organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

8-(Bi­phenyl-2-yl)-7,9-di­phenyl-8H-cyclo­penta­[a]ace­naphthylen-8-ol

aInstitut für Anorganische und Analytische Chemie, Technical University of Braunschweig, Postfach 3329, 38023 Braunschweig, Germany, bLabor für Elektro­optik am Institut für Hochfrequenztechnik, Technical University of Braunschweig, Postfach 3329, 38023 Braunschweig, Germany, and cInstitut für Organische Chemie, Technical University of Braunschweig, Postfach 3329, 38023 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-bs.de

(Received 25 March 2009; accepted 26 March 2009; online 31 March 2009)

In the title compound, C39H26O, the cyclo­penta­[a]acenaphthyl­ene skeleton displays the expected distortions, with formal sp2 bond angles as high as C—C—C = 142.50 (10)°. The OH group forms inter­molecular hydrogen bonds via x-axis translation to the centroid (Cg) of the pendant phenyl ring of the biphenyl system, with H⋯Cg = 2.41 Å and O—H⋯Cg = 153°.

Related literature

For related literature, see: Saragi et al. (2007[Saragi, T. P. I., Spehr, T., Siebert, A., Fuhrmann-Lieker, T. & Salbeck, J. (2007). Chem. Rev. 107, 1011-1065.]); Velusamy et al. (2007[Velusamy, M., Thomas, K. R. J., Chen, C.-H., Lin, J. T., Wen, Y. S., Hsieh, W.-T., Lai, C.-H. & Chou, P.-T. (2007). Dalton Trans. pp. 3025-3034.]).

[Scheme 1]

Experimental

Crystal data
  • C39H26O

  • Mr = 510.60

  • Monoclinic, P 21 /n

  • a = 7.3837 (4) Å

  • b = 18.4001 (12) Å

  • c = 19.2505 (12) Å

  • β = 97.549 (3)°

  • V = 2592.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 103 K

  • 0.35 × 0.20 × 0.20 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.893, Tmax = 0.985

  • 53233 measured reflections

  • 7857 independent reflections

  • 6335 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.125

  • S = 1.02

  • 7857 reflections

  • 365 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Siemens, 1994[Siemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound (I) is a derivative of 7,9-diphenyl-8H-cyclopenta[a]acenaphthylen-8-one, an interesting starting compound for optoelectronic materials (Velusamy et al., 2007). Spiro compounds with orthogonally fixed aromatic moieties are known to form stable molecular glasses, an important prerequisite of materials for optoelectronic applications (Saragi et al., 2007). We have synthesized the title compound by addition of biphenyl-2-yl lithium (III) to the ketone II with a view to generating a corresponding spiro compound, which could combine both attractive electronic properties and amorphous stability, by further cyclocondensation.

The molecule of I is shown in Fig. 1. The cyclopenta[a]acenaphthylene skeleton displays the expected distortions, with formally sp2 angles as high as C7—C6B—C6A 142.50 (10)°. The 15 atoms of this skeleton are reasonably coplanar (r.m.s.d. 0.09 Å) but a better description is of the fused cyclopentadiene (r.m.s.d. 0.030 Å) subtending an interplanar angle of 10.52 (1)° with the ten atoms of the naphthalenoid moiety plus the atoms C6B and C9A (r.m.s.d. 0.037 Å). With the phenyl rings C10–15, C16–21, C22–27 it subtends angles of 33.50 (4), 30.51 (4) and 83.89 (4)° respectively. The biphenyl interplanar angle is 76.93 (4)°.

The OH group does not form intermolecular hydrogen bonds with its counterparts in neighbouring molecules, presumably for steric reasons. Instead, the acceptor is the centroid of ring C28–33, with H01···Cent 2.41 Å, O—H01···Cent 153°, operator x - 1,y,z.

Related literature top

For related literature, see: Saragi et al. (2007); Velusamy et al. (2007).

Experimental top

2-Bromobiphenyl (900 mg, 3.86 mmol) in dry THF (10 ml) was treated with a 1.6 M solution of n-butyl lithium in n-hexane (2.81 ml, 4.50 mmol) at -80 °C. The mixture was stirred for 1 h at -80 °C and added to a suspension of 7,9-diphenyl-8H-cyclopenta[a]acenaphthylen-8-one (1.38 g, 3.86 mmol) in dry THF (25 ml). After 4 h of stirring under reflux, a saturated aqueous solution of ammonium chloride (50 ml) was added. Extraction with dichloromethane (3 × 50 ml), drying (MgSO4) and concentration afforded the crude product, which was purified by flash chromatography on silica gel (CH2Cl2/n-hexane, 1:1; Rf = 0.32). The title compound was obtained as a yellow microcrystalline solid (597 mg, 30%), mp 244 °C. Elemental analysis: calculated for C39H26O: C 91.73, H 5.13%; found: C 91.79, 5.07%. Spectroscopic analysis: 1H NMR (400 MHz, CDCl3) δ = 8.29 (dd, J = 8.1, 1.3, 1 H), 7.75 (d, J = 7.1, 2 H), 7.68–7.62 (m, 6 H), 7.48–7.39 (m, 3 H), 7.37–7.24 (m, 7 H), 6.92 (dd, J = 7.5, 1.4, 1 H), 6.83 (dd, J = 7.9, 1.5, 2 H), 6.47 (dd, J = 7.7, 7.7, 2 H), 6.27–6.21 (m, 1 H), 2.50 p.p.m. (s, 1 H, OH); 13C NMR (101 MHz, CDCl3) δ = 145.2 (s), 144.1 (s), 141.0 (s), 140.5 (s), 140.4 (s), 137.1 (s), 134.4 (s), 132.4 (s), 131.6 (s), 131.4 (d), 128.8 (d), 128.2 (d), 128.1 (d), 127.7 (d), 127.5 (d), 127.4 (d), 127.4 (d), 127.1 (d), 126.0 (d), 125.6 (d), 125.5 (d), 119.2 (d), 96.3 p.p.m. (s).

Refinement top

The hydroxyl hydrogen was identified in a difference synthesis and refined freely. Other hydrogen atoms were included using a riding model with C—H 0.95 Å; U(H) values were fixed at 1.2 × Ueq(C) of the parent C atom.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The formula unit of the title compound in the crystal. Ellipsoids represent 50% probability levels. Only the first two atoms of phenyl rings are numbered; other atoms follow in sequence.
[Figure 2] Fig. 2. Preparation of the title compound.
8-(Biphenyl-2-yl)-7,9-diphenyl-8H-cyclopenta[a]acenaphthylen-8-ol top
Crystal data top
C39H26OF(000) = 1072
Mr = 510.60Dx = 1.308 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.3837 (4) ÅCell parameters from 9892 reflections
b = 18.4001 (12) Åθ = 2.4–31.4°
c = 19.2505 (12) ŵ = 0.08 mm1
β = 97.549 (3)°T = 103 K
V = 2592.7 (3) Å3Prism, yellow
Z = 40.35 × 0.20 × 0.20 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
7857 independent reflections
Radiation source: fine-focus sealed tube6335 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ϕ and ω scansθmax = 30.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 109
Tmin = 0.893, Tmax = 0.985k = 2626
53233 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0699P)2 + 0.9032P]
where P = (Fo2 + 2Fc2)/3
7857 reflections(Δ/σ)max = 0.001
365 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C39H26OV = 2592.7 (3) Å3
Mr = 510.60Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.3837 (4) ŵ = 0.08 mm1
b = 18.4001 (12) ÅT = 103 K
c = 19.2505 (12) Å0.35 × 0.20 × 0.20 mm
β = 97.549 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
7857 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
6335 reflections with I > 2σ(I)
Tmin = 0.893, Tmax = 0.985Rint = 0.036
53233 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.46 e Å3
7857 reflectionsΔρmin = 0.22 e Å3
365 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

7.3583 (0.0005) x + 0.7119 (0.0054) y - 3.9201 (0.0047) z = 0.2623 (0.0032)

* -0.0009 (0.0010) C1 * -0.0525 (0.0012) C2 * -0.0232 (0.0012) C3 * 0.0267 (0.0012) C3A * 0.0072 (0.0012) C4 * -0.0118 (0.0011) C5 * -0.0169 (0.0010) C6 * 0.0149 (0.0009) C6A * 0.0575 (0.0010) C6A1 * -0.0612 (0.0008) C6B * 0.0602 (0.0010) C9B

Rms deviation of fitted atoms = 0.0374

7.3441 (0.0006) x - 1.4269 (0.0094) y - 1.2091 (0.0098) z = 1.2752 (0.0064)

Angle to previous plane (with approximate e.s.d.) = 10.52 (0.01)

* 0.0010 (0.0006) C6B * -0.0289 (0.0006) C9A * 0.0416 (0.0006) C9 * -0.0370 (0.0006) C8 * 0.0233 (0.0006) C7

Rms deviation of fitted atoms = 0.0299

5.9686 (0.0021) x - 10.0295 (0.0075) y + 2.1998 (0.0091) z = 1.0584 (0.0079)

Angle to previous plane (with approximate e.s.d.) = 30.51 (0.04)

* -0.0149 (0.0007) C16 * 0.0092 (0.0008) C17 * 0.0028 (0.0009) C18 * -0.0090 (0.0009) C19 * 0.0030 (0.0008) C20 * 0.0090 (0.0008) C21

Rms deviation of fitted atoms = 0.0090

===========================================================================

5.7246 (0.0022) x - 6.2243 (0.0078) y + 8.2177 (0.0079) z = 5.2956 (0.0036)

Angle to previous plane (with approximate e.s.d.) = 21.61 (0.05)

* 0.0022 (0.0007) C10 * -0.0022 (0.0008) C11 * -0.0003 (0.0008) C12 * 0.0027 (0.0008) C13 * -0.0026 (0.0008) C14 * 0.0002 (0.0008) C15

Rms deviation of fitted atoms = 0.0020

7.3441 (0.0006) x - 1.4269 (0.0094) y - 1.2091 (0.0098) z = 1.2752 (0.0064)

Angle to previous plane (with approximate e.s.d.) = 33.50 (0.04)

* 0.0010 (0.0006) C6B * -0.0289 (0.0006) C9A * 0.0416 (0.0006) C9 * -0.0370 (0.0006) C8 * 0.0233 (0.0006) C7

Rms deviation of fitted atoms = 0.0299

- 1.0281 (0.0031) x + 7.1737 (0.0070) y + 17.7236 (0.0033) z = 12.7054 (0.0026)

Angle to previous plane (with approximate e.s.d.) = 83.89 (0.04)

* -0.0019 (0.0007) C22 * 0.0011 (0.0007) C23 * 0.0018 (0.0007) C24 * -0.0038 (0.0007) C25 * 0.0030 (0.0007) C26 * -0.0001 (0.0007) C27

Rms deviation of fitted atoms = 0.0023

6.5435 (0.0016) x - 8.3888 (0.0073) y - 0.6702 (0.0088) z = 2.5647 (0.0063)

Angle to previous plane (with approximate e.s.d.) = 76.93 (0.04)

* -0.0148 (0.0007) C28 * 0.0087 (0.0007) C29 * 0.0045 (0.0008) C30 * -0.0117 (0.0008) C31 * 0.0055 (0.0008) C32 * 0.0078 (0.0008) C33

Rms deviation of fitted atoms = 0.0095

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O0.13493 (10)0.15448 (4)0.67183 (4)0.01423 (15)
H010.053 (3)0.1864 (10)0.6540 (9)0.036 (5)*
C10.24115 (17)0.31692 (6)0.44354 (6)0.0200 (2)
H10.23190.27160.41970.024*
C20.2079 (2)0.38281 (7)0.40623 (6)0.0265 (3)
H20.17410.38090.35690.032*
C30.2226 (2)0.44958 (7)0.43856 (7)0.0282 (3)
H30.20220.49260.41130.034*
C3A0.26827 (18)0.45465 (6)0.51240 (6)0.0211 (2)
C40.2812 (2)0.51906 (6)0.55328 (7)0.0267 (3)
H40.26480.56510.53090.032*
C50.31712 (18)0.51523 (6)0.62491 (7)0.0233 (2)
H50.32550.55910.65110.028*
C60.34231 (15)0.44817 (6)0.66134 (6)0.0168 (2)
H60.36550.44730.71110.020*
C6A0.33272 (14)0.38416 (5)0.62358 (5)0.01327 (19)
C6B0.33853 (14)0.30597 (5)0.63970 (5)0.01192 (18)
C6A10.29829 (15)0.38892 (6)0.54897 (5)0.0151 (2)
C70.34110 (14)0.25807 (5)0.69336 (5)0.01173 (18)
C80.31266 (13)0.18120 (5)0.66124 (5)0.01113 (18)
C90.31279 (14)0.19389 (5)0.58200 (5)0.01183 (18)
C9A0.31558 (14)0.26635 (5)0.57176 (5)0.01246 (18)
C9B0.28743 (15)0.31995 (6)0.51537 (5)0.01469 (19)
C100.31073 (14)0.13514 (6)0.53058 (5)0.01317 (19)
C110.40373 (15)0.14418 (6)0.47211 (5)0.0160 (2)
H110.46170.18920.46530.019*
C120.41254 (16)0.08846 (7)0.42400 (6)0.0201 (2)
H120.47640.09560.38480.024*
C130.32818 (17)0.02248 (7)0.43315 (6)0.0217 (2)
H130.33460.01580.40040.026*
C140.23426 (16)0.01256 (6)0.49042 (6)0.0197 (2)
H140.17550.03250.49650.024*
C150.22550 (15)0.06821 (6)0.53901 (6)0.0164 (2)
H150.16140.06070.57810.020*
C160.34884 (14)0.27215 (6)0.76866 (5)0.01294 (19)
C170.26048 (16)0.22669 (6)0.81206 (6)0.0170 (2)
H170.19960.18420.79310.020*
C180.26098 (17)0.24311 (7)0.88270 (6)0.0218 (2)
H180.19900.21210.91130.026*
C190.35097 (18)0.30421 (7)0.91169 (6)0.0230 (2)
H190.34950.31550.95980.028*
C200.44350 (16)0.34891 (6)0.86992 (6)0.0201 (2)
H200.50690.39050.88960.024*
C210.44323 (15)0.33267 (6)0.79935 (6)0.0158 (2)
H210.50820.36320.77140.019*
C220.45086 (14)0.12448 (5)0.69252 (5)0.01134 (18)
C230.64062 (14)0.13629 (5)0.69892 (5)0.01170 (18)
C240.75989 (14)0.08196 (6)0.72787 (5)0.01409 (19)
H240.88790.09010.73230.017*
C250.69485 (15)0.01641 (6)0.75031 (6)0.0156 (2)
H250.77750.02020.76940.019*
C260.50835 (15)0.00505 (6)0.74447 (6)0.0159 (2)
H260.46240.03940.76020.019*
C270.38801 (14)0.05834 (6)0.71575 (5)0.01441 (19)
H270.26020.04960.71180.017*
C280.72295 (13)0.20575 (5)0.67853 (5)0.01229 (18)
C290.74001 (14)0.22183 (6)0.60887 (6)0.0151 (2)
H290.69630.18840.57290.018*
C300.82100 (15)0.28686 (6)0.59174 (6)0.0185 (2)
H300.83140.29780.54420.022*
C310.88645 (15)0.33565 (6)0.64425 (6)0.0198 (2)
H310.93910.38040.63260.024*
C320.87449 (16)0.31872 (6)0.71380 (6)0.0190 (2)
H320.92170.35150.74980.023*
C330.79400 (15)0.25429 (6)0.73091 (6)0.0153 (2)
H330.78710.24300.77870.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O0.0097 (3)0.0152 (3)0.0180 (4)0.0002 (3)0.0025 (3)0.0021 (3)
C10.0290 (6)0.0174 (5)0.0134 (5)0.0004 (4)0.0021 (4)0.0017 (4)
C20.0419 (8)0.0229 (6)0.0145 (5)0.0025 (5)0.0021 (5)0.0054 (4)
C30.0460 (8)0.0190 (6)0.0194 (6)0.0038 (5)0.0039 (5)0.0081 (4)
C3A0.0292 (6)0.0155 (5)0.0193 (5)0.0018 (4)0.0058 (4)0.0040 (4)
C40.0419 (8)0.0121 (5)0.0268 (6)0.0029 (5)0.0073 (5)0.0039 (4)
C50.0329 (6)0.0123 (5)0.0256 (6)0.0011 (4)0.0065 (5)0.0016 (4)
C60.0192 (5)0.0139 (5)0.0178 (5)0.0007 (4)0.0042 (4)0.0016 (4)
C6A0.0133 (4)0.0114 (4)0.0154 (4)0.0001 (3)0.0030 (3)0.0003 (3)
C6B0.0118 (4)0.0114 (4)0.0127 (4)0.0008 (3)0.0023 (3)0.0009 (3)
C6A10.0172 (5)0.0129 (5)0.0154 (5)0.0003 (4)0.0032 (4)0.0016 (4)
C70.0108 (4)0.0119 (4)0.0125 (4)0.0011 (3)0.0018 (3)0.0011 (3)
C80.0107 (4)0.0112 (4)0.0117 (4)0.0001 (3)0.0022 (3)0.0000 (3)
C90.0116 (4)0.0127 (4)0.0110 (4)0.0003 (3)0.0010 (3)0.0005 (3)
C9A0.0133 (4)0.0123 (4)0.0120 (4)0.0001 (3)0.0024 (3)0.0004 (3)
C9B0.0173 (5)0.0129 (4)0.0141 (5)0.0002 (4)0.0029 (4)0.0013 (4)
C100.0134 (4)0.0131 (4)0.0122 (4)0.0014 (3)0.0013 (3)0.0015 (3)
C110.0173 (5)0.0162 (5)0.0141 (4)0.0014 (4)0.0011 (4)0.0015 (4)
C120.0226 (5)0.0234 (6)0.0139 (5)0.0043 (4)0.0015 (4)0.0040 (4)
C130.0257 (6)0.0197 (5)0.0182 (5)0.0051 (4)0.0031 (4)0.0073 (4)
C140.0222 (5)0.0138 (5)0.0215 (5)0.0002 (4)0.0036 (4)0.0039 (4)
C150.0172 (5)0.0153 (5)0.0160 (5)0.0009 (4)0.0002 (4)0.0013 (4)
C160.0130 (4)0.0132 (4)0.0127 (4)0.0033 (3)0.0020 (3)0.0003 (3)
C170.0202 (5)0.0164 (5)0.0145 (5)0.0002 (4)0.0031 (4)0.0011 (4)
C180.0265 (6)0.0255 (6)0.0146 (5)0.0008 (5)0.0067 (4)0.0016 (4)
C190.0272 (6)0.0286 (6)0.0135 (5)0.0018 (5)0.0044 (4)0.0039 (4)
C200.0215 (5)0.0213 (5)0.0169 (5)0.0004 (4)0.0007 (4)0.0058 (4)
C210.0163 (5)0.0161 (5)0.0149 (5)0.0001 (4)0.0019 (4)0.0018 (4)
C220.0127 (4)0.0109 (4)0.0106 (4)0.0008 (3)0.0019 (3)0.0006 (3)
C230.0134 (4)0.0114 (4)0.0105 (4)0.0001 (3)0.0022 (3)0.0010 (3)
C240.0129 (4)0.0148 (5)0.0144 (4)0.0010 (4)0.0011 (3)0.0010 (4)
C250.0181 (5)0.0136 (5)0.0151 (5)0.0039 (4)0.0021 (4)0.0010 (4)
C260.0195 (5)0.0112 (4)0.0178 (5)0.0007 (4)0.0051 (4)0.0020 (4)
C270.0138 (5)0.0133 (4)0.0165 (5)0.0010 (4)0.0035 (4)0.0008 (4)
C280.0096 (4)0.0118 (4)0.0157 (4)0.0008 (3)0.0021 (3)0.0008 (3)
C290.0133 (5)0.0169 (5)0.0147 (5)0.0003 (4)0.0011 (4)0.0003 (4)
C300.0160 (5)0.0204 (5)0.0197 (5)0.0007 (4)0.0038 (4)0.0054 (4)
C310.0154 (5)0.0153 (5)0.0291 (6)0.0018 (4)0.0042 (4)0.0037 (4)
C320.0172 (5)0.0149 (5)0.0249 (5)0.0022 (4)0.0025 (4)0.0035 (4)
C330.0148 (5)0.0147 (5)0.0163 (5)0.0005 (4)0.0021 (4)0.0014 (4)
Geometric parameters (Å, º) top
O—C81.4408 (12)C14—C151.3940 (15)
O—H010.879 (19)C14—H140.9500
C1—C9B1.3813 (15)C15—H150.9500
C1—C21.4140 (16)C16—C171.4024 (15)
C1—H10.9500C16—C211.4024 (15)
C2—C31.3750 (18)C17—C181.3925 (15)
C2—H20.9500C17—H170.9500
C3—C3A1.4201 (17)C18—C191.3855 (18)
C3—H30.9500C18—H180.9500
C3A—C6A11.4023 (15)C19—C201.3908 (17)
C3A—C41.4188 (17)C19—H190.9500
C4—C51.3714 (18)C20—C211.3907 (15)
C4—H40.9500C20—H200.9500
C5—C61.4194 (16)C21—H210.9500
C5—H50.9500C22—C271.3967 (14)
C6—C6A1.3810 (14)C22—C231.4073 (14)
C6—H60.9500C23—C241.3988 (14)
C6A—C6A11.4280 (14)C23—C281.4898 (14)
C6A—C6B1.4711 (14)C24—C251.3879 (15)
C6B—C71.3561 (14)C24—H240.9500
C6B—C9A1.4876 (14)C25—C261.3827 (15)
C6A1—C9B1.4219 (14)C25—H250.9500
C7—C161.4663 (14)C26—C271.3885 (14)
C7—C81.5470 (14)C26—H260.9500
C8—C221.5269 (14)C27—H270.9500
C8—C91.5433 (14)C28—C291.3950 (14)
C9—C9A1.3485 (14)C28—C331.3967 (14)
C9—C101.4644 (14)C29—C301.3964 (15)
C9A—C9B1.4611 (14)C29—H290.9500
C10—C151.4021 (15)C30—C311.3903 (17)
C10—C111.4032 (15)C30—H300.9500
C11—C121.3889 (15)C31—C321.3886 (17)
C11—H110.9500C31—H310.9500
C12—C131.3862 (18)C32—C331.3852 (15)
C12—H120.9500C32—H320.9500
C13—C141.3896 (18)C33—H330.9500
C13—H130.9500
C8—O—H01107.9 (12)C13—C14—C15120.52 (11)
C9B—C1—C2118.52 (11)C13—C14—H14119.7
C9B—C1—H1120.7C15—C14—H14119.7
C2—C1—H1120.7C14—C15—C10120.43 (10)
C3—C2—C1122.55 (11)C14—C15—H15119.8
C3—C2—H2118.7C10—C15—H15119.8
C1—C2—H2118.7C17—C16—C21117.85 (10)
C2—C3—C3A120.40 (11)C17—C16—C7121.52 (9)
C2—C3—H3119.8C21—C16—C7120.63 (9)
C3A—C3—H3119.8C18—C17—C16120.70 (10)
C6A1—C3A—C4116.57 (10)C18—C17—H17119.7
C6A1—C3A—C3116.54 (11)C16—C17—H17119.7
C4—C3A—C3126.86 (11)C19—C18—C17120.60 (11)
C5—C4—C3A120.32 (11)C19—C18—H18119.7
C5—C4—H4119.8C17—C18—H18119.7
C3A—C4—H4119.8C18—C19—C20119.54 (10)
C4—C5—C6122.47 (11)C18—C19—H19120.2
C4—C5—H5118.8C20—C19—H19120.2
C6—C5—H5118.8C21—C20—C19119.99 (11)
C6A—C6—C5119.14 (10)C21—C20—H20120.0
C6A—C6—H6120.4C19—C20—H20120.0
C5—C6—H6120.4C20—C21—C16121.26 (10)
C6—C6A—C6A1117.85 (9)C20—C21—H21119.4
C6—C6A—C6B136.45 (10)C16—C21—H21119.4
C6A1—C6A—C6B105.59 (9)C27—C22—C23118.39 (9)
C7—C6B—C6A142.50 (10)C27—C22—C8119.27 (9)
C7—C6B—C9A109.86 (9)C23—C22—C8122.35 (9)
C6A—C6B—C9A107.27 (8)C24—C23—C22119.47 (9)
C3A—C6A1—C9B123.07 (10)C24—C23—C28117.43 (9)
C3A—C6A1—C6A123.60 (10)C22—C23—C28123.06 (9)
C9B—C6A1—C6A113.25 (9)C25—C24—C23121.30 (10)
C6B—C7—C16129.27 (9)C25—C24—H24119.3
C6B—C7—C8107.59 (8)C23—C24—H24119.3
C16—C7—C8122.84 (9)C26—C25—C24119.20 (10)
O—C8—C22106.55 (8)C26—C25—H25120.4
O—C8—C9108.08 (8)C24—C25—H25120.4
C22—C8—C9113.96 (8)C25—C26—C27120.26 (10)
O—C8—C7109.50 (8)C25—C26—H26119.9
C22—C8—C7114.75 (8)C27—C26—H26119.9
C9—C8—C7103.83 (8)C26—C27—C22121.38 (10)
C9A—C9—C10129.05 (9)C26—C27—H27119.3
C9A—C9—C8107.22 (8)C22—C27—H27119.3
C10—C9—C8123.72 (9)C29—C28—C33119.05 (10)
C9—C9A—C9B140.59 (10)C29—C28—C23121.78 (9)
C9—C9A—C6B110.99 (9)C33—C28—C23119.08 (9)
C9B—C9A—C6B108.13 (9)C28—C29—C30120.29 (10)
C1—C9B—C6A1118.89 (10)C28—C29—H29119.9
C1—C9B—C9A135.14 (10)C30—C29—H29119.9
C6A1—C9B—C9A105.69 (9)C31—C30—C29120.02 (10)
C15—C10—C11118.12 (9)C31—C30—H30120.0
C15—C10—C9122.35 (9)C29—C30—H30120.0
C11—C10—C9119.47 (9)C32—C31—C30119.75 (10)
C12—C11—C10121.20 (10)C32—C31—H31120.1
C12—C11—H11119.4C30—C31—H31120.1
C10—C11—H11119.4C33—C32—C31120.32 (10)
C13—C12—C11120.04 (11)C33—C32—H32119.8
C13—C12—H12120.0C31—C32—H32119.8
C11—C12—H12120.0C32—C33—C28120.52 (10)
C12—C13—C14119.69 (10)C32—C33—H33119.7
C12—C13—H13120.2C28—C33—H33119.7
C14—C13—H13120.2
C9B—C1—C2—C31.0 (2)C6B—C9A—C9B—C6A11.46 (11)
C1—C2—C3—C3A1.6 (2)C9A—C9—C10—C15149.29 (11)
C2—C3—C3A—C6A10.6 (2)C8—C9—C10—C1530.91 (15)
C2—C3—C3A—C4177.27 (14)C9A—C9—C10—C1133.63 (16)
C6A1—C3A—C4—C51.47 (19)C8—C9—C10—C11146.17 (10)
C3—C3A—C4—C5176.43 (14)C15—C10—C11—C120.39 (16)
C3A—C4—C5—C60.2 (2)C9—C10—C11—C12176.81 (10)
C4—C5—C6—C6A0.82 (19)C10—C11—C12—C130.16 (17)
C5—C6—C6A—C6A10.26 (16)C11—C12—C13—C140.30 (17)
C5—C6—C6A—C6B175.27 (12)C12—C13—C14—C150.52 (17)
C6—C6A—C6B—C76.8 (2)C13—C14—C15—C100.29 (17)
C6A1—C6A—C6B—C7169.06 (14)C11—C10—C15—C140.17 (16)
C6—C6A—C6B—C9A178.67 (12)C9—C10—C15—C14176.95 (10)
C6A1—C6A—C6B—C9A2.78 (11)C6B—C7—C16—C17146.37 (11)
C4—C3A—C6A1—C9B179.06 (11)C8—C7—C16—C1726.63 (15)
C3—C3A—C6A1—C9B0.94 (18)C6B—C7—C16—C2132.59 (16)
C4—C3A—C6A1—C6A2.63 (18)C8—C7—C16—C21154.40 (10)
C3—C3A—C6A1—C6A175.49 (11)C21—C16—C17—C182.52 (16)
C6—C6A—C6A1—C3A2.05 (16)C7—C16—C17—C18176.48 (10)
C6B—C6A—C6A1—C3A174.75 (11)C16—C17—C18—C190.89 (18)
C6—C6A—C6A1—C9B178.79 (10)C17—C18—C19—C200.83 (19)
C6B—C6A—C6A1—C9B1.99 (12)C18—C19—C20—C210.85 (19)
C6A—C6B—C7—C163.9 (2)C19—C20—C21—C160.86 (18)
C9A—C6B—C7—C16175.60 (10)C17—C16—C21—C202.51 (16)
C6A—C6B—C7—C8169.94 (13)C7—C16—C21—C20176.49 (10)
C9A—C6B—C7—C81.76 (11)O—C8—C22—C277.52 (12)
C6B—C7—C8—O109.97 (9)C9—C8—C22—C27111.57 (10)
C16—C7—C8—O64.36 (12)C7—C8—C22—C27128.89 (10)
C6B—C7—C8—C22130.30 (9)O—C8—C22—C23172.49 (8)
C16—C7—C8—C2255.38 (12)C9—C8—C22—C2368.42 (12)
C6B—C7—C8—C95.26 (10)C7—C8—C22—C2351.12 (12)
C16—C7—C8—C9179.59 (9)C27—C22—C23—C240.19 (14)
O—C8—C9—C9A109.16 (9)C8—C22—C23—C24179.80 (9)
C22—C8—C9—C9A132.62 (9)C27—C22—C23—C28177.52 (9)
C7—C8—C9—C9A7.08 (10)C8—C22—C23—C282.49 (14)
O—C8—C9—C1071.01 (11)C22—C23—C24—C250.17 (15)
C22—C8—C9—C1047.21 (13)C28—C23—C24—C25178.01 (9)
C7—C8—C9—C10172.76 (9)C23—C24—C25—C260.63 (16)
C10—C9—C9A—C9B13.9 (2)C24—C25—C26—C270.73 (16)
C8—C9—C9A—C9B166.31 (13)C25—C26—C27—C220.38 (16)
C10—C9—C9A—C6B173.44 (10)C23—C22—C27—C260.08 (15)
C8—C9—C9A—C6B6.38 (11)C8—C22—C27—C26179.91 (9)
C7—C6B—C9A—C93.06 (12)C24—C23—C28—C29102.27 (12)
C6A—C6B—C9A—C9177.79 (9)C22—C23—C28—C2979.98 (13)
C7—C6B—C9A—C9B172.06 (9)C24—C23—C28—C3374.17 (12)
C6A—C6B—C9A—C9B2.67 (11)C22—C23—C28—C33103.59 (12)
C2—C1—C9B—C6A10.52 (17)C33—C28—C29—C302.35 (15)
C2—C1—C9B—C9A173.55 (12)C23—C28—C29—C30178.79 (10)
C3A—C6A1—C9B—C11.53 (17)C28—C29—C30—C310.54 (16)
C6A—C6A1—C9B—C1175.23 (10)C29—C30—C31—C321.38 (17)
C3A—C6A1—C9B—C9A176.42 (10)C30—C31—C32—C331.47 (17)
C6A—C6A1—C9B—C9A0.34 (12)C31—C32—C33—C280.37 (17)
C9—C9A—C9B—C10.6 (2)C29—C28—C33—C322.27 (16)
C6B—C9A—C9B—C1172.20 (12)C23—C28—C33—C32178.81 (10)
C9—C9A—C9B—C6A1174.27 (13)

Experimental details

Crystal data
Chemical formulaC39H26O
Mr510.60
Crystal system, space groupMonoclinic, P21/n
Temperature (K)103
a, b, c (Å)7.3837 (4), 18.4001 (12), 19.2505 (12)
β (°) 97.549 (3)
V3)2592.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.35 × 0.20 × 0.20
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.893, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
53233, 7857, 6335
Rint0.036
(sin θ/λ)max1)0.714
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.125, 1.02
No. of reflections7857
No. of parameters365
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.22

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Siemens, 1994).

 

Acknowledgements

The authors thank the Bundesministerium für Bildung und Forschung (BMBF 01 BD 0687) for financial support.

References

First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSaragi, T. P. I., Spehr, T., Siebert, A., Fuhrmann-Lieker, T. & Salbeck, J. (2007). Chem. Rev. 107, 1011–1065.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationVelusamy, M., Thomas, K. R. J., Chen, C.-H., Lin, J. T., Wen, Y. S., Hsieh, W.-T., Lai, C.-H. & Chou, P.-T. (2007). Dalton Trans. pp. 3025–3034.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds