 14.196 (2) ÅT = 291 K
β = 92.668 (2)°Block, yellow
V = 851.1 (3) Å30.27 × 0.20 × 0.19 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
1586 independent reflections
Radiation source: fine-focus sealed tube1272 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 25.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 44
Tmin = 0.969, Tmax = 0.978k = 1913
4781 measured reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0441P)2 + 0.1957P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
1586 reflectionsΔρmax = 0.18 e Å3
131 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.015 (3)
Primary atom site location: structure-invariant direct methods
Crystal data top
C10H8O4V = 851.1 (3) Å3
Mr = 192.16Z = 4
Monoclinic, P21/cMo Kα radiation
a = 3.8201 (7) ŵ = 0.12 mm1
b = 15.710 (3) ÅT = 291 K
c = 14.196 (2) Å0.27 × 0.20 × 0.19 mm
β = 92.668 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
1586 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1272 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.978Rint = 0.021
4781 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.04Δρmax = 0.18 e Å3
1586 reflectionsΔρmin = 0.14 e Å3
131 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3482 (3)0.32453 (7)0.81217 (7)0.0451 (3)
O20.3544 (3)0.19366 (7)0.75748 (8)0.0572 (4)
O30.0718 (3)0.15766 (7)0.58873 (8)0.0552 (4)
H30.17090.14760.64000.083*
O40.4021 (3)0.39231 (7)0.41364 (7)0.0487 (3)
H40.45140.35410.37590.073*
C10.3853 (4)0.45742 (12)0.89102 (11)0.0516 (4)
H1A0.31480.51600.88590.077*
H1B0.63590.45420.89870.077*
H1C0.28190.43210.94460.077*
C20.2659 (4)0.41080 (10)0.80372 (10)0.0395 (4)
C30.1028 (4)0.44079 (10)0.72629 (10)0.0379 (4)
H3A0.05050.49850.72240.046*
C40.0042 (3)0.38590 (9)0.64774 (9)0.0318 (3)
C50.1641 (4)0.41528 (9)0.56587 (10)0.0355 (3)
H50.22300.47250.55980.043*
C60.2453 (4)0.35866 (10)0.49244 (10)0.0354 (3)
C70.1659 (4)0.27235 (9)0.50066 (10)0.0378 (4)
H70.22350.23540.45120.045*
C80.0016 (4)0.24192 (9)0.58233 (10)0.0368 (3)
C90.0880 (4)0.29837 (9)0.65755 (9)0.0337 (3)
C100.2651 (4)0.26818 (10)0.74166 (10)0.0401 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0531 (7)0.0503 (7)0.0308 (5)0.0018 (5)0.0102 (5)0.0008 (5)
O20.0802 (9)0.0448 (7)0.0447 (7)0.0086 (6)0.0182 (6)0.0060 (5)
O30.0804 (9)0.0330 (6)0.0503 (7)0.0065 (5)0.0162 (6)0.0011 (5)
O40.0677 (8)0.0425 (6)0.0342 (6)0.0033 (5)0.0174 (5)0.0004 (5)
C10.0488 (10)0.0661 (11)0.0390 (9)0.0024 (8)0.0060 (7)0.0131 (8)
C20.0382 (8)0.0459 (9)0.0344 (8)0.0026 (7)0.0008 (6)0.0058 (6)
C30.0414 (8)0.0372 (8)0.0350 (8)0.0021 (6)0.0002 (6)0.0034 (6)
C40.0311 (7)0.0354 (8)0.0291 (7)0.0033 (6)0.0016 (6)0.0006 (6)
C50.0405 (8)0.0314 (8)0.0344 (7)0.0001 (6)0.0011 (6)0.0009 (6)
C60.0354 (8)0.0407 (8)0.0297 (7)0.0013 (6)0.0037 (6)0.0029 (6)
C70.0437 (8)0.0379 (9)0.0312 (7)0.0045 (6)0.0047 (6)0.0053 (6)
C80.0412 (8)0.0318 (8)0.0370 (8)0.0010 (6)0.0011 (6)0.0003 (6)
C90.0344 (8)0.0364 (8)0.0301 (7)0.0011 (6)0.0005 (6)0.0019 (6)
C100.0436 (9)0.0422 (9)0.0339 (8)0.0007 (7)0.0030 (6)0.0033 (6)
Geometric parameters (Å, º) top
O1—C101.3626 (18)C3—C41.4457 (19)
O1—C21.3951 (19)C3—H3A0.9300
O2—C101.2370 (18)C4—C51.3813 (19)
O3—C81.3553 (18)C4—C91.417 (2)
O3—H30.8200C5—C61.394 (2)
O4—C61.3518 (17)C5—H50.9300
O4—H40.8200C6—C71.393 (2)
C1—C21.493 (2)C7—C81.378 (2)
C1—H1A0.9600C7—H70.9300
C1—H1B0.9600C8—C91.418 (2)
C1—H1C0.9600C9—C101.426 (2)
C2—C31.325 (2)
C10—O1—C2121.61 (11)C4—C5—C6119.64 (13)
C8—O3—H3109.5C4—C5—H5120.2
C6—O4—H4109.5C6—C5—H5120.2
C2—C1—H1A109.5O4—C6—C7122.43 (13)
C2—C1—H1B109.5O4—C6—C5116.35 (13)
H1A—C1—H1B109.5C7—C6—C5121.22 (13)
C2—C1—H1C109.5C8—C7—C6119.81 (13)
H1A—C1—H1C109.5C8—C7—H7120.1
H1B—C1—H1C109.5C6—C7—H7120.1
C3—C2—O1120.81 (13)O3—C8—C7118.69 (13)
C3—C2—C1128.92 (15)O3—C8—C9121.23 (13)
O1—C2—C1110.27 (13)C7—C8—C9120.08 (13)
C2—C3—C4121.57 (14)C4—C9—C8119.18 (12)
C2—C3—H3A119.2C4—C9—C10120.08 (13)
C4—C3—H3A119.2C8—C9—C10120.74 (13)
C5—C4—C9120.07 (12)O2—C10—O1115.39 (13)
C5—C4—C3122.96 (13)O2—C10—C9125.66 (14)
C9—C4—C3116.96 (12)O1—C10—C9118.96 (13)
C10—O1—C2—C30.1 (2)C5—C4—C9—C80.3 (2)
C10—O1—C2—C1179.78 (13)C3—C4—C9—C8179.69 (13)
O1—C2—C3—C40.1 (2)C5—C4—C9—C10179.32 (13)
C1—C2—C3—C4179.74 (14)C3—C4—C9—C100.66 (19)
C2—C3—C4—C5179.60 (14)O3—C8—C9—C4179.69 (13)
C2—C3—C4—C90.4 (2)C7—C8—C9—C40.5 (2)
C9—C4—C5—C61.1 (2)O3—C8—C9—C101.3 (2)
C3—C4—C5—C6178.85 (13)C7—C8—C9—C10178.57 (13)
C4—C5—C6—O4178.42 (12)C2—O1—C10—O2179.49 (13)
C4—C5—C6—C71.3 (2)C2—O1—C10—C90.4 (2)
O4—C6—C7—C8179.14 (14)C4—C9—C10—O2179.17 (15)
C5—C6—C7—C80.5 (2)C8—C9—C10—O20.2 (2)
C6—C7—C8—O3179.79 (14)C4—C9—C10—O10.7 (2)
C6—C7—C8—C90.3 (2)C8—C9—C10—O1179.67 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.821.922.6426 (16)146
O4—H4···O2i0.821.962.7225 (15)155
C5—H5···O4ii0.932.603.4659 (19)155
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC10H8O4
Mr192.16
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)3.8201 (7), 15.710 (3), 14.196 (2)
β (°) 92.668 (2)
V3)851.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.27 × 0.20 × 0.19
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.969, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
4781, 1586, 1272
Rint0.021
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.094, 1.04
No. of reflections1586
No. of parameters131
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.14

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick 2008), SHELXTL (Sheldrick 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O2i0.821.962.7225 (15)155.3
C5—H5···O4ii0.932.603.4659 (19)155
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x1, y+1, z+1.
 

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (No. 40776073), the Basic Research Program of Science and Technology, Ministry of Science and Technology of China (No. 2007FY210500) and the Youthful Fund of Guangdong Medical College (No. XQ0511).

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHemingway, R. W., McGraw, G. W. & Barras, S. J. (1977). J. Agric. Food Chem. 25, 717–722.  CrossRef CAS Web of Science Google Scholar
First citationKendall, J. K., Fisher, T. H., Schultz, H. P. & Schultz, T. P. (1989). J. Org. Chem. 54, 4218–4220.  CrossRef CAS Web of Science Google Scholar
First citationNangia, A. (2002). CrystEngComm, 4, 93–101.  Web of Science CrossRef CAS Google Scholar
First citationShao, C. L., She, Z. G., Guo, Z. Y., Peng, H., Cai, X. L., Zhou, S. N., Gu, Y. C. & Lin, Y. C. (2007). Magn. Reson. Chem. 45, 434–438.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWei, M. Y., Li, S. D., Chen, X. T., Shao, C. L., She, Z. G. & Lin, Y. C. (2008). Chem. Res. Appl. 20, 790–792.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds