metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[(di­methyl­formamide-κO)copper(II)]-bis­­(μ-4-nitro­phenyl­cyanamido-κ2N1:N3)]

aDepartment of Chemistry, Isfahan University of Technology, Isfahan 84156-38111, Iran, and bDepartment of Chemistry, Shahid Beheshti University, G.C., Evin, Tehran 1983963113, Iran
*Correspondence e-mail: chinif@cc.iut.ac.ir

(Received 9 January 2009; accepted 4 March 2009; online 11 March 2009)

In the title compound, [Cu(C7H4N3O2)2(C3H7NO)], the CuII atom is five-coordinated in a distorted square-pyramidal geometry, with the N atoms in equatorial positions and the dimethyl­formamide O atom in an axial position. The dihedral angle between adjacent benzene rings is 70.33 (12)°.

Related literature

The phenyl­cyanamide molecule can function as bridging ligand and can coordinate to two different metallic centers by means of the nitrile and amine N atoms (μ1,3 bonding mode), forming di- and polynuclear complexes, see: Ainscough et al. (1991[Ainscough, E. W., Baker, E. N., Brader, M. L. & Brodie, A. M. (1991). J. Chem. Soc. Dalton Trans. pp. 1243-1249.]); Brader et al. (1990[Brader, M. L., Ainscough, E. W., Baker, E. N. & Ingham, A. M. (1990). J. Chem. Soc. Dalton Trans. pp. 2785-2792.]); Crutchley (2001[Crutchley, R. J. (2001). Coord. Chem. Rev. 219, 125-155.]); Escuer et al. (2004[Escuer, A., Mautner, F. A., Sanz, N. & Vicente, R. (2004). Polyhedron, 23, 1409-1417.]). For the magnetic properties of coordination polymers, see: Grosshenny et al. (1996[Grosshenny, V., Harriman, A., Romero, F. M. & Ziessel, R. (1996). J. Chem. Phys. 100, 17472-17484.]). For the preparation of 4-NO2-phenyl­cyanamide used in the synthesis, see: Crutchley & Naklicki (1989[Crutchley, R. J. & Naklicki, M. L. (1989). Inorg. Chem. 28, 1955-1958.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C7H4N3O2)2(C3H7NO)]

  • Mr = 460.91

  • Monoclinic, P 21 /c

  • a = 21.5103 (12) Å

  • b = 8.7883 (5) Å

  • c = 9.9195 (5) Å

  • β = 101.746 (4)°

  • V = 1835.91 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.24 mm−1

  • T = 120 K

  • 0.50 × 0.23 × 0.15 mm

Data collection
  • Stoe IPDS-II diffractometer

  • Absorption correction: numerical with shape of crystal determined optically Tmin = 0.720, Tmax = 0.832

  • 13057 measured reflections

  • 4874 independent reflections

  • 4496 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.091

  • S = 1.08

  • 4874 reflections

  • 273 parameters

  • H-atom parameters constrained

  • Δρmax = 0.99 e Å−3

  • Δρmin = −0.91 e Å−3

Table 1
Selected geometric parameters (Å, °)

N2—Cu1 2.0862 (13)
N5—Cu1 2.0599 (12)
Cu1—N4i 1.9648 (13)
Cu1—N1ii 1.9748 (13)
Cu1—O5 2.1443 (12)
N4i—Cu1—N1ii 154.42 (6)
N4i—Cu1—N5 90.85 (5)
N1ii—Cu1—N2 90.41 (5)
N5—Cu1—N2 172.66 (5)
N4i—Cu1—O5 102.75 (5)
N1ii—Cu1—O5 102.83 (5)
N5—Cu1—O5 92.25 (5)
N2—Cu1—O5 95.08 (5)
Symmetry codes: (i) [x, -y-{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y-{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Phenylcyanamide ligands are used in the construction of transition metal coordination complexes. The study of coordination polymeric materials holds great interest. The phenylcyanamide can function as bridging ligand and can coordinate to two different metallic centers by means of the nitrile and amine nitrogen (µ1,3 bonding mode), forming di- and polynuclear complexes (Brader et al., 1990; Crutchley et al., 2001; Ainscough et al., 1991; Escuer et al., 2004). It can modify the solubility and crystallinety of resulting compounds and there is the different coordination in complexes. We are attempting to construct conductive inorganic polymer chains that are cross-linked by cyanamide groups to a coordination complex. Coordination polymers also hold promise as novel materials because of their magnetic properties (Grosshenny et al., 1996). More recently various aromatic cyanamide complexes have been studied by x-ray crystallography.

In the molecule of the title compound, (I), (Fig. 1) the selected bond lengths and angles are listed in Table 1. In this molecule, the {Cu(4—NO2-pcyd)2(DMF)}n one-dimensional chain coordination polymer bridged by 4-NO2-phenylcyanamide. Each copper atom has a distored square pyramidal geometry, that nitrogen atoms are in equatorial position and oxygen atom from DMF molecule is in axial position (Table 1.). The dihedral angle between adjacent phenyl rings in the polymeric chain is 70.33 (12)°.

Related literature top

The phenylcyanamide can function as bridging ligand and cancoordinate to two different metallic centers by means of the nitrile and amine nitrogen (µ1,3 bonding mode), forming di- and polynuclear complexes, see: Ainscough et al. (1991); Brader et al. (1990); Crutchley (2001); Escuer et al. (2004). For the magnetic properties of coordination polymers, see: Grosshenny et al. (1996). For the preparation of 4-NO2-phenylcyanamide used in the synthesis, see: Crutchley & Naklicki (1989);

Experimental top

The 4-NO2-phenylcyanamide (Crutchley et al.,1989) (0.163 gr, 0.5 mmol) dissolved in methanol (30 ml) was added slowly to a solution of copper(II) acetate monohydrate (0.998 gr, 1 mmol) in methanol (30 ml). The mixture was stirred for 4 h. The solid filtered and crystals suitable for X-ray structure determination were obtained by dissolving in DMF then diffused by n-Hexane, after 1 week.

Refinement top

All of the H atoms were positioned geometrically, with C—H = 0.93 Å for aromatic and aldehyde H atoms and with C—H = 0.93 Å for methyl H atoms, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of (I) with 30% probability displacement ellipsoids. Symmetry code (i): x, -y - 3/2, z - 1/2.
catena-Poly[[(dimethylformamide-κO)copper(II)]- bis(µ-4-nitrophenylcyanamido-κ2N1:N3)] top
Crystal data top
[Cu(C7H4N3O2)2(C3H7NO)]F(000) = 940
Mr = 460.91Dx = 1.668 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1359 reflections
a = 21.5103 (12) Åθ = 3.0–29.3°
b = 8.7883 (5) ŵ = 1.24 mm1
c = 9.9195 (5) ÅT = 120 K
β = 101.746 (4)°Prism, violet
V = 1835.91 (17) Å30.5 × 0.23 × 0.15 mm
Z = 4
Data collection top
Stoe IPDS-II
diffractometer
4496 reflections with I > 2σ(I)
rotation method scansRint = 0.050
Absorption correction: numerical
shape of crystal determined optically
θmax = 29.3°, θmin = 3.0°
Tmin = 0.720, Tmax = 0.832h = 2924
13057 measured reflectionsk = 1012
4874 independent reflectionsl = 1313
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.051P)2 + 0.8628P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.091(Δ/σ)max = 0.017
S = 1.08Δρmax = 0.99 e Å3
4874 reflectionsΔρmin = 0.91 e Å3
273 parameters
Crystal data top
[Cu(C7H4N3O2)2(C3H7NO)]V = 1835.91 (17) Å3
Mr = 460.91Z = 4
Monoclinic, P21/cMo Kα radiation
a = 21.5103 (12) ŵ = 1.24 mm1
b = 8.7883 (5) ÅT = 120 K
c = 9.9195 (5) Å0.5 × 0.23 × 0.15 mm
β = 101.746 (4)°
Data collection top
Stoe IPDS-II
diffractometer
4874 independent reflections
Absorption correction: numerical
shape of crystal determined optically
4496 reflections with I > 2σ(I)
Tmin = 0.720, Tmax = 0.832Rint = 0.050
13057 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.08Δρmax = 0.99 e Å3
4874 reflectionsΔρmin = 0.91 e Å3
273 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.18470 (7)0.78476 (17)0.48486 (14)0.0134 (3)
C20.11109 (7)0.85879 (17)0.61210 (15)0.0134 (3)
C30.06225 (7)0.77637 (19)0.52815 (15)0.0170 (3)
H30.07170.71320.45990.02*
C40.00005 (7)0.78755 (19)0.54535 (16)0.0187 (3)
H40.03230.73270.48930.022*
C50.01325 (7)0.8821 (2)0.64786 (16)0.0179 (3)
C60.03397 (8)0.96827 (18)0.73088 (16)0.0177 (3)
H60.02391.03250.79780.021*
C70.09602 (7)0.95722 (17)0.71271 (15)0.0155 (3)
H70.12781.0150.76710.019*
C80.31962 (7)0.74093 (18)1.03158 (14)0.0140 (3)
C90.39374 (7)0.82569 (17)0.90993 (15)0.0142 (3)
C100.41040 (7)0.94717 (18)0.83254 (15)0.0156 (3)
H100.37991.01780.79320.019*
C110.47252 (7)0.96186 (19)0.81480 (15)0.0179 (3)
H110.48391.04190.76340.021*
C120.51748 (8)0.8551 (2)0.87497 (16)0.0186 (3)
C130.50288 (7)0.7369 (2)0.95631 (16)0.0192 (3)
H130.5340.66880.99820.023*
C140.44059 (7)0.72297 (19)0.97349 (15)0.0170 (3)
H140.42990.64481.02770.02*
C150.23643 (8)1.18081 (18)0.70530 (16)0.0164 (3)
H150.21621.14690.61870.02*
C160.27640 (9)1.3914 (2)0.85538 (18)0.0239 (3)
H16A0.24711.45440.89140.029*
H16B0.29071.31010.91870.029*
H16C0.31211.45140.84310.029*
C170.22428 (9)1.4360 (2)0.61151 (18)0.0242 (3)
H17C0.1951.50730.63750.029*
H17B0.26051.48960.59280.029*
H17A0.20381.3820.53050.029*
N10.19773 (6)0.73209 (16)0.38708 (13)0.0159 (2)
N20.17467 (6)0.84608 (14)0.59891 (13)0.0133 (2)
N30.07813 (7)0.8905 (2)0.67009 (16)0.0245 (3)
N40.30602 (6)0.68183 (17)1.12639 (13)0.0169 (3)
N50.32972 (6)0.80866 (16)0.92140 (12)0.0136 (2)
N60.58231 (7)0.8682 (2)0.85134 (15)0.0249 (3)
N70.24485 (6)1.32833 (16)0.72334 (14)0.0166 (3)
Cu10.252435 (8)0.842098 (19)0.763487 (17)0.01030 (7)
O10.11924 (6)0.8137 (2)0.59671 (16)0.0360 (3)
O20.08874 (8)0.9731 (2)0.7622 (2)0.0497 (5)
O30.61904 (7)0.7620 (2)0.88752 (16)0.0380 (4)
O40.59667 (7)0.9839 (2)0.79478 (16)0.0379 (4)
O50.25389 (6)1.08324 (13)0.79693 (11)0.0182 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0091 (6)0.0152 (6)0.0141 (6)0.0002 (5)0.0015 (5)0.0010 (5)
C20.0118 (6)0.0143 (6)0.0137 (6)0.0026 (5)0.0017 (5)0.0023 (5)
C30.0150 (7)0.0208 (7)0.0146 (6)0.0011 (5)0.0017 (5)0.0014 (5)
C40.0131 (7)0.0228 (8)0.0189 (6)0.0024 (6)0.0005 (5)0.0020 (6)
C50.0116 (6)0.0208 (7)0.0219 (7)0.0027 (6)0.0047 (5)0.0059 (6)
C60.0162 (7)0.0176 (7)0.0204 (7)0.0046 (5)0.0062 (5)0.0007 (5)
C70.0139 (6)0.0158 (6)0.0163 (6)0.0025 (5)0.0019 (5)0.0004 (5)
C80.0089 (6)0.0183 (7)0.0135 (6)0.0012 (5)0.0009 (5)0.0010 (5)
C90.0115 (6)0.0182 (7)0.0125 (6)0.0023 (5)0.0015 (5)0.0023 (5)
C100.0134 (6)0.0177 (7)0.0145 (6)0.0020 (5)0.0005 (5)0.0002 (5)
C110.0163 (7)0.0224 (7)0.0147 (6)0.0060 (6)0.0029 (5)0.0012 (5)
C120.0116 (6)0.0271 (8)0.0173 (7)0.0029 (6)0.0035 (5)0.0051 (6)
C130.0133 (6)0.0246 (8)0.0190 (7)0.0025 (6)0.0019 (5)0.0015 (6)
C140.0144 (7)0.0204 (7)0.0159 (6)0.0002 (5)0.0025 (5)0.0024 (5)
C150.0183 (7)0.0142 (7)0.0169 (6)0.0004 (5)0.0039 (5)0.0002 (5)
C160.0293 (8)0.0163 (7)0.0251 (8)0.0047 (6)0.0031 (6)0.0053 (6)
C170.0303 (9)0.0170 (7)0.0265 (8)0.0018 (6)0.0089 (7)0.0079 (6)
N10.0104 (5)0.0230 (7)0.0139 (5)0.0003 (5)0.0014 (4)0.0018 (5)
N20.0100 (5)0.0181 (6)0.0110 (5)0.0018 (4)0.0006 (4)0.0006 (4)
N30.0151 (6)0.0283 (8)0.0312 (7)0.0031 (6)0.0074 (5)0.0066 (6)
N40.0105 (5)0.0263 (7)0.0130 (5)0.0018 (5)0.0001 (4)0.0031 (5)
N50.0093 (5)0.0191 (6)0.0119 (5)0.0002 (4)0.0007 (4)0.0023 (4)
N60.0147 (6)0.0396 (9)0.0211 (6)0.0052 (6)0.0049 (5)0.0051 (6)
N70.0183 (6)0.0130 (6)0.0186 (6)0.0008 (4)0.0039 (5)0.0012 (4)
Cu10.00955 (10)0.01191 (10)0.00912 (10)0.00041 (6)0.00118 (6)0.00033 (5)
O10.0144 (6)0.0544 (10)0.0386 (8)0.0052 (6)0.0040 (5)0.0007 (7)
O20.0246 (7)0.0595 (11)0.0711 (12)0.0005 (7)0.0246 (8)0.0261 (10)
O30.0161 (6)0.0527 (10)0.0463 (8)0.0059 (6)0.0087 (6)0.0026 (7)
O40.0244 (7)0.0487 (9)0.0443 (8)0.0094 (7)0.0154 (6)0.0049 (7)
O50.0248 (6)0.0119 (5)0.0169 (5)0.0014 (4)0.0017 (4)0.0005 (4)
Geometric parameters (Å, º) top
C1—N11.160 (2)C13—C141.390 (2)
C1—N21.3099 (18)C13—H130.93
C2—C31.402 (2)C14—H140.93
C2—N21.4046 (19)C15—O51.250 (2)
C2—C71.408 (2)C15—N71.316 (2)
C3—C41.388 (2)C15—H150.93
C3—H30.93C16—N71.457 (2)
C4—C51.387 (2)C16—H16A0.96
C4—H40.93C16—H16B0.96
C5—C61.394 (2)C16—H16C0.96
C5—N31.458 (2)C17—N71.457 (2)
C6—C71.386 (2)C17—H17C0.96
C6—H60.93C17—H17B0.96
C7—H70.93C17—H17A0.96
C8—N41.163 (2)N1—Cu1i1.9748 (13)
C8—N51.3010 (19)N2—Cu12.0862 (13)
C9—C141.403 (2)N3—O21.224 (2)
C9—C101.403 (2)N3—O11.227 (2)
C9—N51.4126 (19)N4—Cu1ii1.9648 (13)
C10—C111.389 (2)N5—Cu12.0599 (12)
C10—H100.93N6—O31.229 (2)
C11—C121.392 (2)N6—O41.230 (2)
C11—H110.93Cu1—N4i1.9648 (13)
C12—C131.390 (2)Cu1—N1ii1.9748 (13)
C12—N61.465 (2)Cu1—O52.1443 (12)
N1—C1—N2175.56 (15)N7—C16—H16A109.5
C3—C2—N2121.98 (13)N7—C16—H16B109.5
C3—C2—C7119.06 (14)H16A—C16—H16B109.5
N2—C2—C7118.96 (13)N7—C16—H16C109.5
C4—C3—C2121.05 (14)H16A—C16—H16C109.5
C4—C3—H3119.5H16B—C16—H16C109.5
C2—C3—H3119.5N7—C17—H17C109.5
C5—C4—C3118.64 (14)N7—C17—H17B109.5
C5—C4—H4120.7H17C—C17—H17B109.5
C3—C4—H4120.7N7—C17—H17A109.5
C4—C5—C6121.70 (14)H17C—C17—H17A109.5
C4—C5—N3119.07 (15)H17B—C17—H17A109.5
C6—C5—N3119.22 (15)C1—N1—Cu1i158.01 (12)
C7—C6—C5119.36 (14)C1—N2—C2116.60 (12)
C7—C6—H6120.3C1—N2—Cu1114.97 (10)
C5—C6—H6120.3C2—N2—Cu1124.69 (9)
C6—C7—C2120.15 (14)O2—N3—O1123.22 (16)
C6—C7—H7119.9O2—N3—C5118.16 (16)
C2—C7—H7119.9O1—N3—C5118.63 (16)
N4—C8—N5175.15 (15)C8—N4—Cu1ii152.54 (13)
C14—C9—C10119.68 (14)C8—N5—C9116.64 (12)
C14—C9—N5121.22 (13)C8—N5—Cu1117.20 (10)
C10—C9—N5119.09 (14)C9—N5—Cu1124.94 (9)
C11—C10—C9119.96 (15)O3—N6—O4123.70 (16)
C11—C10—H10120O3—N6—C12118.03 (16)
C9—C10—H10120O4—N6—C12118.26 (16)
C10—C11—C12119.05 (14)C15—N7—C17121.62 (15)
C10—C11—H11120.5C15—N7—C16121.55 (14)
C12—C11—H11120.5C17—N7—C16116.82 (14)
C13—C12—C11122.23 (14)N4i—Cu1—N1ii154.42 (6)
C13—C12—N6119.11 (15)N4i—Cu1—N590.85 (5)
C11—C12—N6118.65 (15)N1ii—Cu1—N588.36 (5)
C14—C13—C12118.31 (15)N4i—Cu1—N287.13 (5)
C14—C13—H13120.8N1ii—Cu1—N290.41 (5)
C12—C13—H13120.8N5—Cu1—N2172.66 (5)
C13—C14—C9120.69 (14)N4i—Cu1—O5102.75 (5)
C13—C14—H14119.7N1ii—Cu1—O5102.83 (5)
C9—C14—H14119.7N5—Cu1—O592.25 (5)
O5—C15—N7124.33 (15)N2—Cu1—O595.08 (5)
O5—C15—H15117.8C15—O5—Cu1124.92 (11)
N7—C15—H15117.8
N2—C2—C3—C4178.27 (14)C14—C9—N5—C827.7 (2)
C7—C2—C3—C41.7 (2)C10—C9—N5—C8152.76 (14)
C2—C3—C4—C50.1 (2)C14—C9—N5—Cu1139.25 (12)
C3—C4—C5—C61.6 (2)C10—C9—N5—Cu140.26 (19)
C3—C4—C5—N3177.78 (15)C13—C12—N6—O310.4 (2)
C4—C5—C6—C71.3 (2)C11—C12—N6—O3169.52 (16)
N3—C5—C6—C7178.12 (14)C13—C12—N6—O4170.58 (16)
C5—C6—C7—C20.6 (2)C11—C12—N6—O49.5 (2)
C3—C2—C7—C62.0 (2)O5—C15—N7—C17178.97 (15)
N2—C2—C7—C6177.94 (14)O5—C15—N7—C160.3 (3)
C14—C9—C10—C112.5 (2)C8—N5—Cu1—N4i147.21 (12)
N5—C9—C10—C11177.06 (13)C9—N5—Cu1—N4i19.70 (13)
C9—C10—C11—C120.2 (2)C8—N5—Cu1—N1ii7.22 (12)
C10—C11—C12—C132.2 (2)C9—N5—Cu1—N1ii174.13 (13)
C10—C11—C12—N6177.70 (14)C8—N5—Cu1—O5110.00 (12)
C11—C12—C13—C142.2 (2)C9—N5—Cu1—O583.09 (13)
N6—C12—C13—C14177.69 (14)C1—N2—Cu1—N4i21.30 (11)
C12—C13—C14—C90.1 (2)C2—N2—Cu1—N4i178.68 (12)
C10—C9—C14—C132.5 (2)C1—N2—Cu1—N1ii133.23 (11)
N5—C9—C14—C13177.06 (14)C2—N2—Cu1—N1ii24.15 (12)
C3—C2—N2—C116.4 (2)C1—N2—Cu1—O5123.85 (11)
C7—C2—N2—C1163.60 (14)C2—N2—Cu1—O578.76 (12)
C3—C2—N2—Cu1140.62 (12)N7—C15—O5—Cu1171.10 (11)
C7—C2—N2—Cu139.34 (18)N4i—Cu1—O5—C1557.95 (14)
C4—C5—N3—O2179.12 (18)N1ii—Cu1—O5—C15121.84 (13)
C6—C5—N3—O20.3 (3)N5—Cu1—O5—C15149.33 (13)
C4—C5—N3—O10.3 (2)N2—Cu1—O5—C1530.25 (13)
C6—C5—N3—O1179.73 (16)
Symmetry codes: (i) x, y3/2, z1/2; (ii) x, y3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(C7H4N3O2)2(C3H7NO)]
Mr460.91
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)21.5103 (12), 8.7883 (5), 9.9195 (5)
β (°) 101.746 (4)
V3)1835.91 (17)
Z4
Radiation typeMo Kα
µ (mm1)1.24
Crystal size (mm)0.5 × 0.23 × 0.15
Data collection
DiffractometerStoe IPDS-II
diffractometer
Absorption correctionNumerical
shape of crystal determined optically
Tmin, Tmax0.720, 0.832
No. of measured, independent and
observed [I > 2σ(I)] reflections
13057, 4874, 4496
Rint0.050
(sin θ/λ)max1)0.688
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.091, 1.08
No. of reflections4874
No. of parameters273
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.99, 0.91

Computer programs: X-AREA (Stoe & Cie, 2005), SHELXTL (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
N2—Cu12.0862 (13)Cu1—N1ii1.9748 (13)
N5—Cu12.0599 (12)Cu1—O52.1443 (12)
Cu1—N4i1.9648 (13)
N4i—Cu1—N1ii154.42 (6)N4i—Cu1—O5102.75 (5)
N4i—Cu1—N590.85 (5)N1ii—Cu1—O5102.83 (5)
N1ii—Cu1—N290.41 (5)N5—Cu1—O592.25 (5)
N5—Cu1—N2172.66 (5)N2—Cu1—O595.08 (5)
Symmetry codes: (i) x, y3/2, z1/2; (ii) x, y3/2, z+1/2.
 

Acknowledgements

The authors acknowledge financial support from Isfahan University of Technology.

References

First citationAinscough, E. W., Baker, E. N., Brader, M. L. & Brodie, A. M. (1991). J. Chem. Soc. Dalton Trans. pp. 1243–1249.  CSD CrossRef Web of Science Google Scholar
First citationBrader, M. L., Ainscough, E. W., Baker, E. N. & Ingham, A. M. (1990). J. Chem. Soc. Dalton Trans. pp. 2785–2792.  CSD CrossRef Web of Science Google Scholar
First citationCrutchley, R. J. (2001). Coord. Chem. Rev. 219, 125–155.  Web of Science CrossRef Google Scholar
First citationCrutchley, R. J. & Naklicki, M. L. (1989). Inorg. Chem. 28, 1955–1958.  CrossRef CAS Web of Science Google Scholar
First citationEscuer, A., Mautner, F. A., Sanz, N. & Vicente, R. (2004). Polyhedron, 23, 1409–1417.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGrosshenny, V., Harriman, A., Romero, F. M. & Ziessel, R. (1996). J. Chem. Phys. 100, 17472–17484.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds