metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages m462-m463

Di-μ-iodido-bis­­{[di­cyclo­hexyl(phen­yl)phosphine-κP](pyridine-κN)silver(I)}

aDepartment of Chemistry, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg 2006, South Africa
*Correspondence e-mail: rmeijboom@uj.ac.za

(Received 23 March 2009; accepted 25 March 2009; online 31 March 2009)

The title compound, [Ag2I2(C5H5N)2(C18H27P)2], contains centrosymmetric dinuclear species in which each Ag atom is surrounded by a phosphine ligand, a weakly coordinating pyridine ligand and two iodide anions in a distorted tetra­hedral coordination. The two iodide anions bridge the Ag atoms, which are separated by a distance of 3.1008 (6) Å. The Ag—P distance is 2.4436 (8) Å, Ag—N is 2.386 (3)Å and the Ag—I distances are 2.8186 (4) and 2.9449 (5) Å.

Related literature

For a review of the chemistry of silver(I) complexes, see: Meijboom et al. (2009[Meijboom, R., Bowen, R. J. & Berners-Price, S. J. (2009). Coord. Chem. Rev. 253, 325-342.]). For the coordination chemistry of AgX salts (X = F, Cl, Br, I, BF4, PF6, NO3 etc) with group 15 donor ligands, with the main focus on tertiary phosphines and in their context as potential anti­tumor agents, see: Berners-Price et al. (1998[Berners-Price, S. J., Bowen, R. J., Harvey, P. J., Healy, P. C. & Koutsantonis, G. A. (1998). J. Chem. Soc. Dalton Trans. pp. 1743-1750.]); Liu et al. (2008[Liu, J. J., Galetis, P., Farr, A., Maharaj, L., Samarasinha, H., McGechan, A. C., Baguley, B. C., Bowen, R. J., Berners-Price, S. J. & McKeage, M. J. (2008). J. Inorg. Biochem. 102, 303-310.]). For tertiary phosphine silver(I) complexes of mixed-base species, see: Engelhardt et al. (1989[Engelhardt, L. M., Healy, P. C., Kildea, J. D. & White, A. H. (1989). Aust. J. Chem. 42, 907-912.]); Gotsis et al. (1989[Gotsis, S., Engelhardt, L. M., Healy, P. C., Kildea, J. D. & White, A. H. (1989). Aust. J. Chem. 42, 923-931.]); Meijboom & Muller (2006[Meijboom, R. & Muller, A. (2006). Acta Cryst. E62, m3191-m3193.]). The unsymmetrical core (Ag—I—Ag′—I′) may be attributed to the partial separation of dimer into monomer of such complexes, see: Bowmaker et al. (1996[Bowmaker, G. A., Effendy, Harvey, P. J., Healy, P. C., Skelton, B. W. & White, A. H. (1996). J. Chem. Soc. Dalton Trans. pp. 2459-2465.]); Meijboom & Muller (2006[Meijboom, R. & Muller, A. (2006). Acta Cryst. E62, m3191-m3193.]). For the solution behaviour of [LnAgX] complexes, see: Muetterties & Alegranti (1972[Muetterties, E. L. & Alegranti, C. W. (1972). J. Am. Chem. Soc. 94, 6386-6391.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag2I2(C5H5N)2(C18H27P)2]

  • Mr = 1176.47

  • Triclinic, [P \overline 1]

  • a = 9.5970 (12) Å

  • b = 9.9816 (13) Å

  • c = 14.1437 (18) Å

  • α = 90.484 (3)°

  • β = 102.404 (2)°

  • γ = 112.704 (2)°

  • V = 1214.4 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 2.18 mm−1

  • T = 293 K

  • 0.3 × 0.22 × 0.09 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SMART, SADABS and SAINT. Bruker AXS Inc., Mdison, Wisconsin, USA.]) Tmin = 0.562, Tmax = 0.828

  • 7951 measured reflections

  • 5723 independent reflections

  • 4310 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.073

  • S = 1.02

  • 5723 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.81 e Å−3

Table 1
Comparison of geometric parameters (Å, °) for selected [XAg(py)(P3)2] (X = Cl, Br or I) entities

X Ag—X Ag—X Ag⋯Ag Ag—N Ag—P X—Ag—X Ag—I—Ag
Ia 2.8186 (4) 2.9449 (5) 3.1008 (6) 2.386 (3) 2.4436 (8) 114.947 (10) 65.053 (10)
Ib 2.8402 (12) 2.8644 (8) 3.1130 (18) 2.392 (3) 2.4489 (12) 113.84 (4) 66.16 (4)
Ic 2.814 2.875 3.343 2.422 2.440 108.02 71.98
Brc 2.701 2.733 3.499 2.391 2.415 99.85 80.15
Clc 2.614 2.618 3.507 2.402 2.400 95.82 84.18
Notes: (a) This work; (b) Meijboom & Muller (2006[Meijboom, R. & Muller, A. (2006). Acta Cryst. E62, m3191-m3193.]); (c) Gotsis et al. (1989[Gotsis, S., Engelhardt, L. M., Healy, P. C., Kildea, J. D. & White, A. H. (1989). Aust. J. Chem. 42, 923-931.]), extracted from the Cambridge Structural Database (Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]), CSD CODES are VEFRUT for X = I, VEFRON for X = Br and VEFRIH for X = Cl.

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART, SADABS and SAINT. Bruker AXS Inc., Mdison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART, SADABS and SAINT. Bruker AXS Inc., Mdison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The chemistry of silver(I) complexes has been reviewed recently with regards to the coordination chemistry, the design of coordination networks and polymers containing nitrogen-donor ligands and to the chemistry of silver scorpionates and carboxylates (Meijboom et al., 2009). Our interest has been on the coordination chemistry of AgX salts (X- = F-, Cl-, Br-, I-, BF4-, PF6-, NO3- etc.) with Group 15 donor ligands with the main focus on tertiary phosphines and in their context as potential antitumor agents (Berners-Price et al., 1998; Liu et al., 2008).

Tertiary phosphine silver(I) complexes of mixed-base species have been reported but are not very common (Meijboom et al., 2009). Examples of these complexes include [XAg(py)(PPh3)2] (X = Cl or Br) (Engelhardt et al., 1989), [XAg(py)PPh3]2.C5H5N (X = Cl, Br or I) (Gotsis et al., 1989) and [IAg(py)(P-p-tol-Ph3)]2 (Meijboom & Muller, 2006). The preparation of [IAg(py)(Pcy2Ph)]2 (I) is similar to those reported and involves heating together stoichiometric mixtures of silver(I)iodide and dicyclohexylphenylphosphine in pyridine solution.

As pointed out earlier by Meijboom & Muller (2006), the resulting complex comprises of a 1:1:1 µ,µ'-diiodo-bridged dimer. The Ag atoms of this centrosymmetric title compound are coordinated to a phosphine ligand, a pyridine ligand and two iodide anions in a distorted tetrahedral manner. The bond angles around the Ag atoms are listed in Table 1. The Ag—P, Ag—N and Ag—I bond distances are typical of similar complexes. However the difference in the Ag—I and Ag—I' bond distances [2.8186 (4) and 2.9449 (5) Å] which results in an unsymmetrical core (Ag—I—Ag'-I') of the complex has been attributed to the partial separation of dimer into monomer of such complexes (Bowmaker et al., 1996; Meijboom & Muller, 2006).

In comparison (see Table 2), the same Ag—X bond distance seems larger in (I) as compared to those in [XAg(py)(PPh3)]2.C5H5N (X = Cl, Br or I) (Gotsis et al., 1989) and [IAg(py)(P-(p-tol)3)]2 (Meijboom and Muller, 2006) which are only slightly different. The bond angles in the core (Ag—X—Ag' and X—Ag—X') are similar in (I), [IAg(py)(P-(p-tol)3)]2 and [XAg(py)(PPh3)]2.C5H5N (X = I). In these structures the Ag—X—Ag' is much smaller than X—Ag—X'. The situation is slightly different for [XAg(py)(PPh3)]2.C5H5N (X = Cl or Br) in which the two angles are closer to 90°. Similarly the Ag···Ag bond distances are shorter in (I) and [IAg(py)(P-(p-tol)3)]2 but increases in [XAg(py)(PPh3)]2.C5H5N (X = Cl, Br or I). Ag—P and Ag—N bond distances are comparable in all five structures listed in Table 2.

Despite the number of structural reports of [LnAgX] complexes, their solution behaviour, initiated by Muetterties & Alegranti (1972), has always shown that the coordinating ligands were labile in all complexes studied. Rapid ligand-exchange reactions have been reported for all 31P NMR spectroscopic investigations of ionic AgI monodentate phosphine complexes, thus making NMR spectroscopy of limited use for these types of complexes.

Related literature top

For a review of the chemistry of silver(I) complexes, see: Meijboom et al. (2009). For the coordination chemistry of AgX salts (X- = F-, Cl-, Br-, I-, BF4-, PF6-, NO3- etc) with group 15 donor ligands, with the main focus on tertiary phosphines and in their context as potential antitumor agents, see: Berners-Price et al. (1998); Liu et al. (2008). For tertiary phosphine silver(I) complexes of mixed-base species, see: Engelhardt et al. (1989); Gotsis et al. (1989); Meijboom & Muller (2006). The unsymmetrical core (Ag—I—Ag'—I') may be attributed to the partial separation of dimer into monomer of such complexes, see: Bowmaker et al. (1996); Meijboom & Muller (2006). For the solution behaviour of [LnAgX] complexes, see: Muetterties & Alegranti (1972).

Experimental top

Silver iodide (0.130 g, 0.43 mmol) and dicyclohexylphenylphosphine (1.009 g, 0.86 mmol) were suspended in pyridine (5 ml). The mixture was heated to give a clear solution. Colourless crystals of the title compound suitable for X-ray crystallography were obtained by slow evaporation.

Refinement top

All hydrogen atoms were positioned geometrically, with C—H = 0.97 Å, and allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids. H atoms have been omitted for clarity. For the C atoms, the first digit indicates the ring number and the second digit indicates the position of the atom in the ring. Primed atoms are generated by the symmetry code (1 - x, 1 - y, 1 - z).
Di-µ-iodido-bis{[dicyclohexyl(phenyl)phosphine-κP](pyridine-κN)silver(I)} top
Crystal data top
[Ag2I2(C5H5N)2(C18H27P)2]Z = 1
Mr = 1176.47F(000) = 584
Triclinic, P1Dx = 1.609 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5970 (12) ÅCell parameters from 8087 reflections
b = 9.9816 (13) Åθ = 1.5–28°
c = 14.1437 (18) ŵ = 2.18 mm1
α = 90.484 (3)°T = 293 K
β = 102.404 (2)°Plate, colourless
γ = 112.704 (2)°0.3 × 0.22 × 0.09 mm
V = 1214.4 (3) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4310 reflections with I > 2σ(I)
ω scansRint = 0.014
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
θmax = 28°, θmin = 1.5°
Tmin = 0.562, Tmax = 0.828h = 1212
7951 measured reflectionsk = 1113
5723 independent reflectionsl = 1418
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0363P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.073(Δ/σ)max = 0.002
S = 1.02Δρmax = 0.50 e Å3
5723 reflectionsΔρmin = 0.81 e Å3
244 parameters
Crystal data top
[Ag2I2(C5H5N)2(C18H27P)2]γ = 112.704 (2)°
Mr = 1176.47V = 1214.4 (3) Å3
Triclinic, P1Z = 1
a = 9.5970 (12) ÅMo Kα radiation
b = 9.9816 (13) ŵ = 2.18 mm1
c = 14.1437 (18) ÅT = 293 K
α = 90.484 (3)°0.3 × 0.22 × 0.09 mm
β = 102.404 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5723 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
4310 reflections with I > 2σ(I)
Tmin = 0.562, Tmax = 0.828Rint = 0.014
7951 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.073H-atom parameters constrained
S = 1.02Δρmax = 0.50 e Å3
5723 reflectionsΔρmin = 0.81 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag0.64528 (3)0.51283 (3)0.579194 (16)0.04387 (8)
I0.67657 (2)0.67819 (2)0.418646 (15)0.04704 (8)
P0.75790 (9)0.61782 (8)0.74849 (5)0.03498 (17)
N0.7116 (3)0.3242 (3)0.5233 (2)0.0496 (7)
C110.8282 (4)0.4979 (3)0.8258 (2)0.0420 (7)
H110.87020.5450.89260.05*
C120.6951 (4)0.3510 (4)0.8252 (3)0.0545 (9)
H12A0.64670.30710.75870.065*
H12B0.61710.3660.85250.065*
C130.7541 (6)0.2473 (5)0.8845 (3)0.0758 (12)
H13A0.7920.28630.95240.091*
H13B0.66870.15310.87990.091*
C140.8837 (6)0.2275 (5)0.8483 (3)0.0793 (13)
H14A0.92250.16630.88970.095*
H14B0.84270.17820.78280.095*
C151.0152 (5)0.3712 (5)0.8482 (3)0.0745 (12)
H15A1.09210.35520.82040.089*
H15B1.06470.4150.91470.089*
C160.9582 (4)0.4757 (4)0.7898 (3)0.0535 (9)
H16A0.92020.43720.72180.064*
H16B1.04460.56920.79480.064*
C210.6083 (4)0.6419 (3)0.8017 (2)0.0403 (7)
H210.51950.54730.78890.048*
C220.5502 (4)0.7498 (4)0.7480 (2)0.0523 (8)
H22A0.51760.71920.67870.063*
H22B0.63440.84570.75850.063*
C230.4137 (5)0.7582 (5)0.7837 (3)0.0680 (11)
H23A0.38420.83220.7520.082*
H23B0.32530.66530.76590.082*
C240.4547 (5)0.7946 (5)0.8927 (3)0.0713 (11)
H24A0.53360.89320.90960.086*
H24B0.36330.79120.91320.086*
C250.5139 (5)0.6903 (5)0.9458 (3)0.0643 (10)
H25A0.43060.59390.93550.077*
H25B0.54580.72131.0150.077*
C260.6511 (4)0.6823 (4)0.9116 (2)0.0512 (8)
H26A0.68190.60990.94470.061*
H26B0.73860.7760.92820.061*
C310.9209 (3)0.7958 (3)0.7758 (2)0.0386 (7)
C320.9355 (4)0.8901 (4)0.7032 (2)0.0473 (8)
H320.86370.86060.64350.057*
C331.0555 (5)1.0272 (4)0.7185 (3)0.0628 (10)
H331.06191.08990.66980.075*
C341.1638 (5)1.0704 (4)0.8043 (4)0.0713 (12)
H341.24641.16110.81340.086*
C351.1515 (5)0.9803 (4)0.8779 (3)0.0714 (12)
H351.22421.0110.93740.086*
C361.0303 (4)0.8434 (4)0.8631 (3)0.0583 (9)
H361.02270.78280.9130.07*
C410.6644 (5)0.1923 (4)0.5544 (3)0.0605 (10)
H410.5920.16940.59250.073*
C420.7168 (5)0.0881 (4)0.5333 (3)0.0694 (11)
H420.68010.00320.55620.083*
C430.8250 (5)0.1217 (5)0.4776 (3)0.0759 (12)
H430.86290.05360.4620.091*
C440.8749 (5)0.2560 (5)0.4461 (3)0.0742 (12)
H440.94910.28180.40920.089*
C450.8155 (4)0.3540 (4)0.4688 (3)0.0577 (9)
H450.84910.4450.44530.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag0.05080 (15)0.04133 (14)0.03791 (14)0.01641 (11)0.01097 (11)0.00158 (10)
I0.04314 (13)0.04213 (13)0.04845 (13)0.00716 (9)0.01405 (9)0.01362 (9)
P0.0372 (4)0.0322 (4)0.0333 (4)0.0111 (3)0.0089 (3)0.0039 (3)
N0.0534 (17)0.0422 (16)0.0540 (17)0.0210 (13)0.0105 (13)0.0023 (13)
C110.0486 (18)0.0421 (18)0.0354 (16)0.0202 (15)0.0056 (13)0.0075 (13)
C120.069 (2)0.044 (2)0.058 (2)0.0240 (18)0.0271 (18)0.0196 (16)
C130.113 (4)0.055 (2)0.077 (3)0.043 (3)0.039 (3)0.033 (2)
C140.116 (4)0.065 (3)0.083 (3)0.061 (3)0.029 (3)0.025 (2)
C150.087 (3)0.082 (3)0.073 (3)0.059 (3)0.008 (2)0.010 (2)
C160.049 (2)0.056 (2)0.060 (2)0.0265 (18)0.0120 (16)0.0077 (17)
C210.0408 (16)0.0372 (17)0.0412 (17)0.0113 (14)0.0144 (13)0.0015 (13)
C220.058 (2)0.061 (2)0.048 (2)0.0319 (18)0.0179 (16)0.0101 (16)
C230.061 (2)0.089 (3)0.069 (3)0.045 (2)0.018 (2)0.012 (2)
C240.072 (3)0.083 (3)0.077 (3)0.041 (2)0.036 (2)0.006 (2)
C250.070 (3)0.074 (3)0.052 (2)0.023 (2)0.0297 (19)0.0040 (19)
C260.060 (2)0.058 (2)0.0408 (18)0.0264 (18)0.0168 (16)0.0084 (16)
C310.0359 (16)0.0343 (16)0.0443 (17)0.0119 (13)0.0106 (13)0.0023 (13)
C320.0523 (19)0.0419 (18)0.0453 (18)0.0133 (15)0.0170 (15)0.0050 (14)
C330.065 (2)0.044 (2)0.071 (3)0.0054 (18)0.029 (2)0.0085 (18)
C340.051 (2)0.041 (2)0.107 (4)0.0028 (17)0.019 (2)0.005 (2)
C350.058 (2)0.049 (2)0.081 (3)0.0091 (19)0.014 (2)0.013 (2)
C360.057 (2)0.049 (2)0.055 (2)0.0164 (18)0.0032 (17)0.0035 (17)
C410.066 (2)0.050 (2)0.069 (2)0.0227 (19)0.023 (2)0.0046 (18)
C420.083 (3)0.046 (2)0.080 (3)0.030 (2)0.013 (2)0.003 (2)
C430.080 (3)0.068 (3)0.094 (3)0.050 (3)0.012 (3)0.009 (2)
C440.066 (3)0.071 (3)0.097 (3)0.035 (2)0.029 (2)0.003 (2)
C450.053 (2)0.052 (2)0.069 (2)0.0200 (18)0.0172 (18)0.0013 (18)
Geometric parameters (Å, º) top
Ag—N2.386 (3)C22—H22B0.97
Ag—P2.4436 (8)C23—C241.510 (5)
Ag—I2.8186 (4)C23—H23A0.97
Ag—Ii2.9449 (5)C23—H23B0.97
Ag—Agi3.1008 (6)C24—C251.503 (5)
I—Agi2.9449 (4)C24—H24A0.97
P—C311.827 (3)C24—H24B0.97
P—C111.847 (3)C25—C261.525 (5)
P—C211.847 (3)C25—H25A0.97
N—C411.329 (4)C25—H25B0.97
N—C451.334 (4)C26—H26A0.97
C11—C121.527 (5)C26—H26B0.97
C11—C161.532 (4)C31—C361.379 (4)
C11—H110.98C31—C321.391 (4)
C12—C131.536 (5)C32—C331.384 (5)
C12—H12A0.97C32—H320.93
C12—H12B0.97C33—C341.358 (6)
C13—C141.521 (6)C33—H330.93
C13—H13A0.97C34—C351.376 (6)
C13—H13B0.97C34—H340.93
C14—C151.501 (6)C35—C361.389 (5)
C14—H14A0.97C35—H350.93
C14—H14B0.97C36—H360.93
C15—C161.526 (5)C41—C421.374 (5)
C15—H15A0.97C41—H410.93
C15—H15B0.97C42—C431.378 (6)
C16—H16A0.97C42—H420.93
C16—H16B0.97C43—C441.353 (6)
C21—C261.528 (4)C43—H430.93
C21—C221.530 (4)C44—C451.376 (5)
C21—H210.98C44—H440.93
C22—C231.532 (5)C45—H450.93
C22—H22A0.97
N—Ag—P118.15 (7)C21—C22—H22A109.4
N—Ag—I98.31 (7)C23—C22—H22A109.4
P—Ag—I123.82 (2)C21—C22—H22B109.4
N—Ag—Ii95.85 (7)C23—C22—H22B109.4
P—Ag—Ii102.83 (2)H22A—C22—H22B108
I—Ag—Ii114.947 (10)C24—C23—C22111.6 (3)
N—Ag—Agi103.19 (7)C24—C23—H23A109.3
P—Ag—Agi135.80 (2)C22—C23—H23A109.3
I—Ag—Agi59.443 (10)C24—C23—H23B109.3
Ii—Ag—Agi55.505 (11)C22—C23—H23B109.3
Ag—I—Agi65.053 (10)H23A—C23—H23B108
C31—P—C11104.16 (14)C25—C24—C23111.7 (3)
C31—P—C21104.32 (14)C25—C24—H24A109.3
C11—P—C21105.76 (14)C23—C24—H24A109.3
C31—P—Ag119.07 (10)C25—C24—H24B109.3
C11—P—Ag112.57 (10)C23—C24—H24B109.3
C21—P—Ag109.89 (10)H24A—C24—H24B107.9
C41—N—C45116.9 (3)C24—C25—C26111.9 (3)
C41—N—Ag122.4 (2)C24—C25—H25A109.2
C45—N—Ag120.1 (2)C26—C25—H25A109.2
C12—C11—C16110.3 (3)C24—C25—H25B109.2
C12—C11—P110.5 (2)C26—C25—H25B109.2
C16—C11—P109.9 (2)H25A—C25—H25B107.9
C12—C11—H11108.7C25—C26—C21110.9 (3)
C16—C11—H11108.7C25—C26—H26A109.5
P—C11—H11108.7C21—C26—H26A109.5
C11—C12—C13110.9 (3)C25—C26—H26B109.5
C11—C12—H12A109.5C21—C26—H26B109.5
C13—C12—H12A109.5H26A—C26—H26B108.1
C11—C12—H12B109.5C36—C31—C32117.7 (3)
C13—C12—H12B109.5C36—C31—P124.7 (3)
H12A—C12—H12B108C32—C31—P117.6 (2)
C14—C13—C12111.5 (3)C33—C32—C31121.0 (3)
C14—C13—H13A109.3C33—C32—H32119.5
C12—C13—H13A109.3C31—C32—H32119.5
C14—C13—H13B109.3C34—C33—C32120.2 (4)
C12—C13—H13B109.3C34—C33—H33119.9
H13A—C13—H13B108C32—C33—H33119.9
C15—C14—C13111.6 (4)C33—C34—C35120.1 (3)
C15—C14—H14A109.3C33—C34—H34119.9
C13—C14—H14A109.3C35—C34—H34119.9
C15—C14—H14B109.3C34—C35—C36119.7 (4)
C13—C14—H14B109.3C34—C35—H35120.1
H14A—C14—H14B108C36—C35—H35120.1
C14—C15—C16111.4 (4)C31—C36—C35121.2 (4)
C14—C15—H15A109.4C31—C36—H36119.4
C16—C15—H15A109.4C35—C36—H36119.4
C14—C15—H15B109.4N—C41—C42123.5 (4)
C16—C15—H15B109.4N—C41—H41118.2
H15A—C15—H15B108C42—C41—H41118.2
C15—C16—C11112.1 (3)C41—C42—C43118.6 (4)
C15—C16—H16A109.2C41—C42—H42120.7
C11—C16—H16A109.2C43—C42—H42120.7
C15—C16—H16B109.2C44—C43—C42118.5 (4)
C11—C16—H16B109.2C44—C43—H43120.8
H16A—C16—H16B107.9C42—C43—H43120.8
C26—C21—C22110.5 (3)C43—C44—C45119.7 (4)
C26—C21—P116.8 (2)C43—C44—H44120.2
C22—C21—P110.4 (2)C45—C44—H44120.2
C26—C21—H21106.2N—C45—C44122.8 (4)
C22—C21—H21106.2N—C45—H45118.6
P—C21—H21106.2C44—C45—H45118.6
C21—C22—C23111.1 (3)
N—Ag—I—Agi100.46 (7)C31—P—C21—C2661.2 (3)
P—Ag—I—Agi127.34 (3)C11—P—C21—C2648.3 (3)
Ii—Ag—I—Agi0Ag—P—C21—C26170.1 (2)
N—Ag—P—C31102.47 (14)C31—P—C21—C2266.0 (3)
I—Ag—P—C3121.28 (12)C11—P—C21—C22175.6 (2)
Ii—Ag—P—C31153.61 (11)Ag—P—C21—C2262.7 (2)
Agi—Ag—P—C31100.40 (12)C26—C21—C22—C2355.6 (4)
N—Ag—P—C1119.81 (14)P—C21—C22—C23173.7 (3)
I—Ag—P—C11143.57 (11)C21—C22—C23—C2454.9 (5)
Ii—Ag—P—C1184.11 (11)C22—C23—C24—C2554.4 (5)
Agi—Ag—P—C11137.32 (11)C23—C24—C25—C2654.9 (5)
N—Ag—P—C21137.39 (13)C24—C25—C26—C2155.8 (4)
I—Ag—P—C2198.85 (11)C22—C21—C26—C2555.9 (4)
Ii—Ag—P—C2133.48 (11)P—C21—C26—C25176.9 (2)
Agi—Ag—P—C2119.73 (11)C11—P—C31—C3628.3 (3)
P—Ag—N—C4168.4 (3)C21—P—C31—C3682.4 (3)
I—Ag—N—C41155.9 (3)Ag—P—C31—C36154.7 (3)
Ii—Ag—N—C4139.6 (3)C11—P—C31—C32151.8 (2)
Agi—Ag—N—C4195.5 (3)C21—P—C31—C3297.5 (3)
P—Ag—N—C45102.6 (3)Ag—P—C31—C3225.4 (3)
I—Ag—N—C4533.1 (3)C36—C31—C32—C330.3 (5)
Ii—Ag—N—C45149.5 (3)P—C31—C32—C33179.6 (3)
Agi—Ag—N—C4593.6 (3)C31—C32—C33—C341.8 (6)
C31—P—C11—C12169.8 (2)C32—C33—C34—C352.5 (6)
C21—P—C11—C1260.2 (3)C33—C34—C35—C361.7 (6)
Ag—P—C11—C1259.8 (2)C32—C31—C36—C350.5 (5)
C31—P—C11—C1668.2 (3)P—C31—C36—C35179.6 (3)
C21—P—C11—C16177.8 (2)C34—C35—C36—C310.2 (6)
Ag—P—C11—C1662.2 (2)C45—N—C41—C420.1 (6)
C16—C11—C12—C1355.0 (4)Ag—N—C41—C42171.3 (3)
P—C11—C12—C13176.8 (2)N—C41—C42—C430.5 (6)
C11—C12—C13—C1455.7 (5)C41—C42—C43—C440.0 (7)
C12—C13—C14—C1555.5 (5)C42—C43—C44—C451.0 (7)
C13—C14—C15—C1654.9 (5)C41—N—C45—C441.0 (6)
C14—C15—C16—C1155.2 (4)Ag—N—C45—C44170.5 (3)
C12—C11—C16—C1555.1 (4)C43—C44—C45—N1.5 (7)
P—C11—C16—C15177.2 (3)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ag2I2(C5H5N)2(C18H27P)2]
Mr1176.47
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.5970 (12), 9.9816 (13), 14.1437 (18)
α, β, γ (°)90.484 (3), 102.404 (2), 112.704 (2)
V3)1214.4 (3)
Z1
Radiation typeMo Kα
µ (mm1)2.18
Crystal size (mm)0.3 × 0.22 × 0.09
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.562, 0.828
No. of measured, independent and
observed [I > 2σ(I)] reflections
7951, 5723, 4310
Rint0.014
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.073, 1.02
No. of reflections5723
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.81

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Ag—N2.386 (3)Ag—Ii2.9449 (5)
Ag—P2.4436 (8)Ag—Agi3.1008 (6)
Ag—I2.8186 (4)
N—Ag—P118.15 (7)N—Ag—Agi103.19 (7)
N—Ag—I98.31 (7)P—Ag—Agi135.80 (2)
P—Ag—I123.82 (2)I—Ag—Agi59.443 (10)
N—Ag—Ii95.85 (7)Ii—Ag—Agi55.505 (11)
I—Ag—Ii114.947 (10)Ag—I—Agi65.053 (10)
N—Ag—I—Agi100.46 (7)P—Ag—I—Agi127.34 (3)
Symmetry code: (i) x+1, y+1, z+1.
Comparison of geometric parameters (Å, °) for selected [XAg(py)(P3)2] (X = Cl, Br or I) top
XAg—XAg—XAg···AgAg—NAg—PX—Ag—XAg—I—Ag
Ia2.8186 (4)2.9449 (5)3.1008 (6)2.386 (3)2.4436 (8)114.947 (10)65.053 (10)
Ib2.8402 (12)2.8644 (8)3.1130 (18)2.392 (3)2.4489 (12)113.84 (4)66.16 (4)
Ic2.8142.8753.3432.4222.440108.0271.98
Brc2.7012.7333.4992.3912.41599.8580.15
Clc2.6142.6183.5072.4022.40095.8284.18
Notes: (a) This work; (b) Meijboom & Muller (2006); (c) Gotsis et al. (1989), extracted from the Cambridge Structural Database (Allen (2002), CSD CODES are VEFRUT for X = I, VEFRON for X = Br and VEFRIH for X = Cl.
 

Acknowledgements

Financial assistance from the South African National Research Foundation and the University of Johannesburg is gratefully acknowledged. The University of the Witwatersrand (Professor D. Levendis and Professor D. G. Billing) is thanked for use of its diffractometer. Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NRF.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBerners-Price, S. J., Bowen, R. J., Harvey, P. J., Healy, P. C. & Koutsantonis, G. A. (1998). J. Chem. Soc. Dalton Trans. pp. 1743–1750.  CSD CrossRef Google Scholar
First citationBowmaker, G. A., Effendy, Harvey, P. J., Healy, P. C., Skelton, B. W. & White, A. H. (1996). J. Chem. Soc. Dalton Trans. pp. 2459–2465.  CSD CrossRef Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SMART, SADABS and SAINT. Bruker AXS Inc., Mdison, Wisconsin, USA.  Google Scholar
First citationEngelhardt, L. M., Healy, P. C., Kildea, J. D. & White, A. H. (1989). Aust. J. Chem. 42, 907–912.  CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGotsis, S., Engelhardt, L. M., Healy, P. C., Kildea, J. D. & White, A. H. (1989). Aust. J. Chem. 42, 923–931.  CSD CrossRef CAS Google Scholar
First citationLiu, J. J., Galetis, P., Farr, A., Maharaj, L., Samarasinha, H., McGechan, A. C., Baguley, B. C., Bowen, R. J., Berners-Price, S. J. & McKeage, M. J. (2008). J. Inorg. Biochem. 102, 303–310.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMeijboom, R., Bowen, R. J. & Berners-Price, S. J. (2009). Coord. Chem. Rev. 253, 325–342.  Web of Science CrossRef CAS Google Scholar
First citationMeijboom, R. & Muller, A. (2006). Acta Cryst. E62, m3191–m3193.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMuetterties, E. L. & Alegranti, C. W. (1972). J. Am. Chem. Soc. 94, 6386–6391.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages m462-m463
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds