organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[(2-Hydr­­oxy-5-meth­oxy­phen­yl)(3-nitro­phen­yl)meth­yl]acetamide

aDepartment of Physics, The New College (Autonomous), Chennai 600 014, India, bDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and cOrganic Chemistry Division, Central Leather Research Institute, Chennai 600 020, India
*Correspondence e-mail: a_spandian@yahoo.com

(Received 12 March 2009; accepted 16 March 2009; online 25 March 2009)

In the title compound, C16H16N2O5, the meth­oxy group is disordered with site occupancies of 0.20 (3) and 0.80 (3). The dihedral angle between the two aromatic rings is 73.7 (2)°. The crystal structure is characterized by intermolecular N—H⋯O, O—H⋯O, C—H⋯O and C—H⋯π hydrogen bonds.

Related literature

For N-substituted phen­yl acetamides as inter­mediates in organic synthesis, see: Gowda et al. (2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o3364.]); Ghosh et al. (2005[Ghosh, R., Maity, S. & Chakraborty, A. (2005). Synlett, pp. 115-118.]). For a related structure, see: NizamMohideen et al. (2009[NizamMohideen, M., SubbiahPandi, A., Panneer Selvam, N. & Perumal, P. T. (2009). Acta Cryst. E65, o714-o715.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16N2O5

  • Mr = 316.31

  • Monoclinic, P 21 /c

  • a = 15.3351 (3) Å

  • b = 8.1327 (2) Å

  • c = 14.5308 (3) Å

  • β = 117.387 (1)°

  • V = 1609.10 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.32 × 0.28 × 0.25 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: none

  • 23127 measured reflections

  • 6121 independent reflections

  • 3900 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.196

  • S = 1.03

  • 6121 reflections

  • 216 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O5i 0.82 1.80 2.617 (2) 179
N1—H1⋯O4ii 0.86 2.30 3.159 (2) 174
C10—H10⋯O1iii 0.93 2.47 3.320 (2) 152
C12—H12⋯O2iv 0.93 2.58 3.397 (2) 147
C14—H14⋯O4ii 0.93 2.55 3.470 (2) 169
C8—H8⋯O5 0.98 2.30 2.714 (2) 105
C11—H11⋯Cg1iv 0.93 2.83 3.680 (2) 153
C1B—H1B1⋯Cg2v 0.96 2.61 3.531 (2) 160
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) -x, -y+1, -z; (iii) -x+1, -y+1, -z+1; (iv) x, y-1, z; (v) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]. Cg1 and Cg2 are the centroids of the C2-C7 and C9-C14 rings, respectively.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

N-(Substituted phenyl) acetamides are well known for their importance as intermediates in organic synthesis (Gowda et al., 2007). Depending on the types of substitution at the α, β and keto-C atoms, and the conformational flexibility of the substituent groups, a variety of β-acetamido ketones offering the possibility of intermolecular interactions can be obtained (Ghosh et al., 2005). The amide linkage [–NHC(O)-] is known to be strong enough to form and maintain protein architectures and has been utilized to create various molecular devices for a spectrum of purposes in organic chemistry. We have synthesized an amide system with an aromatic ring as a terminal group to determine how the rigid ring affects the conformational behavior. As part of our ongoing investigation of acetamide derivatives, the title compound has been prepared and its crystal structure is presented here.

The bond lenghts and angles are comparable with N-[(3-Nitro-phenyl)-(2-hydroxy-napthalen-1-yl)-methyl]-acetamide (NizamMohideen et al., 2009), a structure closely related to the title compound. The nitro group is slighty twisted out of the plane of the benzene ring, as indicated by O4—N2—C13—C14 and O3—N2—C13—C14 torsion angles of -8.6 (3) and 171.0 (2)°, respectively, and comparable with those in the previously reported structure mentioned above.

The dihedral angle between the C2—C7 and C9—C14 benzene rings is 73.7 (2)°. The dihedral angle between the acetamide residue and the benzene rings (C2—C7 and C9—C14) are 70.0 (1) and 37.4 (2)°, respectively.

The intermolecular aggregation of the molecules is determined by combination of N—H···O, C—H···O, O—H···O and C—H···π hydrogen bonds (Table 1). The crystal structure is characterized by intermolecular bifurcated acceptor hydrogen bonds between the benzene and acetamide groups (Fig. 2). Atom N1 and C14 in the molecule at (x, y, z) act as a hydrogen-bond donor via atom H1 and H14 to atom O4 in the molecule at (-x, 1 - y, -z). This intermolecular hydrogen bond links the molecule into dimers with a cyclic R22(16) and R22(10) (Bernstein et al., 1995) ring system, respectively. Atom C10 in the molecule at (x, y, z) acts as a hydrogen-bond donor via atom H10 to atom O1 in the molecule at (1 - x, 1 - y, 1 - z). This intermolecular hydrogen bond links the molecule into dimers with a cyclic R22(16) ring system. The crystal structure is further stabilized by C—H···π interactions involing rings C11—H11···Cg1 (Cg1 is the centroid of the C2—C7 ring) and C1—H1a···Cg2 (where Cg2 is the centroid of the C9—C14 ring).

Related literature top

For N-(Substituted phenyl) acetamides as

intermediates in organic synthesis, see: Gowda et al. (2007); Ghosh et al. (2005). For a related structure, see: NizamMohideen et al. (2009). For hydrogen-bond motifs, see: Bernstein et al. (1995). Cg1 and Cg2 are the centroids of the C2-C7 and C9-C14 rings, respectively.

Experimental top

A mixture of 3-nitrobenzaldehyde (10 mmol), 4-methoxyphenol (10 mmol) and iodine (0.4 mmol, 4 mol%) were mixed in acetonitrile (5 ml). To that suspension acetyl chloride (2.8 mmol, 0.2 ml) was added and the reaction mixture was stirred at room temperature for 5 h. After the completion of the reaction (as monitored by TLC), saturated sodium thiosulfate solution (5 ml) was added. The precipitated solid was filtered and dried. The dried sample was washed with diethyl ether (2 × 10 ml) and again dried. Single crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of a solution in Ethanol.

Refinement top

The C atoms of the methoxy group are disordered over two positions with refined occupancies of 0.20 (3) and 0.80 (3). The corresponding bond distances involving the disordered atoms were restrained to be equal. H atoms were positioned geometrically, with N—H = 0.86, O—H = 0.82 and C—H = 0.93, 0.98 and 0.96 Å aromatic, methylene and methyl H, respectively, and were treated as riding on their parent atoms, with Uiso(H) = xUeq(C, N), where x = 1.2 for all H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound showing the R22(16), R22(10) and R22(16) rings. Hydrogen bonding is shown as dashed lines. H atoms not involved in the hydrogen bonding have been omitted for clarity. [Symmetry codes: (ii) -x + 1, -y + 1, -z + 1, (iii)-x, -y + 1, -z]]
N-[(2-Hydroxy-5-methoxyphenyl)(3-nitrophenyl)methyl]acetamide top
Crystal data top
C16H16N2O5F(000) = 664
Mr = 316.31Dx = 1.306 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3900 reflections
a = 15.3351 (3) Åθ = 2.5–25°
b = 8.1327 (2) ŵ = 0.10 mm1
c = 14.5308 (3) ÅT = 293 K
β = 117.387 (1)°Block, colourless
V = 1609.10 (6) Å30.32 × 0.28 × 0.25 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3900 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.032
Graphite monochromatorθmax = 33.2°, θmin = 2.8°
ω and ϕ scansh = 2323
23127 measured reflectionsk = 1211
6121 independent reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.196H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.1083P)2 + 0.189P]
where P = (Fo2 + 2Fc2)/3
6121 reflections(Δ/σ)max = 0.002
216 parametersΔρmax = 0.41 e Å3
1 restraintΔρmin = 0.25 e Å3
Crystal data top
C16H16N2O5V = 1609.10 (6) Å3
Mr = 316.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.3351 (3) ŵ = 0.10 mm1
b = 8.1327 (2) ÅT = 293 K
c = 14.5308 (3) Å0.32 × 0.28 × 0.25 mm
β = 117.387 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3900 reflections with I > 2σ(I)
23127 measured reflectionsRint = 0.032
6121 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0581 restraint
wR(F2) = 0.196H-atom parameters constrained
S = 1.03Δρmax = 0.41 e Å3
6121 reflectionsΔρmin = 0.25 e Å3
216 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C1A0.640 (2)0.888 (2)0.458 (2)0.117 (3)0.20 (3)
H1A10.65960.88630.40430.175*0.20 (3)
H1A20.69700.89790.52430.175*0.20 (3)
H1A30.59740.98050.44790.175*0.20 (3)
C1B0.6664 (8)0.834 (2)0.4528 (4)0.117 (3)0.80 (3)
H1B10.68540.78510.40440.175*0.80 (3)
H1B20.72180.83510.52060.175*0.80 (3)
H1B30.64440.94450.43160.175*0.80 (3)
C20.50275 (11)0.7283 (2)0.36557 (11)0.0484 (4)
C30.48701 (12)0.7903 (2)0.27035 (12)0.0532 (4)
H30.53690.84650.26430.064*
C40.39705 (12)0.7686 (2)0.18441 (11)0.0477 (4)
H40.38700.81020.12070.057*
C50.32155 (9)0.68542 (15)0.19185 (9)0.0332 (3)
C60.33683 (9)0.62281 (13)0.28794 (8)0.0278 (2)
C70.42728 (10)0.64540 (17)0.37363 (9)0.0372 (3)
H70.43770.60440.43760.045*
C80.25554 (8)0.53368 (14)0.29997 (8)0.0279 (2)
H80.28260.50520.37350.034*
C90.22779 (9)0.37267 (14)0.24099 (9)0.0310 (2)
C100.28657 (13)0.23670 (18)0.28828 (12)0.0516 (4)
H100.33930.24770.35410.062*
C110.26797 (18)0.0857 (2)0.23924 (16)0.0808 (7)
H110.30720.00420.27280.097*
C120.19121 (17)0.0676 (2)0.14040 (16)0.0775 (7)
H120.17820.03320.10640.093*
C130.13489 (12)0.20355 (17)0.09422 (12)0.0478 (4)
C140.15003 (9)0.35523 (14)0.14216 (10)0.0335 (2)
H140.10910.44360.10900.040*
C150.16393 (11)0.7236 (2)0.35184 (10)0.0447 (3)
C160.07682 (16)0.8327 (3)0.32137 (16)0.0799 (7)
H16A0.01790.76840.28850.120*
H16B0.07680.91510.27400.120*
H16C0.07970.88480.38200.120*
N10.17154 (8)0.64005 (14)0.27656 (8)0.0348 (2)
H10.12630.64930.21360.042*
N20.05722 (11)0.18961 (17)0.01317 (11)0.0577 (4)
O10.58945 (9)0.7410 (2)0.45516 (10)0.0795 (5)
O20.23072 (7)0.66466 (13)0.11020 (7)0.0423 (2)
H20.22990.70380.05780.063*
O30.05139 (15)0.06269 (19)0.06005 (12)0.1014 (7)
O40.00217 (11)0.30376 (18)0.05160 (11)0.0816 (5)
O50.22599 (10)0.7079 (2)0.44251 (9)0.0746 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.050 (3)0.233 (7)0.0560 (14)0.069 (5)0.0140 (19)0.011 (3)
C1B0.050 (3)0.233 (7)0.0560 (14)0.069 (5)0.0140 (19)0.011 (3)
C20.0342 (7)0.0719 (10)0.0316 (6)0.0132 (6)0.0086 (6)0.0049 (6)
C30.0426 (8)0.0758 (11)0.0417 (8)0.0160 (7)0.0199 (7)0.0096 (7)
C40.0465 (8)0.0653 (9)0.0314 (6)0.0103 (7)0.0180 (6)0.0115 (6)
C50.0347 (6)0.0399 (6)0.0226 (5)0.0013 (5)0.0111 (5)0.0041 (4)
C60.0304 (5)0.0314 (5)0.0214 (4)0.0003 (4)0.0118 (4)0.0018 (4)
C70.0344 (6)0.0493 (7)0.0238 (5)0.0044 (5)0.0100 (5)0.0049 (5)
C80.0300 (5)0.0332 (5)0.0188 (4)0.0004 (4)0.0098 (4)0.0001 (3)
C90.0334 (6)0.0320 (5)0.0252 (5)0.0019 (4)0.0116 (5)0.0010 (4)
C100.0575 (9)0.0393 (7)0.0350 (7)0.0069 (6)0.0017 (7)0.0016 (5)
C110.0947 (16)0.0388 (8)0.0589 (11)0.0212 (9)0.0076 (11)0.0013 (7)
C120.0909 (15)0.0358 (7)0.0598 (11)0.0108 (8)0.0046 (10)0.0117 (7)
C130.0477 (8)0.0378 (6)0.0380 (7)0.0005 (6)0.0026 (6)0.0079 (5)
C140.0328 (6)0.0327 (5)0.0294 (5)0.0003 (4)0.0095 (5)0.0018 (4)
C150.0397 (7)0.0641 (9)0.0296 (6)0.0056 (6)0.0154 (6)0.0126 (6)
C160.0686 (13)0.1103 (17)0.0559 (11)0.0371 (12)0.0245 (10)0.0197 (11)
N10.0314 (5)0.0479 (6)0.0216 (4)0.0042 (4)0.0092 (4)0.0058 (4)
N20.0559 (8)0.0492 (7)0.0434 (7)0.0002 (6)0.0016 (6)0.0162 (6)
O10.0415 (7)0.1398 (13)0.0397 (6)0.0371 (8)0.0038 (5)0.0145 (7)
O20.0397 (5)0.0583 (6)0.0221 (4)0.0068 (4)0.0085 (4)0.0098 (4)
O30.1210 (15)0.0656 (9)0.0623 (9)0.0099 (9)0.0052 (9)0.0328 (7)
O40.0698 (9)0.0699 (8)0.0517 (7)0.0233 (7)0.0179 (7)0.0195 (6)
O50.0692 (9)0.1152 (11)0.0278 (5)0.0295 (8)0.0124 (6)0.0204 (6)
Geometric parameters (Å, º) top
C1A—O11.416 (4)C9—C141.3888 (17)
C1A—H1A10.9600C9—C101.3920 (18)
C1A—H1A20.9600C10—C111.382 (2)
C1A—H1A30.9600C10—H100.9300
C1B—O11.416 (4)C11—C121.384 (3)
C1B—H1B10.9600C11—H110.9300
C1B—H1B20.9600C12—C131.373 (2)
C1B—H1B30.9600C12—H120.9300
C2—O11.3714 (18)C13—C141.3827 (18)
C2—C31.386 (2)C13—N21.4685 (19)
C2—C71.390 (2)C14—H140.9300
C3—C41.382 (2)C15—O51.2264 (18)
C3—H30.9300C15—O51.2264 (18)
C4—C51.3872 (18)C15—N11.3375 (15)
C4—H40.9300C15—C161.491 (2)
C5—O21.3623 (15)C16—H16A0.9600
C5—C61.4010 (15)C16—H16B0.9600
C6—C71.3854 (17)C16—H16C0.9600
C6—C81.5199 (16)N1—H10.8600
C7—H70.9300N2—O41.2052 (19)
C8—N11.4561 (15)N2—O31.2172 (18)
C8—C91.5149 (16)O2—H20.8200
C8—H80.9800
O1—C1A—H1A1109.5C11—C10—C9121.21 (14)
O1—C1A—H1A2109.5C11—C10—H10119.4
O1—C1A—H1A3109.5C9—C10—H10119.4
O1—C1B—H1B1109.5C10—C11—C12120.34 (15)
O1—C1B—H1B2109.5C10—C11—H11119.8
H1B1—C1B—H1B2109.5C12—C11—H11119.8
O1—C1B—H1B3109.5C13—C12—C11117.69 (14)
H1B1—C1B—H1B3109.5C13—C12—H12121.2
H1B2—C1B—H1B3109.5C11—C12—H12121.2
O1—C2—C3124.59 (13)C12—C13—C14123.38 (14)
O1—C2—C7115.97 (12)C12—C13—N2118.51 (13)
C3—C2—C7119.43 (13)C14—C13—N2118.06 (12)
C4—C3—C2119.91 (13)C13—C14—C9118.51 (12)
C4—C3—H3120.0C13—C14—H14120.7
C2—C3—H3120.0C9—C14—H14120.7
C3—C4—C5120.94 (12)O5—C15—N1120.63 (13)
C3—C4—H4119.5O5—C15—N1120.63 (13)
C5—C4—H4119.5O5—C15—C16121.81 (13)
O2—C5—C4123.24 (11)O5—C15—C16121.81 (13)
O2—C5—C6117.27 (11)N1—C15—C16117.56 (13)
C4—C5—C6119.46 (12)C15—C16—H16A109.5
C7—C6—C5119.13 (11)C15—C16—H16B109.5
C7—C6—C8119.67 (9)H16A—C16—H16B109.5
C5—C6—C8121.19 (10)C15—C16—H16C109.5
C6—C7—C2121.12 (11)H16A—C16—H16C109.5
C6—C7—H7119.4H16B—C16—H16C109.5
C2—C7—H7119.4C15—N1—C8120.75 (11)
N1—C8—C9113.16 (10)C15—N1—H1119.6
N1—C8—C6111.96 (9)C8—N1—H1119.6
C9—C8—C6112.27 (9)O4—N2—O3122.58 (15)
N1—C8—H8106.3O4—N2—C13119.06 (12)
C9—C8—H8106.3O3—N2—C13118.36 (14)
C6—C8—H8106.3C2—O1—C1B118.2 (3)
C14—C9—C10118.84 (11)C2—O1—C1A111.8 (10)
C14—C9—C8123.88 (10)C5—O2—H2109.5
C10—C9—C8117.24 (11)
O1—C2—C3—C4179.06 (19)C9—C10—C11—C121.5 (4)
C7—C2—C3—C40.4 (3)C10—C11—C12—C130.4 (4)
C2—C3—C4—C50.2 (3)C11—C12—C13—C141.3 (4)
C3—C4—C5—O2178.11 (15)C11—C12—C13—N2176.0 (2)
C3—C4—C5—C60.1 (2)C12—C13—C14—C91.9 (3)
O2—C5—C6—C7178.18 (11)N2—C13—C14—C9175.45 (14)
O2—C5—C6—C80.70 (17)C10—C9—C14—C130.8 (2)
C4—C5—C6—C8178.87 (12)C8—C9—C14—C13176.87 (13)
C5—C6—C7—C20.3 (2)O5—C15—N1—C82.4 (2)
C8—C6—C7—C2179.14 (13)O5—C15—N1—C82.4 (2)
O1—C2—C7—C6179.05 (15)C16—C15—N1—C8178.72 (17)
C3—C2—C7—C60.5 (2)C9—C8—N1—C15138.63 (13)
C7—C6—C8—N1116.41 (12)C6—C8—N1—C1593.27 (14)
C5—C6—C8—N162.46 (13)C12—C13—N2—O4173.9 (2)
C7—C6—C8—C9115.02 (12)C14—C13—N2—O48.6 (3)
C5—C6—C8—C966.11 (14)C12—C13—N2—O36.4 (3)
N1—C8—C9—C1432.10 (15)C14—C13—N2—O3171.07 (19)
C6—C8—C9—C1495.83 (14)C3—C2—O1—C1B4.8 (10)
N1—C8—C9—C10150.24 (13)C7—C2—O1—C1B175.7 (9)
C6—C8—C9—C1081.83 (14)C3—C2—O1—C1A32.3 (18)
C14—C9—C10—C110.8 (3)C7—C2—O1—C1A148.2 (18)
C8—C9—C10—C11178.63 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O5i0.821.802.617 (2)179
N1—H1···O4ii0.862.303.159 (2)174
C10—H10···O1iii0.932.473.320 (2)152
C12—H12···O2iv0.932.583.397 (2)147
C14—H14···O4ii0.932.553.470 (2)169
C8—H8···O50.982.302.714 (2)105
C11—H11···Cg1iv0.932.833.680 (2)153
C1B—H1B1···Cg2v0.962.613.531 (2)160
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+1, z; (iii) x+1, y+1, z+1; (iv) x, y1, z; (v) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H16N2O5
Mr316.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)15.3351 (3), 8.1327 (2), 14.5308 (3)
β (°) 117.387 (1)
V3)1609.10 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.32 × 0.28 × 0.25
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
23127, 6121, 3900
Rint0.032
(sin θ/λ)max1)0.770
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.196, 1.03
No. of reflections6121
No. of parameters216
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.25

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O5i0.821.802.617 (2)178.8
N1—H1···O4ii0.862.303.159 (2)173.7
C10—H10···O1iii0.932.473.320 (2)152.1
C12—H12···O2iv0.932.583.397 (2)147.1
C14—H14···O4ii0.932.553.470 (2)169.0
C8—H8···O50.982.302.714 (2)104.5
C11—H11···Cg1iv0.932.833.680 (2)153.0
C1B—H1B1···Cg2v0.962.613.531 (2)160.0
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+1, z; (iii) x+1, y+1, z+1; (iv) x, y1, z; (v) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help in collecting the X-ray intensity data. MNM and ASP thank Dr J. Jothi Kumar, Principal of the Presidency College (Autonomous), Chennai, India, for providing the computer and internet facilities.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGhosh, R., Maity, S. & Chakraborty, A. (2005). Synlett, pp. 115-118.  Web of Science CrossRef Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o3364.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNizamMohideen, M., SubbiahPandi, A., Panneer Selvam, N. & Perumal, P. T. (2009). Acta Cryst. E65, o714–o715.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds