organic compounds
1-[2-(2,4-Dichlorophenyl)pentyl]-1H-1,2,4-triazole
aDipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Universitá degli Studi di Parma, Viale G. P. Usberti 17/A, I-43100 Parma, Italy, bFakulteti i Shkencave të Natyrës, Departamenti i Kimise, Universiteti i Tiranes, Bulevardi "Zogu I", Tirana, Albania, and cDipartimento ISAC, Universitá Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona, Italy
*Correspondence e-mail: corrado.rizzoli@unipr.it
The title compound, C13H15Cl2N3, also known as penconazole, crystallizes as a racemate. The dihedral angle between the benzene and triazole rings is 24.96 (13)°. In the molecules are linked into chains running parallel to the c axis by intermolecular C—H⋯N hydrogen-bonding interactions.
Related literature
For the synthesis and toxicity of the title compound, see: Maier et al. (1987); Worthing (1987); Tao et al. (2003). For the of a related compound, see: Peeters et al. (1993).
Experimental
Crystal data
|
Data collection
Refinement
|
Data collection: AED (Belletti et al., 1993); cell AED; data reduction: AED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and SCHAKAL (Keller, 1997); software used to prepare material for publication: SHELXL97 and PARST95 (Nardelli, 1995).
Supporting information
10.1107/S1600536809007120/hg2483sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809007120/hg2483Isup2.hkl
The title compound was prepared according to the literature reports (Tao et al., 2003). This method afforded compounds I and II in a 93:3 ratio. The two compounds were separated by ν, cm-1: 3060, 1597, 1448, 760, 746, 700. 1H-NMR, δ in CDCL3: 0.87 (t, 3H, –CH2CH3), 1.23 (sextet, 2H, -CH2CH3), 2.6–2.8 (m,2H, –CHCH2CH2CH3), 3.78 (1H, quintet, –CH2CHCH2-), 4.34 (d, -CH2CH<), 7.23 (1H, speudo-q, H-5, J=8.3 Hz, J=2.2 Hz), 7.38 (1H, d, H-3, J=2.2 Hz), 7.71 (s, 1H, triazolyl-H-3), 7.89 (s,1H, triazolyl-H-5). MS, Calcd for C13H15Cl2N3, 284.2; Found. M (%): 250 (12.72), 248 (36.93), 161 (63.69), 159 (100); no molecular ion peak was observed; the highest peaks are those corresponding to the loss of a chlorine atom. The 1H-NMR spectrum of compound II shows a singlet at δ = 7.89 corresponding to the two equivalent H atoms of the 1,3,4-triazol-1-yl ring, the other part of the spectrum is strictly similar to that of compound I. Melting points were determined by an electrochemical apparatus and were uncorrected. 1H-NMR spectra were recorded on a Varian Gemini 200 MHz. IR spectra were recorded in the solid state with a Perkin-Elmer MGX1 spectrophotometer equipped with Spectra Tech. Mass spectra were recorded with a Carlo Erba QMD 1000 in positive EI mode.
on SiO2 column eluting with cyclohexane/ethyl acetate (9:1 v/v). Crystals of the title compound suitable for X-ray analysis were obtained on slow evaporation of an n-pentane solution (m. p. 60–61°C). IR data,All H atoms were positioned geometrically with C—H = 0.93–0.98 Å, and refined using a riding model approximation with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms.
Data collection: AED (Belletti et al., 1993); cell
AED (Belletti et al., 1993); data reduction: AED (Belletti et al., 1993); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and SCHAKAL (Keller, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PARST95 (Nardelli, 1995).C13H15Cl2N3 | F(000) = 1184 |
Mr = 284.18 | Dx = 1.296 Mg m−3 |
Monoclinic, C2/c | Cu Kα radiation, λ = 1.54178 Å |
Hall symbol: -C 2yc | Cell parameters from 48 reflections |
a = 25.083 (8) Å | θ = 18.4–42.5° |
b = 10.763 (2) Å | µ = 3.89 mm−1 |
c = 11.206 (3) Å | T = 297 K |
β = 105.654 (3)° | Block, colourless |
V = 2913.1 (13) Å3 | 0.23 × 0.20 × 0.16 mm |
Z = 8 |
Siemens AED diffractometer | 1183 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.060 |
Graphite monochromator | θmax = 67.9°, θmin = 3.7° |
θ/2θ scans | h = −29→28 |
Absorption correction: empirical (using intensity measurements) (DIFABS; Walker & Stuart, 1983) | k = −2→12 |
Tmin = 0.432, Tmax = 0.538 | l = −5→13 |
2737 measured reflections | 3 standard reflections every 100 reflections |
2611 independent reflections | intensity decay: 0.01% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.056 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.127 | H-atom parameters constrained |
S = 0.99 | w = 1/[σ2(Fo2) + (0.0456P)2] where P = (Fo2 + 2Fc2)/3 |
2611 reflections | (Δ/σ)max < 0.001 |
163 parameters | Δρmax = 0.34 e Å−3 |
0 restraints | Δρmin = −0.27 e Å−3 |
C13H15Cl2N3 | V = 2913.1 (13) Å3 |
Mr = 284.18 | Z = 8 |
Monoclinic, C2/c | Cu Kα radiation |
a = 25.083 (8) Å | µ = 3.89 mm−1 |
b = 10.763 (2) Å | T = 297 K |
c = 11.206 (3) Å | 0.23 × 0.20 × 0.16 mm |
β = 105.654 (3)° |
Siemens AED diffractometer | 1183 reflections with I > 2σ(I) |
Absorption correction: empirical (using intensity measurements) (DIFABS; Walker & Stuart, 1983) | Rint = 0.060 |
Tmin = 0.432, Tmax = 0.538 | 3 standard reflections every 100 reflections |
2737 measured reflections | intensity decay: 0.01% |
2611 independent reflections |
R[F2 > 2σ(F2)] = 0.056 | 0 restraints |
wR(F2) = 0.127 | H-atom parameters constrained |
S = 0.99 | Δρmax = 0.34 e Å−3 |
2611 reflections | Δρmin = −0.27 e Å−3 |
163 parameters |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.08070 (6) | 0.51687 (9) | 0.93474 (12) | 0.1422 (6) | |
Cl2 | 0.08744 (5) | 0.18168 (11) | 1.28987 (10) | 0.1305 (5) | |
N1 | 0.22774 (10) | 0.3780 (2) | 0.7443 (2) | 0.0595 (7) | |
N2 | 0.24356 (12) | 0.3032 (2) | 0.6633 (2) | 0.0757 (8) | |
N3 | 0.25582 (12) | 0.5043 (2) | 0.6210 (3) | 0.0815 (9) | |
C1 | 0.25951 (15) | 0.3839 (3) | 0.5932 (3) | 0.0808 (10) | |
H1 | 0.2728 | 0.3591 | 0.5270 | 0.097* | |
C2 | 0.23549 (13) | 0.4960 (3) | 0.7196 (3) | 0.0714 (9) | |
H2 | 0.2279 | 0.5634 | 0.7644 | 0.086* | |
C3 | 0.20829 (13) | 0.3285 (3) | 0.8460 (3) | 0.0638 (8) | |
H3A | 0.2230 | 0.3790 | 0.9192 | 0.077* | |
H3B | 0.2226 | 0.2449 | 0.8646 | 0.077* | |
C4 | 0.14554 (13) | 0.3253 (3) | 0.8180 (3) | 0.0666 (8) | |
H4 | 0.1313 | 0.4086 | 0.7921 | 0.080* | |
C5 | 0.13060 (12) | 0.2927 (3) | 0.9380 (3) | 0.0648 (8) | |
C6 | 0.10164 (15) | 0.3713 (3) | 0.9946 (3) | 0.0807 (10) | |
C7 | 0.08852 (16) | 0.3387 (3) | 1.1047 (4) | 0.0927 (11) | |
H7 | 0.0695 | 0.3937 | 1.1424 | 0.111* | |
C8 | 0.10441 (15) | 0.2235 (4) | 1.1558 (3) | 0.0790 (10) | |
C9 | 0.13257 (14) | 0.1450 (3) | 1.1013 (3) | 0.0787 (10) | |
H9 | 0.1435 | 0.0680 | 1.1372 | 0.094* | |
C10 | 0.14543 (13) | 0.1774 (3) | 0.9930 (3) | 0.0724 (9) | |
H10 | 0.1643 | 0.1211 | 0.9562 | 0.087* | |
C11 | 0.11930 (14) | 0.2323 (3) | 0.7113 (3) | 0.0830 (10) | |
H11A | 0.1315 | 0.2537 | 0.6389 | 0.100* | |
H11B | 0.1326 | 0.1492 | 0.7368 | 0.100* | |
C12 | 0.05814 (16) | 0.2321 (4) | 0.6773 (3) | 0.1057 (13) | |
H12A | 0.0450 | 0.3152 | 0.6514 | 0.127* | |
H12B | 0.0460 | 0.2115 | 0.7501 | 0.127* | |
C13 | 0.03234 (16) | 0.1433 (4) | 0.5764 (4) | 0.1191 (15) | |
H131 | −0.0072 | 0.1482 | 0.5589 | 0.179* | |
H132 | 0.0442 | 0.0604 | 0.6020 | 0.179* | |
H133 | 0.0434 | 0.1640 | 0.5032 | 0.179* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.2339 (15) | 0.0687 (6) | 0.1461 (10) | 0.0447 (8) | 0.0895 (10) | 0.0118 (7) |
Cl2 | 0.1620 (11) | 0.1516 (11) | 0.0905 (7) | −0.0169 (8) | 0.0558 (7) | 0.0066 (7) |
N1 | 0.0728 (18) | 0.0384 (12) | 0.0602 (15) | −0.0030 (12) | 0.0061 (13) | −0.0050 (12) |
N2 | 0.103 (2) | 0.0486 (14) | 0.0760 (18) | −0.0110 (15) | 0.0248 (16) | −0.0087 (14) |
N3 | 0.101 (2) | 0.0588 (17) | 0.081 (2) | −0.0131 (15) | 0.0183 (18) | 0.0088 (15) |
C1 | 0.111 (3) | 0.0566 (19) | 0.075 (2) | −0.016 (2) | 0.026 (2) | −0.0020 (18) |
C2 | 0.084 (3) | 0.0447 (17) | 0.079 (2) | −0.0054 (16) | 0.0105 (19) | −0.0048 (17) |
C3 | 0.076 (2) | 0.0485 (16) | 0.0612 (19) | −0.0073 (15) | 0.0083 (16) | 0.0029 (15) |
C4 | 0.072 (2) | 0.0545 (18) | 0.067 (2) | 0.0001 (16) | 0.0072 (17) | 0.0065 (16) |
C5 | 0.064 (2) | 0.0564 (18) | 0.066 (2) | −0.0038 (16) | 0.0049 (16) | −0.0013 (16) |
C6 | 0.105 (3) | 0.057 (2) | 0.082 (2) | −0.003 (2) | 0.027 (2) | −0.0030 (19) |
C7 | 0.109 (3) | 0.079 (3) | 0.094 (3) | −0.006 (2) | 0.035 (2) | −0.019 (2) |
C8 | 0.086 (3) | 0.089 (3) | 0.064 (2) | −0.015 (2) | 0.0244 (19) | 0.002 (2) |
C9 | 0.079 (2) | 0.074 (2) | 0.079 (2) | −0.0020 (19) | 0.014 (2) | 0.019 (2) |
C10 | 0.073 (2) | 0.066 (2) | 0.076 (2) | 0.0035 (17) | 0.0154 (18) | 0.0082 (18) |
C11 | 0.084 (3) | 0.094 (3) | 0.060 (2) | −0.011 (2) | 0.0009 (18) | −0.0074 (19) |
C12 | 0.096 (3) | 0.121 (3) | 0.091 (3) | −0.026 (3) | 0.011 (2) | −0.011 (3) |
C13 | 0.095 (3) | 0.140 (4) | 0.100 (3) | −0.016 (3) | −0.013 (2) | −0.030 (3) |
Cl1—C6 | 1.729 (3) | C5—C10 | 1.391 (4) |
Cl2—C8 | 1.728 (3) | C6—C7 | 1.404 (5) |
N1—C2 | 1.326 (3) | C7—C8 | 1.379 (4) |
N1—N2 | 1.351 (3) | C7—H7 | 0.9300 |
N1—C3 | 1.457 (3) | C8—C9 | 1.348 (4) |
N2—C1 | 1.304 (4) | C9—C10 | 1.382 (4) |
N3—C2 | 1.339 (4) | C9—H9 | 0.9300 |
N3—C1 | 1.342 (4) | C10—H10 | 0.9300 |
C1—H1 | 0.9300 | C11—C12 | 1.478 (4) |
C2—H2 | 0.9300 | C11—H11A | 0.9700 |
C3—C4 | 1.520 (4) | C11—H11B | 0.9700 |
C3—H3A | 0.9700 | C12—C13 | 1.488 (5) |
C3—H3B | 0.9700 | C12—H12A | 0.9700 |
C4—C5 | 1.530 (4) | C12—H12B | 0.9700 |
C4—C11 | 1.562 (4) | C13—H131 | 0.9600 |
C4—H4 | 0.9800 | C13—H132 | 0.9600 |
C5—C6 | 1.377 (4) | C13—H133 | 0.9600 |
C2—N1—N2 | 110.2 (3) | C8—C7—H7 | 120.7 |
C2—N1—C3 | 127.8 (3) | C6—C7—H7 | 120.7 |
N2—N1—C3 | 122.0 (2) | C9—C8—C7 | 120.2 (3) |
C1—N2—N1 | 101.6 (2) | C9—C8—Cl2 | 120.9 (3) |
C2—N3—C1 | 101.1 (3) | C7—C8—Cl2 | 118.9 (3) |
N2—C1—N3 | 116.8 (3) | C8—C9—C10 | 121.0 (3) |
N2—C1—H1 | 121.6 | C8—C9—H9 | 119.5 |
N3—C1—H1 | 121.6 | C10—C9—H9 | 119.5 |
N1—C2—N3 | 110.2 (3) | C9—C10—C5 | 121.1 (3) |
N1—C2—H2 | 124.9 | C9—C10—H10 | 119.5 |
N3—C2—H2 | 124.9 | C5—C10—H10 | 119.5 |
N1—C3—C4 | 113.2 (2) | C12—C11—C4 | 113.1 (3) |
N1—C3—H3A | 108.9 | C12—C11—H11A | 109.0 |
C4—C3—H3A | 108.9 | C4—C11—H11A | 109.0 |
N1—C3—H3B | 108.9 | C12—C11—H11B | 109.0 |
C4—C3—H3B | 108.9 | C4—C11—H11B | 109.0 |
H3A—C3—H3B | 107.8 | H11A—C11—H11B | 107.8 |
C3—C4—C5 | 108.0 (2) | C11—C12—C13 | 113.9 (3) |
C3—C4—C11 | 111.8 (3) | C11—C12—H12A | 108.8 |
C5—C4—C11 | 111.9 (2) | C13—C12—H12A | 108.8 |
C3—C4—H4 | 108.3 | C11—C12—H12B | 108.8 |
C5—C4—H4 | 108.3 | C13—C12—H12B | 108.8 |
C11—C4—H4 | 108.3 | H12A—C12—H12B | 107.7 |
C6—C5—C10 | 117.1 (3) | C12—C13—H131 | 109.5 |
C6—C5—C4 | 123.3 (3) | C12—C13—H132 | 109.5 |
C10—C5—C4 | 119.6 (3) | H131—C13—H132 | 109.5 |
C5—C6—C7 | 122.0 (3) | C12—C13—H133 | 109.5 |
C5—C6—Cl1 | 121.4 (3) | H131—C13—H133 | 109.5 |
C7—C6—Cl1 | 116.7 (3) | H132—C13—H133 | 109.5 |
C8—C7—C6 | 118.7 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3A···N3i | 0.97 | 2.52 | 3.489 (4) | 174 |
Symmetry code: (i) x, −y+1, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C13H15Cl2N3 |
Mr | 284.18 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 297 |
a, b, c (Å) | 25.083 (8), 10.763 (2), 11.206 (3) |
β (°) | 105.654 (3) |
V (Å3) | 2913.1 (13) |
Z | 8 |
Radiation type | Cu Kα |
µ (mm−1) | 3.89 |
Crystal size (mm) | 0.23 × 0.20 × 0.16 |
Data collection | |
Diffractometer | Siemens AED diffractometer |
Absorption correction | Empirical (using intensity measurements) (DIFABS; Walker & Stuart, 1983) |
Tmin, Tmax | 0.432, 0.538 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2737, 2611, 1183 |
Rint | 0.060 |
(sin θ/λ)max (Å−1) | 0.601 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.056, 0.127, 0.99 |
No. of reflections | 2611 |
No. of parameters | 163 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.34, −0.27 |
Computer programs: AED (Belletti et al., 1993), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and SCHAKAL (Keller, 1997), SHELXL97 (Sheldrick, 2008) and PARST95 (Nardelli, 1995).
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3A···N3i | 0.97 | 2.52 | 3.489 (4) | 174 |
Symmetry code: (i) x, −y+1, z+1/2. |
Acknowledgements
Financial support from the Universitá Politecnica delle Marche and the Universitá degli Studi di Parma is gratefully acknowledged.
References
Belletti, D., Cantoni, A. & Pasquinelli, G. (1993). AED. Internal Report 1/93. Centro di Studio per la Strutturistica Diffrattometrica del CNR, Parma, Italy. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Keller, E. (1997). SCHAKAL97. University of Freiburg, Germany. Google Scholar
Maier, L., Kunz, W. & Rist, G. (1987). Phosphorus Sulfur Silicon, 33, 41–52. CrossRef CAS Web of Science Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Peeters, O. M., Schuerman, G. S., Blaton, N. M. & De Ranter, C. J. (1993). Acta Cryst. C49, 1958–1961. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tao, C., Yang, F. & Chen, N. (2003). CN Patent No. 1451646. Google Scholar
Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158–166. CrossRef CAS Web of Science IUCr Journals Google Scholar
Worthing, C. R. (1987). The Pesticide Manual, a World Compendium, 8th ed. Farnham, Surrey, England: British Crop Protection Council. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The synthesis of the title compound, I, commonly known as penconazole, was described years ago (Maier et al., 1987). Due to its ability to inhibit the development of fungi by interfering with sterol biosynthesis of their cell membranes, this product was introduced as an agriculture systemic fungicide affecting cucurbits, grapes, pome fruits and vegetables. The advantages of this compound is its low toxicity: acute oral dose (LD50) of 2125 mg/kg for rats (Worthing, 1987). More recently, penconazole was prepared by condensation of 2-(2,4-dichlorophenyl)-1-pentanole with 1,2,4-triazole (Tao et al., 2003), but this method also leads to the formation of 1-(1H-1,3,4-triazol-1-yl)-2-(2,4-dichlorophenyl)-pentane (II) as a by-product. In repeating this reaction, our purpose was the determination of the crystal structure of the desired compound I and the evaluation of the percentage of the by-product II.
The title compound (Fig. 1) crystallizes as a racemate. The triazole ring is substantially planar (maximum deviation from planarity 0.006 (3) Å for atom C2) and forms a dihedral angle of 24.96 (13)° with the benzene ring. The N—N (1.351 (3) Å) and C—N (mean value 1.328 (4) Å) bond lengths within the triazole ring are comparable with those observed in 6-[(4-chlorophenyl)(1H-1,2,4-triazol-1-yl)methyl]-1-methyl-1H-benzotriazole (vorozole; Peeters et al., 1993) and suggest electron delocalization over the ring. In the crystal structure, an intermolecular C—H···N hydrogen bonding interaction (Table 1) link the molecules into chains running parallel to the c axis (Fig. 2).