metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(μ-bi­phenyl-2,2′-di­carboxyl­ato)bis­­[(2,2′-bi­pyridine)copper(II)]

aSchool of Chemistry and Life Science, Maoming University, Maoming 525000, People's Republic of China, and bSchool of Chemistry and Life Science, Harbin University, Harbin 150080, People's Republic of China
*Correspondence e-mail: anz_md@163.com

(Received 10 March 2009; accepted 11 March 2009; online 19 March 2009)

The title compound, [Cu2(C14H8O4)2(C10H8N2)2], was obtained by solvothermal synthesis. The CuII atom is coordinated by one chelating 2,2′-bipyridine ligand and two carboxyl groups from different biphenyl-2,2′-dicarboxyl­ate ligands, leading to a distorted octahedral environment. Each carboxyl­ate group makes one short Cu—O bond [1.9608 (14) and 1.9701 (14) Å] and one longer Cu—O contact [2.4338 (17) and 2.5541 (17) Å] to each CuII atom. The biphenyl-2,2′-dicarboxyl­ate ligands bridge between CuII atoms, forming a dinuclear complex around a crystallographic inversion centre.

Related literature

For complexes of biphenyl-2,2′-dicarboxylic acid, a good candidate for the construction of metal–organic frameworks, see: Rueff et al. (2003[Rueff, J.-M., Pillet, S., Bonaventure, G., Souhassou, M. & Rabu, P. (2003). Eur. J. Inorg. Chem. pp. 4173-4178.]); Xu et al. (2006[Xu, X.-X., Lu, Y., Wang, E.-B., Ma, Y. & Bai, X.-L. (2006). Cryst. Growth Des. 6, 2029-2035.]); An & Niu (2008[An, Z. & Niu, X.-C. (2008). Acta Cryst. E64, m1556.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C14H8O4)2(C10H8N2)2]

  • Mr = 919.86

  • Monoclinic, P 21 /n

  • a = 11.220 (2) Å

  • b = 13.350 (3) Å

  • c = 13.400 (3) Å

  • β = 103.02 (3)°

  • V = 1955.5 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.15 mm−1

  • T = 296 K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.874, Tmax = 0.913

  • 10453 measured reflections

  • 3644 independent reflections

  • 3099 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.088

  • S = 1.00

  • 3644 reflections

  • 280 parameters

  • H-atom parameters not refined

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Biphenyl-2,2'-dicarboxylic acid (H2dpa) has been demonstrated to be a good candidate for the construction of metal-organic frameworks, and some complexes based on 2,2'-dpa have been reported (Rueff et al., 2003; Xu et al., 2006; An & Niu, 2008). In this paper, we report a new metal complex constructed from dpa, 2,2-bipyridine and copper(II) (Figure 1).

Related literature top

For complexes of biphenyl-2,2'-dicarboxylic acid, a good

candidate for the construction of metal-organic frameworks, see: Rueff et al. (2003); Xu et al. (2006); An & Niu (2008).

Experimental top

A mixture of Cu(CH3COO)2.H2O (1 mmol), biphenyl-2,2'-dicarboxylic acid (1 mmol), and 2,2'-bipyridine (1 mmol) in 20 ml methanol/water (1:1) were placed in a 25 ml Teflon-lined stainless steel autoclave and kept at 453 K for five days. Blue crystals were obtained after cooling to room temperature.

Refinement top

All H atoms were placed in calculated positions with C—H = 0.93 Å and refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure drawn with 30% probability displacement ellipsoids for the non-H atoms. Unlabelled atoms are related to labelled atoms by the symmetry code 1 - x, 1 - y, 1 - z.
Bis(µ-biphenyl-2,2'-dicarboxylato)bis[(2,2'-bipyridine)copper(II)] top
Crystal data top
[Cu2(C14H8O4)2(C10H8N2)2]F(000) = 940
Mr = 919.86Dx = 1.562 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3644 reflections
a = 11.220 (2) Åθ = 2.1–25.5°
b = 13.350 (3) ŵ = 1.15 mm1
c = 13.400 (3) ÅT = 296 K
β = 103.02 (3)°Block, blue
V = 1955.5 (7) Å30.12 × 0.10 × 0.08 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
3644 independent reflections
Radiation source: fine-focus sealed tube3099 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 25.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1313
Tmin = 0.874, Tmax = 0.913k = 1610
10453 measured reflectionsl = 1614
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters not refined
S = 1.00 w = 1/[σ2(Fo2) + (0.063P)2 + 0.1P]
where P = (Fo2 + 2Fc2)/3
3644 reflections(Δ/σ)max = 0.031
280 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
[Cu2(C14H8O4)2(C10H8N2)2]V = 1955.5 (7) Å3
Mr = 919.86Z = 2
Monoclinic, P21/nMo Kα radiation
a = 11.220 (2) ŵ = 1.15 mm1
b = 13.350 (3) ÅT = 296 K
c = 13.400 (3) Å0.12 × 0.10 × 0.08 mm
β = 103.02 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
3644 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3099 reflections with I > 2σ(I)
Tmin = 0.874, Tmax = 0.913Rint = 0.019
10453 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.088H-atom parameters not refined
S = 1.00Δρmax = 0.27 e Å3
3644 reflectionsΔρmin = 0.29 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.52301 (18)0.68894 (15)0.42300 (15)0.0295 (4)
C20.28746 (17)0.57752 (15)0.60591 (15)0.0293 (4)
C30.30695 (16)0.51522 (15)0.70154 (14)0.0270 (4)
C40.33117 (18)0.56634 (16)0.79532 (15)0.0341 (5)
H40.32740.63590.79600.041*
C50.36046 (19)0.51453 (18)0.88649 (15)0.0393 (5)
H50.37860.54890.94840.047*
C60.3627 (2)0.41049 (18)0.88508 (16)0.0404 (5)
H60.38210.37520.94640.048*
C70.33624 (19)0.35926 (16)0.79356 (16)0.0344 (5)
H70.33700.28960.79390.041*
C80.30828 (16)0.41025 (15)0.70031 (14)0.0268 (4)
C90.66065 (16)0.69929 (14)0.45025 (14)0.0270 (4)
C100.71452 (18)0.75479 (16)0.53682 (16)0.0358 (5)
H100.66460.78840.57250.043*
C110.83990 (19)0.76120 (16)0.57103 (17)0.0388 (5)
H110.87410.79920.62850.047*
C120.91368 (18)0.71022 (17)0.51856 (17)0.0393 (5)
H120.99830.71300.54100.047*
C130.86141 (19)0.65506 (15)0.43273 (17)0.0339 (5)
H130.91200.62080.39820.041*
C140.73499 (18)0.64916 (13)0.39621 (15)0.0270 (4)
C150.2751 (2)0.87802 (18)0.39294 (19)0.0426 (5)
H150.34260.88680.44700.051*
C160.2221 (2)0.96089 (18)0.3405 (2)0.0522 (7)
H160.25091.02480.36050.063*
C170.1257 (2)0.9477 (2)0.2579 (2)0.0557 (7)
H170.08961.00260.22020.067*
C180.0830 (2)0.85266 (19)0.2316 (2)0.0463 (6)
H180.01880.84250.17510.056*
C190.13647 (18)0.77206 (16)0.29011 (15)0.0320 (5)
C200.09346 (18)0.66758 (16)0.27505 (16)0.0322 (5)
C210.0050 (2)0.6365 (2)0.19990 (18)0.0442 (6)
H210.04770.68180.15220.053*
C220.0390 (2)0.5368 (2)0.19696 (18)0.0511 (7)
H220.10500.51450.14680.061*
C230.0242 (2)0.4706 (2)0.26769 (19)0.0481 (6)
H230.00140.40360.26640.058*
C240.1223 (2)0.50567 (17)0.34091 (17)0.0390 (5)
H240.16580.46120.38900.047*
Cu10.30127 (2)0.660694 (17)0.440302 (17)0.033 (2)
N10.15643 (14)0.60194 (13)0.34444 (12)0.0304 (4)
N20.23357 (15)0.78535 (13)0.36946 (12)0.0309 (4)
O10.46909 (13)0.65650 (12)0.33944 (13)0.0462 (4)
O20.46709 (12)0.71453 (11)0.49257 (10)0.0356 (3)
O30.23951 (18)0.66102 (11)0.60315 (13)0.0510 (5)
O40.32843 (13)0.54377 (10)0.53117 (10)0.0336 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0289 (10)0.0228 (10)0.0359 (11)0.0009 (8)0.0052 (9)0.0015 (8)
C20.0303 (10)0.0261 (11)0.0293 (10)0.0008 (9)0.0020 (8)0.0012 (8)
C30.0237 (9)0.0287 (11)0.0276 (10)0.0006 (8)0.0037 (8)0.0014 (8)
C40.0347 (11)0.0317 (11)0.0353 (11)0.0009 (9)0.0066 (9)0.0056 (9)
C50.0389 (12)0.0508 (14)0.0255 (11)0.0029 (10)0.0017 (9)0.0075 (9)
C60.0429 (12)0.0495 (14)0.0281 (11)0.0081 (11)0.0064 (9)0.0077 (10)
C70.0384 (12)0.0307 (11)0.0345 (12)0.0044 (9)0.0092 (9)0.0057 (9)
C80.0242 (9)0.0282 (11)0.0285 (10)0.0001 (8)0.0070 (8)0.0000 (8)
C90.0272 (10)0.0219 (10)0.0306 (10)0.0026 (8)0.0037 (8)0.0006 (8)
C100.0384 (12)0.0289 (11)0.0410 (12)0.0041 (9)0.0112 (10)0.0089 (9)
C110.0411 (12)0.0324 (12)0.0389 (12)0.0111 (10)0.0006 (10)0.0098 (9)
C120.0273 (10)0.0399 (13)0.0474 (13)0.0093 (9)0.0017 (9)0.0005 (10)
C130.0294 (11)0.0344 (12)0.0386 (12)0.0011 (9)0.0094 (9)0.0025 (9)
C140.0285 (10)0.0207 (10)0.0302 (11)0.0030 (8)0.0035 (8)0.0037 (8)
C150.0469 (13)0.0349 (13)0.0462 (13)0.0000 (11)0.0107 (11)0.0032 (10)
C160.0572 (16)0.0295 (13)0.0745 (18)0.0032 (11)0.0246 (14)0.0086 (12)
C170.0516 (15)0.0475 (16)0.0698 (18)0.0163 (12)0.0177 (13)0.0268 (13)
C180.0385 (13)0.0495 (16)0.0488 (15)0.0134 (11)0.0053 (11)0.0158 (11)
C190.0284 (10)0.0400 (12)0.0292 (10)0.0078 (9)0.0095 (8)0.0072 (9)
C200.0260 (10)0.0433 (13)0.0281 (11)0.0036 (9)0.0077 (8)0.0052 (9)
C210.0310 (11)0.0635 (17)0.0344 (12)0.0044 (11)0.0006 (9)0.0078 (11)
C220.0376 (13)0.0725 (19)0.0395 (14)0.0156 (12)0.0010 (11)0.0042 (12)
C230.0442 (13)0.0493 (15)0.0501 (15)0.0174 (11)0.0089 (11)0.0039 (12)
C240.0381 (11)0.0380 (13)0.0391 (12)0.0041 (10)0.0051 (10)0.0015 (10)
Cu10.045 (5)0.025 (4)0.028 (4)0.004 (4)0.002 (4)0.002 (3)
N10.0279 (8)0.0338 (10)0.0284 (9)0.0003 (7)0.0042 (7)0.0018 (7)
N20.0308 (9)0.0305 (10)0.0315 (9)0.0017 (7)0.0069 (7)0.0038 (7)
O10.0303 (8)0.0595 (11)0.0457 (10)0.0038 (7)0.0022 (7)0.0248 (8)
O20.0284 (7)0.0461 (10)0.0318 (8)0.0007 (6)0.0058 (6)0.0052 (6)
O30.0790 (13)0.0343 (10)0.0429 (10)0.0232 (8)0.0207 (9)0.0070 (7)
O40.0423 (8)0.0315 (8)0.0269 (7)0.0067 (6)0.0078 (6)0.0043 (6)
Geometric parameters (Å, º) top
Cu1—O12.5541 (17)C11—H110.930
Cu1—O21.9701 (14)C12—C131.380 (3)
Cu1—O32.4338 (17)C12—H120.930
Cu1—O41.9608 (14)C13—C141.395 (3)
Cu1—N11.9914 (17)C13—H130.930
Cu1—N21.9806 (17)C14—C8i1.502 (3)
C1—O11.226 (2)C15—N21.334 (3)
C1—O21.282 (2)C15—C161.372 (3)
C1—C91.511 (3)C15—H150.930
C2—O31.235 (2)C16—C171.373 (4)
C2—O41.275 (2)C16—H160.930
C2—C31.502 (3)C17—C181.374 (4)
C3—C81.402 (3)C17—H170.930
C3—C41.402 (3)C18—C191.386 (3)
C4—C51.378 (3)C18—H180.930
C4—H40.930C19—N21.352 (3)
C5—C61.389 (3)C19—C201.475 (3)
C5—H50.930C20—N11.355 (3)
C6—C71.377 (3)C20—C211.381 (3)
C6—H60.930C21—C221.383 (4)
C7—C81.395 (3)C21—H210.930
C7—H70.930C22—C231.370 (4)
C8—C14i1.502 (3)C22—H220.930
C9—C141.393 (3)C23—C241.381 (3)
C9—C101.394 (3)C23—H230.9300
C10—C111.381 (3)C24—N11.339 (3)
C10—H100.930C24—H240.930
C11—C121.380 (3)
O1—C1—O2122.48 (18)C17—C16—H16120.6
O1—C1—C9121.35 (18)C15—C16—H16120.6
O2—C1—C9116.17 (17)C16—C17—C18119.4 (2)
O3—C2—O4121.83 (18)C16—C17—H17120.3
O3—C2—C3120.29 (18)C18—C17—H17120.3
O4—C2—C3117.75 (17)C19—C18—C17119.4 (2)
C8—C3—C4119.79 (18)C19—C18—H18120.3
C8—C3—C2122.93 (17)C17—C18—H18120.3
C4—C3—C2117.19 (18)N2—C19—C18120.8 (2)
C5—C4—C3120.7 (2)N2—C19—C20114.37 (17)
C5—C4—H4119.7C18—C19—C20124.8 (2)
C3—C4—H4119.7N1—C20—C21121.0 (2)
C4—C5—C6119.4 (2)N1—C20—C19114.45 (18)
C4—C5—H5120.3C21—C20—C19124.6 (2)
C6—C5—H5120.3C20—C21—C22118.7 (2)
C7—C6—C5120.52 (19)C20—C21—H21120.7
C7—C6—H6119.7C22—C21—H21120.7
C5—C6—H6119.7C23—C22—C21120.3 (2)
C6—C7—C8121.0 (2)C23—C22—H22119.9
C6—C7—H7119.5C21—C22—H22119.9
C8—C7—H7119.5C22—C23—C24118.6 (2)
C7—C8—C3118.56 (18)C22—C23—H23120.7
C7—C8—C14i118.53 (18)C24—C23—H23120.7
C3—C8—C14i122.41 (17)N1—C24—C23121.8 (2)
C14—C9—C10119.32 (18)N1—C24—H24119.1
C14—C9—C1121.98 (17)C23—C24—H24119.1
C10—C9—C1118.52 (17)O4—Cu1—O293.87 (6)
C11—C10—C9121.83 (19)O4—Cu1—N2162.88 (6)
C11—C10—H10119.1O2—Cu1—N295.36 (7)
C9—C10—H10119.1O4—Cu1—N194.42 (7)
C12—C11—C10118.92 (19)O2—Cu1—N1160.23 (6)
C12—C11—H11120.5N2—Cu1—N181.52 (7)
C10—C11—H11120.5O4—Cu1—O358.70 (5)
C11—C12—C13119.77 (19)O2—Cu1—O396.74 (7)
C11—C12—H12120.1N2—Cu1—O3105.80 (6)
C13—C12—H12120.1N1—Cu1—O3102.90 (7)
C14—C13—C12122.0 (2)C24—N1—C20119.72 (18)
C14—C13—H13119.0C24—N1—Cu1125.89 (14)
C12—C13—H13119.0C20—N1—Cu1114.30 (14)
C13—C14—C9118.12 (18)C15—N2—C19118.94 (18)
C13—C14—C8i115.98 (17)C15—N2—Cu1126.17 (15)
C9—C14—C8i125.89 (17)C19—N2—Cu1114.89 (14)
N2—C15—C16122.6 (2)C1—O2—Cu1102.82 (12)
N2—C15—H15118.7C2—O3—Cu179.35 (12)
C16—C15—H15118.7C2—O4—Cu199.98 (12)
C17—C16—C15118.8 (2)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu2(C14H8O4)2(C10H8N2)2]
Mr919.86
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)11.220 (2), 13.350 (3), 13.400 (3)
β (°) 103.02 (3)
V3)1955.5 (7)
Z2
Radiation typeMo Kα
µ (mm1)1.15
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.874, 0.913
No. of measured, independent and
observed [I > 2σ(I)] reflections
10453, 3644, 3099
Rint0.019
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.088, 1.00
No. of reflections3644
No. of parameters280
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.27, 0.29

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors acknowledge financial support from Maoming University.

References

First citationAn, Z. & Niu, X.-C. (2008). Acta Cryst. E64, m1556.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationRueff, J.-M., Pillet, S., Bonaventure, G., Souhassou, M. & Rabu, P. (2003). Eur. J. Inorg. Chem. pp. 4173–4178.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, X.-X., Lu, Y., Wang, E.-B., Ma, Y. & Bai, X.-L. (2006). Cryst. Growth Des. 6, 2029–2035.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds