organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1S*,2R*,4aS*,6aS*,6bR*,10S*,12aR*,14aS*)-10-Hydr­­oxy-1,2,6a,6b,9,9,12a-hepta­methyl­perhydro­picene-4a,14a-carbolactone

aInstitute of Pharmaceutical Science, Shanxi Medical University, 56 South Xinjian Road, Taiyuan 030001, People's Republic of China, and bInstitute of Chemistry and Engineering, Shanxi University, 96 Wucheng Road, Taiyuan 030006, People's Republic of China
*Correspondence e-mail: jpgao123@sina.com, qingshanl@yahoo.com.cn

(Received 12 December 2008; accepted 6 March 2009; online 14 March 2009)

The title compound, C30H48O3, was extracted from the plant Dracocephalum rupestre Hance. The mol­ecule contains five fused cyclo­hexane rings and one five-membered lactone ring. Inter­molecular O—H⋯O hydrogen bonds between the hydroxyl and carbonyl groups link the mol­ecules into chains along [010]. The absolute structure has not been determined.

Related literature

For related literature concerning the title compound and the plant Dracocephalum rupestre Hance, see: Jiangsu College of New Medicine (1977[Jiangsu College of New Medicine (1977). A Dictionary of the Traditional Chinese Medicines, p. 549. Shanghai: Shanghai Science and Technology Press.]); Katai et al. (1983[Katai, M., Terai, T. & Meguri, H. (1983). Chem. Pharm. Bull. 31, 1567-1571.]).

[Scheme 1]

Experimental

Crystal data
  • C30H48O3

  • Mr = 456.68

  • Monoclinic, P 21

  • a = 8.156 (3) Å

  • b = 12.005 (5) Å

  • c = 13.475 (5) Å

  • β = 90.520 (7)°

  • V = 1319.3 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.60 × 0.50 × 0.30 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.958, Tmax = 0.979

  • 5150 measured reflections

  • 2428 independent reflections

  • 2052 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.142

  • S = 1.03

  • 2428 reflections

  • 299 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O2i 0.82 2.24 3.059 (4) 176
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z+2].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound is extracted from the plant Dracocephalum rupestre Hance (Jiangsu College of New Medicine, 1977) with ethanol. The compound (Katai et al., 1983) was successfully crystallized from methanol. There are five six-membered rings and one five-membered ring in the molecule. The six-membered rings are composed of sp3-hybridised C and the five-membered ring is a lactone in which C28 is sp2 hybridised. The bond distances between C28 and O are 1.349 (3) [O1—C28] and 1.218 (4) Å [O2—C28]. The O2—C28 bond length of 1.216 (5) Å is a typical C=O double bond.

Related literature top

For related literature concerning the title compound and the plant Dracocephalum rupestre Hance, see: Jiangsu College of New Medicine (1977); Katai et al. (1983).

Experimental top

The dry aerial part of the plant (5.3 kg) was extracted with 95% ethanol 3 times under reflux. The ethanol extract was diluted with a large amount of water,and then extracted with petroleum ether, chloroform, EtOAc and n-butanol. The chloroform fraction (70 g) was subjected to Si gel column (1.5 kg,200–300 mesh) chromatography eluting with a gradient (petroleum ether-EtOAc, 99:1, 98:2, 97:3, 95:5, 9:1, 8:2,7:3, 1:1, v/v) to obtain 8 fractions (F1—F8). Fraction F3 (19.4 g) was separated by Si gel column (500 g, 200–300 mesh) chromatography eluting with a gradient (chloroform-methanol, 99:1, 98:2, 97:3, 95:5, 9:1,8:2,7:3, 1:1, v/v) to yield four portions. Subfraction 1 was subsequently subjected to Si gel column chromatography eluting with chloroform-methanol (10:1), and recrystallized from methanol, to obtain the title compound (25 mg).

Refinement top

H atoms were placed geometrically and allowed to ride with Uiso(H) = 1.2 or 1.5Ueq(C/O). In the absence of significant anomalous scattering, Friedel pairs were merged as equivalent data, and the absolute structure has not been determined.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure showing displacement ellipsoids at 50% probabilty for non-H atoms.
(1S*,2R*,4aS*,6aS*,6bR*,10S*, 12aR*,14aS*)-10-Hydroxy-1,2,6a,6b,9,9,12a- heptamethylperhydropicene-4a,14a-carbolactone top
Crystal data top
C30H48O3F(000) = 504
Mr = 456.68Dx = 1.150 Mg m3
Monoclinic, P21Melting point: 519 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 8.156 (3) ÅCell parameters from 2717 reflections
b = 12.005 (5) Åθ = 2.3–26.2°
c = 13.475 (5) ŵ = 0.07 mm1
β = 90.520 (7)°T = 293 K
V = 1319.3 (9) Å3Block, colourless
Z = 20.60 × 0.50 × 0.30 mm
Data collection top
Bruker SMART CCD
diffractometer
2428 independent reflections
Radiation source: fine-focus sealed tube2052 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 97
Tmin = 0.958, Tmax = 0.979k = 1414
5150 measured reflectionsl = 1316
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0816P)2 + 0.1773P]
where P = (Fo2 + 2Fc2)/3
2428 reflections(Δ/σ)max < 0.001
299 parametersΔρmax = 0.24 e Å3
1 restraintΔρmin = 0.25 e Å3
Crystal data top
C30H48O3V = 1319.3 (9) Å3
Mr = 456.68Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.156 (3) ŵ = 0.07 mm1
b = 12.005 (5) ÅT = 293 K
c = 13.475 (5) Å0.60 × 0.50 × 0.30 mm
β = 90.520 (7)°
Data collection top
Bruker SMART CCD
diffractometer
2428 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2052 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.979Rint = 0.032
5150 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0521 restraint
wR(F2) = 0.142H-atom parameters constrained
S = 1.03Δρmax = 0.24 e Å3
2428 reflectionsΔρmin = 0.25 e Å3
299 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1317 (3)0.74752 (19)0.69165 (16)0.0521 (6)
O20.1163 (4)0.6395 (2)0.5579 (2)0.0776 (9)
O30.2976 (4)0.9857 (3)1.2991 (2)0.0794 (9)
H3A0.24591.02761.33530.119*
C10.0162 (4)0.9125 (4)1.1007 (3)0.0566 (9)
H1A0.04760.98701.08010.068*
H1B0.11540.86811.10510.068*
C20.0658 (5)0.9185 (4)1.2036 (3)0.0654 (10)
H2A0.00950.95291.24970.078*
H2B0.08790.84351.22680.078*
C30.2236 (5)0.9837 (3)1.2033 (3)0.0592 (9)
H3B0.19691.06061.18520.071*
C40.3498 (4)0.9406 (3)1.1284 (3)0.0543 (8)
C50.2606 (4)0.9273 (3)1.0255 (2)0.0464 (8)
H5A0.22931.00341.00720.056*
C60.3736 (4)0.8899 (4)0.9416 (3)0.0590 (9)
H6A0.47760.92870.94720.071*
H6B0.39460.81070.94750.071*
C70.2955 (4)0.9145 (4)0.8405 (3)0.0583 (9)
H7A0.36900.88880.78910.070*
H7B0.28380.99450.83320.070*
C80.1261 (4)0.8596 (3)0.8242 (2)0.0466 (8)
C90.0174 (3)0.8830 (3)0.9165 (2)0.0432 (7)
H9A0.00320.96340.91470.052*
C100.0967 (4)0.8611 (3)1.0212 (2)0.0457 (7)
C110.1523 (4)0.8290 (3)0.9008 (2)0.0510 (8)
H11A0.13930.74920.89300.061*
H11B0.21900.84210.95890.061*
C120.2392 (4)0.8762 (3)0.8096 (2)0.0527 (8)
H12A0.34150.83630.79980.063*
H12B0.26600.95360.82220.063*
C130.1418 (4)0.8697 (3)0.7150 (2)0.0439 (7)
C140.0382 (4)0.9125 (3)0.7273 (2)0.0430 (7)
C150.1341 (4)0.8817 (4)0.6322 (2)0.0550 (9)
H15A0.23030.92890.62840.066*
H15B0.17180.80530.63820.066*
C160.0360 (4)0.8931 (3)0.5351 (2)0.0532 (9)
H16A0.09520.85590.48250.064*
H16B0.02820.97140.51790.064*
C170.1378 (4)0.8442 (3)0.5403 (2)0.0477 (8)
C180.2370 (4)0.9073 (3)0.6187 (2)0.0445 (7)
H18A0.34170.86750.62160.053*
C190.2835 (4)1.0265 (3)0.5865 (2)0.0496 (8)
H19A0.18251.06940.57740.059*
C200.3750 (4)1.0192 (3)0.4849 (2)0.0530 (8)
H20A0.47610.97670.49490.064*
C210.2730 (5)0.9578 (4)0.4078 (3)0.0577 (9)
H21A0.17451.00050.39490.069*
H21B0.33530.95330.34620.069*
C220.2241 (5)0.8403 (3)0.4399 (3)0.0592 (9)
H22A0.32100.79390.44410.071*
H22B0.15160.80800.39100.071*
C230.4318 (5)0.8333 (4)1.1653 (3)0.0712 (11)
H23A0.48470.84711.22810.107*
H23B0.51180.80941.11810.107*
H23C0.35040.77631.17300.107*
C240.4838 (5)1.0301 (4)1.1204 (3)0.0748 (12)
H24A0.53861.03811.18330.112*
H24B0.43481.09981.10180.112*
H24C0.56161.00831.07100.112*
C250.1145 (5)0.7347 (3)1.0452 (3)0.0612 (9)
H25A0.11140.72391.11570.092*
H25B0.21710.70801.02020.092*
H25C0.02610.69441.01440.092*
C260.1588 (5)0.7321 (3)0.8123 (3)0.0622 (10)
H26A0.23800.70850.86110.093*
H26B0.20020.71760.74710.093*
H26C0.05840.69180.82140.093*
C270.0327 (4)1.0412 (3)0.7341 (3)0.0542 (8)
H27A0.01921.07080.67550.081*
H27B0.14231.06980.73950.081*
H27C0.02861.06290.79140.081*
C280.1268 (4)0.7329 (3)0.5923 (3)0.0546 (8)
C290.3888 (5)1.0861 (4)0.6629 (3)0.0715 (11)
H29A0.33041.09000.72500.107*
H29B0.48921.04560.67180.107*
H29C0.41321.16000.64010.107*
C300.4225 (5)1.1339 (4)0.4454 (3)0.0727 (11)
H30A0.47881.12580.38300.109*
H30B0.32541.17780.43630.109*
H30C0.49301.17020.49190.109*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0634 (14)0.0347 (12)0.0582 (13)0.0028 (11)0.0101 (10)0.0014 (10)
O20.115 (2)0.0379 (14)0.0798 (18)0.0061 (15)0.0098 (16)0.0079 (13)
O30.088 (2)0.084 (2)0.0662 (16)0.0096 (17)0.0086 (15)0.0169 (15)
C10.0500 (19)0.064 (2)0.056 (2)0.0025 (17)0.0118 (15)0.0011 (17)
C20.067 (2)0.072 (3)0.057 (2)0.002 (2)0.0129 (18)0.0041 (18)
C30.066 (2)0.051 (2)0.060 (2)0.0044 (18)0.0036 (17)0.0040 (16)
C40.0513 (19)0.049 (2)0.063 (2)0.0008 (16)0.0003 (16)0.0036 (16)
C50.0414 (16)0.0422 (18)0.0556 (19)0.0017 (14)0.0075 (14)0.0048 (14)
C60.0375 (16)0.072 (3)0.068 (2)0.0045 (17)0.0072 (15)0.0029 (19)
C70.0363 (16)0.079 (3)0.060 (2)0.0016 (17)0.0129 (14)0.0043 (18)
C80.0405 (16)0.0441 (18)0.0554 (18)0.0041 (14)0.0097 (14)0.0002 (14)
C90.0378 (15)0.0371 (17)0.0548 (18)0.0002 (13)0.0093 (13)0.0008 (14)
C100.0448 (16)0.0393 (17)0.0534 (18)0.0012 (14)0.0095 (13)0.0012 (14)
C110.0457 (17)0.057 (2)0.0503 (18)0.0076 (16)0.0087 (14)0.0028 (15)
C120.0392 (16)0.059 (2)0.060 (2)0.0053 (16)0.0118 (14)0.0015 (17)
C130.0466 (16)0.0351 (16)0.0503 (17)0.0012 (13)0.0116 (13)0.0015 (13)
C140.0369 (15)0.0408 (17)0.0514 (18)0.0015 (13)0.0093 (13)0.0015 (13)
C150.0449 (17)0.063 (2)0.058 (2)0.0042 (17)0.0160 (15)0.0022 (17)
C160.0548 (19)0.053 (2)0.052 (2)0.0003 (16)0.0198 (15)0.0009 (16)
C170.0532 (18)0.0382 (17)0.0520 (18)0.0007 (14)0.0071 (15)0.0029 (14)
C180.0388 (15)0.0405 (17)0.0544 (19)0.0043 (13)0.0078 (14)0.0005 (14)
C190.0439 (17)0.0424 (18)0.062 (2)0.0007 (15)0.0053 (14)0.0021 (15)
C200.0451 (17)0.053 (2)0.061 (2)0.0043 (16)0.0036 (14)0.0053 (16)
C210.057 (2)0.065 (2)0.0516 (18)0.0027 (18)0.0019 (15)0.0040 (17)
C220.069 (2)0.054 (2)0.055 (2)0.0101 (18)0.0092 (17)0.0098 (17)
C230.075 (3)0.063 (3)0.075 (3)0.014 (2)0.010 (2)0.003 (2)
C240.072 (3)0.071 (3)0.081 (3)0.019 (2)0.011 (2)0.002 (2)
C250.074 (2)0.0439 (19)0.065 (2)0.0057 (19)0.0016 (17)0.0081 (17)
C260.072 (2)0.057 (2)0.058 (2)0.025 (2)0.0082 (17)0.0017 (18)
C270.0536 (19)0.0434 (19)0.066 (2)0.0041 (15)0.0010 (16)0.0010 (16)
C280.064 (2)0.0377 (18)0.062 (2)0.0028 (16)0.0095 (16)0.0004 (16)
C290.078 (3)0.066 (3)0.070 (2)0.029 (2)0.002 (2)0.006 (2)
C300.075 (3)0.067 (3)0.075 (2)0.012 (2)0.003 (2)0.011 (2)
Geometric parameters (Å, º) top
O1—C281.351 (4)C15—C161.534 (5)
O1—C131.502 (4)C15—H15A0.970
O2—C281.216 (5)C15—H15B0.970
O3—C31.421 (4)C16—C171.537 (5)
O3—H3A0.820C16—H16A0.970
C1—C21.536 (5)C16—H16B0.970
C1—C101.547 (4)C17—C281.511 (5)
C1—H1A0.970C17—C221.520 (5)
C1—H1B0.970C17—C181.536 (4)
C2—C31.506 (5)C18—C191.542 (5)
C2—H2A0.970C18—H18A0.980
C2—H2B0.970C19—C291.525 (5)
C3—C41.537 (5)C19—C201.555 (5)
C3—H3B0.980C19—H19A0.980
C4—C231.533 (5)C20—C301.525 (6)
C4—C241.537 (5)C20—C211.527 (5)
C4—C51.568 (5)C20—H20A0.980
C5—C61.532 (4)C21—C221.527 (6)
C5—C101.556 (4)C21—H21A0.970
C5—H5A0.980C21—H21B0.970
C6—C71.528 (5)C22—H22A0.970
C6—H6A0.970C22—H22B0.970
C6—H6B0.970C23—H23A0.960
C7—C81.545 (5)C23—H23B0.960
C7—H7A0.970C23—H23C0.960
C7—H7B0.970C24—H24A0.960
C8—C91.559 (4)C24—H24B0.960
C8—C261.562 (5)C24—H24C0.960
C8—C141.614 (4)C25—H25A0.960
C9—C111.541 (4)C25—H25B0.960
C9—C101.569 (4)C25—H25C0.960
C9—H9A0.980C26—H26A0.960
C10—C251.558 (5)C26—H26B0.960
C11—C121.522 (5)C26—H26C0.960
C11—H11A0.970C27—H27A0.960
C11—H11B0.970C27—H27B0.960
C12—C131.510 (4)C27—H27C0.960
C12—H12A0.970C29—H29A0.960
C12—H12B0.970C29—H29B0.960
C13—C141.563 (4)C29—H29C0.960
C13—C181.573 (4)C30—H30A0.960
C14—C271.549 (5)C30—H30B0.960
C14—C151.552 (4)C30—H30C0.960
C28—O1—C13109.7 (2)C14—C15—H15B108.6
C3—O3—H3A109.5H15A—C15—H15B107.5
C2—C1—C10112.7 (3)C15—C16—C17113.6 (3)
C2—C1—H1A109.0C15—C16—H16A108.8
C10—C1—H1A109.0C17—C16—H16A108.8
C2—C1—H1B109.0C15—C16—H16B108.8
C10—C1—H1B109.0C17—C16—H16B108.8
H1A—C1—H1B107.8H16A—C16—H16B107.7
C3—C2—C1112.8 (3)C28—C17—C22114.3 (3)
C3—C2—H2A109.0C28—C17—C1898.5 (3)
C1—C2—H2A109.0C22—C17—C18112.6 (3)
C3—C2—H2B109.0C28—C17—C16107.9 (3)
C1—C2—H2B109.0C22—C17—C16113.0 (3)
H2A—C2—H2B107.8C18—C17—C16109.5 (3)
O3—C3—C2111.3 (3)C17—C18—C19113.2 (3)
O3—C3—C4108.7 (3)C17—C18—C1399.6 (2)
C2—C3—C4113.9 (3)C19—C18—C13128.1 (3)
O3—C3—H3B107.6C17—C18—H18A104.6
C2—C3—H3B107.6C19—C18—H18A104.6
C4—C3—H3B107.6C13—C18—H18A104.6
C23—C4—C24107.6 (3)C29—C19—C18112.5 (3)
C23—C4—C3111.2 (3)C29—C19—C20110.6 (3)
C24—C4—C3107.0 (3)C18—C19—C20108.1 (3)
C23—C4—C5113.5 (3)C29—C19—H19A108.5
C24—C4—C5109.5 (3)C18—C19—H19A108.5
C3—C4—C5107.9 (3)C20—C19—H19A108.5
C6—C5—C10110.2 (3)C30—C20—C21109.6 (3)
C6—C5—C4113.9 (3)C30—C20—C19112.0 (3)
C10—C5—C4118.4 (3)C21—C20—C19111.5 (3)
C6—C5—H5A104.2C30—C20—H20A107.9
C10—C5—H5A104.2C21—C20—H20A107.9
C4—C5—H5A104.2C19—C20—H20A107.9
C7—C6—C5110.7 (3)C20—C21—C22113.3 (3)
C7—C6—H6A109.5C20—C21—H21A108.9
C5—C6—H6A109.5C22—C21—H21A108.9
C7—C6—H6B109.5C20—C21—H21B108.9
C5—C6—H6B109.5C22—C21—H21B108.9
H6A—C6—H6B108.1H21A—C21—H21B107.7
C6—C7—C8114.2 (3)C17—C22—C21110.0 (3)
C6—C7—H7A108.7C17—C22—H22A109.7
C8—C7—H7A108.7C21—C22—H22A109.7
C6—C7—H7B108.7C17—C22—H22B109.7
C8—C7—H7B108.7C21—C22—H22B109.7
H7A—C7—H7B107.6H22A—C22—H22B108.2
C7—C8—C9108.9 (3)C4—C23—H23A109.5
C7—C8—C26106.2 (3)C4—C23—H23B109.5
C9—C8—C26110.9 (3)H23A—C23—H23B109.5
C7—C8—C14109.7 (3)C4—C23—H23C109.5
C9—C8—C14108.8 (2)H23A—C23—H23C109.5
C26—C8—C14112.2 (3)H23B—C23—H23C109.5
C11—C9—C8109.3 (3)C4—C24—H24A109.5
C11—C9—C10114.6 (3)C4—C24—H24B109.5
C8—C9—C10117.0 (2)H24A—C24—H24B109.5
C11—C9—H9A104.9C4—C24—H24C109.5
C8—C9—H9A104.9H24A—C24—H24C109.5
C10—C9—H9A104.9H24B—C24—H24C109.5
C1—C10—C5106.7 (3)C10—C25—H25A109.5
C1—C10—C25107.4 (3)C10—C25—H25B109.5
C5—C10—C25114.3 (3)H25A—C25—H25B109.5
C1—C10—C9108.2 (3)C10—C25—H25C109.5
C5—C10—C9107.1 (2)H25A—C25—H25C109.5
C25—C10—C9112.7 (3)H25B—C25—H25C109.5
C12—C11—C9111.4 (3)C8—C26—H26A109.5
C12—C11—H11A109.3C8—C26—H26B109.5
C9—C11—H11A109.3H26A—C26—H26B109.5
C12—C11—H11B109.3C8—C26—H26C109.5
C9—C11—H11B109.3H26A—C26—H26C109.5
H11A—C11—H11B108.0H26B—C26—H26C109.5
C13—C12—C11114.7 (3)C14—C27—H27A109.5
C13—C12—H12A108.6C14—C27—H27B109.5
C11—C12—H12A108.6H27A—C27—H27B109.5
C13—C12—H12B108.6C14—C27—H27C109.5
C11—C12—H12B108.6H27A—C27—H27C109.5
H12A—C12—H12B107.6H27B—C27—H27C109.5
O1—C13—C12104.9 (3)O2—C28—O1120.0 (3)
O1—C13—C14106.9 (2)O2—C28—C17130.0 (3)
C12—C13—C14113.2 (3)O1—C28—C17110.0 (3)
O1—C13—C1897.8 (2)C19—C29—H29A109.5
C12—C13—C18115.0 (3)C19—C29—H29B109.5
C14—C13—C18116.7 (2)H29A—C29—H29B109.5
C27—C14—C15107.5 (3)C19—C29—H29C109.5
C27—C14—C13107.8 (3)H29A—C29—H29C109.5
C15—C14—C13108.3 (3)H29B—C29—H29C109.5
C27—C14—C8111.0 (3)C20—C30—H30A109.5
C15—C14—C8110.5 (3)C20—C30—H30B109.5
C13—C14—C8111.5 (2)H30A—C30—H30B109.5
C16—C15—C14114.9 (3)C20—C30—H30C109.5
C16—C15—H15A108.6H30A—C30—H30C109.5
C14—C15—H15A108.6H30B—C30—H30C109.5
C16—C15—H15B108.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O2i0.822.243.059 (4)176
Symmetry code: (i) x, y+1/2, z+2.

Experimental details

Crystal data
Chemical formulaC30H48O3
Mr456.68
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)8.156 (3), 12.005 (5), 13.475 (5)
β (°) 90.520 (7)
V3)1319.3 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.60 × 0.50 × 0.30
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.958, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
5150, 2428, 2052
Rint0.032
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.142, 1.03
No. of reflections2428
No. of parameters299
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.25

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O2i0.822.243.059 (4)176.3
Symmetry code: (i) x, y+1/2, z+2.
 

Acknowledgements

Financial support from the Science and Technology Commission of Taiyuan (2006), and from the Undergraduate Innovation Item of Shanxi Medical University (No. 200448) is gratefully acknowledged.

References

First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJiangsu College of New Medicine (1977). A Dictionary of the Traditional Chinese Medicines, p. 549. Shanghai: Shanghai Science and Technology Press.  Google Scholar
First citationKatai, M., Terai, T. & Meguri, H. (1983). Chem. Pharm. Bull. 31, 1567–1571.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds