organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,5-Di­amino­benzene-1,2-dicarbo­nitrile

aSchool of Chemistry & Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
*Correspondence e-mail: nizhh@sdu.edu.cn

(Received 3 March 2009; accepted 10 March 2009; online 25 March 2009)

The mol­ecular skeleton of the title mol­ecule, C8H6N4, is essentially planar [maximum deviation from the mean plane of 0.037 (2) Å]. All N atoms are involved in the formation of inter­molecular N—H⋯N hydrogen bonds. The crystal packing exhibits also dipole–dipole inter­actions between the cyano groups of neighbouring mol­ecules [C⋯C 3.473 (2) Å].

Related literature

For details of the synthesis, see: Cheeseman (1962[Cheeseman, G. W. H. (1962). J. Chem. Soc. pp. 1170-1176.]); Mitzel et al. (2003[Mitzel, F., FitzGerald, S., Beeby, A. & Faust, R. (2003). Chem. Eur. J. 9, 1233-1241.]). For applications of diamido compounds, see: Rusanova et al. (2002[Rusanova, J., Pilkington, M. & Decurtins, S. (2002). Chem. Commun. pp. 2236-2237.]); Youngblood (2006[Youngblood, W. J. (2006). J. Org. Chem. 71, 3345-3356.]). For a related crystal structure, see: Zhang & Lu (2007[Zhang, X.-M. & Lu, J.-T. (2007). Acta Cryst. E63, o3861.]).

[Scheme 1]

Experimental

Crystal data
  • C8H6N4

  • Mr = 158.17

  • Monoclinic, P 21 /c

  • a = 8.2966 (11) Å

  • b = 17.100 (2) Å

  • c = 5.5295 (7) Å

  • β = 102.256 (2)°

  • V = 766.60 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 273 K

  • 0.20 × 0.18 × 0.14 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.980, Tmax = 0.988

  • 4031 measured reflections

  • 1502 independent reflections

  • 1201 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.146

  • S = 0.95

  • 1502 reflections

  • 109 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯N3i 0.86 2.47 3.283 (2) 158
N2—H2B⋯N4ii 0.86 2.37 3.225 (2) 171
N1—H1A⋯N1iii 0.86 2.52 3.3729 (16) 169
N1—H1B⋯N4ii 0.86 2.34 3.188 (2) 171
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x-1, y, z-1; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: XP in SHELXTL.

Supporting information


Comment top

Diamido compounds have been paid much attention becuase of their wide application in the preparation of Schiff bases and other organic ligands. On the other hand, dicyano compounds have been widely used to synthesize many useful materials such as phthalocyanine dyes. Very recently, organic ligands with differernt functional groups have attracted intense interest in the design and synthesis of functional materials, among which the title compound (I) as an very interesting small organic bifunctional precursor have been synthesied and employed to design and synthesize phthalocyanine compounds (Rusanova et al., 2002; Mitzel et al., 2003; Youngblood et al., 2006). Herein, we report its crystal structure (Fig. 1).

The whole molecular structure of (I) is essentially planar with the largest deviation value of 0.037 (2) Å from the mean plane. The cyano groups bond lengths are 1.140 (2) and 1.142 (2) Å, respectively, which are similar to those in cyano-substituted organic ligands (Zhang et al., 2007).

In the crystal, the molecules are linked by four different N···H—N intermolecular hydrogen bonds (Table 2) between primary amido hydrogen atoms and amido and cyano nitrogen atoms. In additon, the crystal packing exhibits dipole-dipole interactions between the cyano groups of neighbouring molecules proved by short distance C6···C7(-x + 1, -y + 1, -z + 1) of 3.473 (2) Å (Table 1).

Related literature top

For details of the synthesis, see: Cheeseman (1962); Mitzel et al. (2003). For applications of diamido compounds, see: Rusanova et al. (2002); Youngblood et al. (2006). For a related crystal structure, see: Zhang & Lu (2007).

Experimental top

The title compound 4,5-diamido-1,2-dicyanobenzene was prepared by four steps reaction from the starting material 1,2-diamidobenzene according to the method reported in the literature (Cheeseman, 1962; Mitzel et al., 2003). A solid of 4,5-diamido-1,2-dicyanobenzene (0.5 mmol) was added to the acetone solution (8 ml). The solution was slowly evaporated to generate white block single crystals suitable for X-ray diffraction analysis. Elemental analysis [found (calculated)] for C8H6N4: C 60.63 (60.75), H 3.77 (3.82), N 35.36% (35.42%).

Refinement top

All H-atoms were geometrically positioned (C—H 0.93 Å, N—H = 0.86 Å), and refined as riding, with Uiso = 1.2Ueq (C, N).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: XP in SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of (I) with the unique atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
4,5-Diaminobenzene-1,2-dicarbonitrile top
Crystal data top
C8H6N4F(000) = 328
Mr = 158.17Dx = 1.370 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1651 reflections
a = 8.2966 (11) Åθ = 2.5–26.5°
b = 17.100 (2) ŵ = 0.09 mm1
c = 5.5295 (7) ÅT = 273 K
β = 102.256 (2)°Block, white
V = 766.60 (17) Å30.20 × 0.18 × 0.14 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1502 independent reflections
Radiation source: fine-focus sealed tube1201 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Detector resolution: 0 pixels mm-1θmax = 26.0°, θmin = 2.5°
ϕ and ω scansh = 109
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1821
Tmin = 0.980, Tmax = 0.988l = 56
4031 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.1P)2 + 0.1224P]
where P = (Fo2 + 2Fc2)/3
1502 reflections(Δ/σ)max < 0.001
109 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C8H6N4V = 766.60 (17) Å3
Mr = 158.17Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.2966 (11) ŵ = 0.09 mm1
b = 17.100 (2) ÅT = 273 K
c = 5.5295 (7) Å0.20 × 0.18 × 0.14 mm
β = 102.256 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1502 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1201 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.988Rint = 0.018
4031 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 0.95Δρmax = 0.25 e Å3
1502 reflectionsΔρmin = 0.21 e Å3
109 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.03342 (15)0.30649 (8)0.3604 (3)0.0488 (4)
H1A0.02170.27450.47540.059*
H1B0.04880.31670.24120.059*
N20.07879 (17)0.40517 (9)0.0247 (3)0.0548 (4)
H2A0.09400.43380.14570.066*
H2B0.01730.38620.02560.066*
N30.78147 (18)0.46391 (10)0.3631 (3)0.0667 (5)
N40.7218 (2)0.32364 (11)0.9135 (3)0.0736 (5)
C10.36358 (19)0.42015 (9)0.1736 (3)0.0449 (4)
H1C0.37940.45220.04480.054*
C20.20725 (18)0.38986 (9)0.1690 (3)0.0396 (4)
C30.18407 (17)0.34143 (8)0.3672 (3)0.0378 (4)
C40.31750 (18)0.32537 (8)0.5584 (3)0.0409 (4)
H4A0.30220.29370.68860.049*
C50.47413 (18)0.35546 (9)0.5606 (3)0.0411 (4)
C60.49666 (18)0.40366 (9)0.3661 (3)0.0417 (4)
C70.6563 (2)0.43676 (10)0.3652 (3)0.0492 (4)
C80.6111 (2)0.33725 (10)0.7576 (3)0.0506 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0348 (7)0.0570 (8)0.0518 (8)0.0050 (6)0.0027 (6)0.0110 (6)
N20.0419 (8)0.0688 (9)0.0497 (8)0.0017 (6)0.0008 (6)0.0155 (7)
N30.0443 (9)0.0755 (11)0.0815 (12)0.0086 (7)0.0157 (8)0.0026 (8)
N40.0496 (9)0.1007 (14)0.0603 (10)0.0000 (9)0.0112 (8)0.0071 (9)
C10.0428 (9)0.0485 (9)0.0440 (9)0.0010 (7)0.0103 (7)0.0055 (7)
C20.0370 (8)0.0410 (8)0.0394 (8)0.0035 (6)0.0048 (6)0.0004 (6)
C30.0342 (7)0.0375 (7)0.0415 (8)0.0009 (5)0.0072 (6)0.0031 (6)
C40.0394 (9)0.0446 (8)0.0376 (8)0.0009 (6)0.0054 (6)0.0035 (6)
C50.0366 (8)0.0448 (8)0.0394 (8)0.0008 (6)0.0028 (6)0.0033 (6)
C60.0349 (8)0.0463 (8)0.0437 (8)0.0010 (6)0.0080 (6)0.0030 (6)
C70.0425 (9)0.0529 (9)0.0527 (10)0.0008 (7)0.0113 (7)0.0011 (7)
C80.0399 (9)0.0610 (10)0.0480 (9)0.0040 (7)0.0028 (7)0.0008 (7)
Geometric parameters (Å, º) top
N1—C31.3787 (19)C1—C21.392 (2)
N1—H1A0.8600C1—H1C0.9300
N1—H1B0.8600C2—C31.419 (2)
N2—C21.366 (2)C3—C41.387 (2)
N2—H2A0.8600C4—C51.395 (2)
N2—H2B0.8600C4—H4A0.9300
N3—C71.140 (2)C5—C61.399 (2)
N4—C81.142 (2)C5—C81.432 (2)
C1—C61.390 (2)C6—C71.441 (2)
C6···C7i3.473 (2)
C3—N1—H1A120.0N1—C3—C2120.18 (13)
C3—N1—H1B120.0C4—C3—C2119.18 (13)
H1A—N1—H1B120.0C3—C4—C5121.64 (14)
C2—N2—H2A120.0C3—C4—H4A119.2
C2—N2—H2B120.0C5—C4—H4A119.2
H2A—N2—H2B120.0C4—C5—C6119.15 (13)
C6—C1—C2121.61 (14)C4—C5—C8120.90 (14)
C6—C1—H1C119.2C6—C5—C8119.95 (13)
C2—C1—H1C119.2C1—C6—C5119.61 (13)
N2—C2—C1120.78 (14)C1—C6—C7119.94 (14)
N2—C2—C3120.42 (14)C5—C6—C7120.45 (14)
C1—C2—C3118.80 (14)N3—C7—C6179.01 (18)
N1—C3—C4120.48 (14)N4—C8—C5178.92 (19)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N3ii0.862.473.283 (2)158
N2—H2B···N4iii0.862.373.225 (2)171
N1—H1A···N1iv0.862.523.3729 (16)169
N1—H1B···N4iii0.862.343.188 (2)171
Symmetry codes: (ii) x+1, y+1, z; (iii) x1, y, z1; (iv) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC8H6N4
Mr158.17
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)8.2966 (11), 17.100 (2), 5.5295 (7)
β (°) 102.256 (2)
V3)766.60 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.18 × 0.14
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.980, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
4031, 1502, 1201
Rint0.018
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.146, 0.95
No. of reflections1502
No. of parameters109
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.21

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N3i0.862.473.283 (2)158.1
N2—H2B···N4ii0.862.373.225 (2)171.0
N1—H1A···N1iii0.862.523.3729 (16)169.3
N1—H1B···N4ii0.862.343.188 (2)171.2
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y, z1; (iii) x, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the Postdoctoral Scientific Special Foundation of China (grant No. 200801414) and the Postdoctoral Scientific Foundation of Shandong Province (grant No. 200701010).

References

First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheeseman, G. W. H. (1962). J. Chem. Soc. pp. 1170–1176.  CrossRef Web of Science Google Scholar
First citationMitzel, F., FitzGerald, S., Beeby, A. & Faust, R. (2003). Chem. Eur. J. 9, 1233–1241.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRusanova, J., Pilkington, M. & Decurtins, S. (2002). Chem. Commun. pp. 2236–2237.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYoungblood, W. J. (2006). J. Org. Chem. 71, 3345–3356.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhang, X.-M. & Lu, J.-T. (2007). Acta Cryst. E63, o3861.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds