metal-organic compounds
Di-μ-iodido-bis{[dicyclohexyl(phenyl)phosphine-κP](pyridine-κN)silver(I)}
aDepartment of Chemistry, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg 2006, South Africa
*Correspondence e-mail: rmeijboom@uj.ac.za
The title compound, [Ag2I2(C5H5N)2(C18H27P)2], contains centrosymmetric dinuclear species in which each Ag atom is surrounded by a phosphine ligand, a weakly coordinating pyridine ligand and two iodide anions in a distorted tetrahedral coordination. The two iodide anions bridge the Ag atoms, which are separated by a distance of 3.1008 (6) Å. The Ag—P distance is 2.4436 (8) Å, Ag—N is 2.386 (3)Å and the Ag—I distances are 2.8186 (4) and 2.9449 (5) Å.
Related literature
For a review of the chemistry of silver(I) complexes, see: Meijboom et al. (2009). For the coordination chemistry of AgX salts (X− = F−, Cl−, Br−, I−, BF4−, PF6−, NO3− etc) with group 15 donor ligands, with the main focus on tertiary and in their context as potential antitumor agents, see: Berners-Price et al. (1998); Liu et al. (2008). For tertiary phosphine silver(I) complexes of mixed-base species, see: Engelhardt et al. (1989); Gotsis et al. (1989); Meijboom & Muller (2006). The unsymmetrical core (Ag—I—Ag′—I′) may be attributed to the partial separation of dimer into monomer of such complexes, see: Bowmaker et al. (1996); Meijboom & Muller (2006). For the solution behaviour of [LnAgX] complexes, see: Muetterties & Alegranti (1972).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S160053680901099X/hg2494sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053680901099X/hg2494Isup2.hkl
Silver iodide (0.130 g, 0.43 mmol) and dicyclohexylphenylphosphine (1.009 g, 0.86 mmol) were suspended in pyridine (5 ml). The mixture was heated to give a clear solution. Colourless crystals of the title compound suitable for X-ray crystallography were obtained by slow evaporation.
All hydrogen atoms were positioned geometrically, with C—H = 0.97 Å, and allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).
Data collection: SMART (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids. H atoms have been omitted for clarity. For the C atoms, the first digit indicates the ring number and the second digit indicates the position of the atom in the ring. Primed atoms are generated by the symmetry code (1 - x, 1 - y, 1 - z). |
[Ag2I2(C5H5N)2(C18H27P)2] | Z = 1 |
Mr = 1176.47 | F(000) = 584 |
Triclinic, P1 | Dx = 1.609 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 9.5970 (12) Å | Cell parameters from 8087 reflections |
b = 9.9816 (13) Å | θ = 1.5–28° |
c = 14.1437 (18) Å | µ = 2.18 mm−1 |
α = 90.484 (3)° | T = 293 K |
β = 102.404 (2)° | Plate, colourless |
γ = 112.704 (2)° | 0.3 × 0.22 × 0.09 mm |
V = 1214.4 (3) Å3 |
Bruker SMART CCD area-detector diffractometer | 4310 reflections with I > 2σ(I) |
ω scans | Rint = 0.014 |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | θmax = 28°, θmin = 1.5° |
Tmin = 0.562, Tmax = 0.828 | h = −12→12 |
7951 measured reflections | k = −11→13 |
5723 independent reflections | l = −14→18 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.031 | w = 1/[σ2(Fo2) + (0.0363P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.073 | (Δ/σ)max = 0.002 |
S = 1.02 | Δρmax = 0.50 e Å−3 |
5723 reflections | Δρmin = −0.81 e Å−3 |
244 parameters |
[Ag2I2(C5H5N)2(C18H27P)2] | γ = 112.704 (2)° |
Mr = 1176.47 | V = 1214.4 (3) Å3 |
Triclinic, P1 | Z = 1 |
a = 9.5970 (12) Å | Mo Kα radiation |
b = 9.9816 (13) Å | µ = 2.18 mm−1 |
c = 14.1437 (18) Å | T = 293 K |
α = 90.484 (3)° | 0.3 × 0.22 × 0.09 mm |
β = 102.404 (2)° |
Bruker SMART CCD area-detector diffractometer | 5723 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | 4310 reflections with I > 2σ(I) |
Tmin = 0.562, Tmax = 0.828 | Rint = 0.014 |
7951 measured reflections |
R[F2 > 2σ(F2)] = 0.031 | 0 restraints |
wR(F2) = 0.073 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.50 e Å−3 |
5723 reflections | Δρmin = −0.81 e Å−3 |
244 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ag | 0.64528 (3) | 0.51283 (3) | 0.579194 (16) | 0.04387 (8) | |
I | 0.67657 (2) | 0.67819 (2) | 0.418646 (15) | 0.04704 (8) | |
P | 0.75790 (9) | 0.61782 (8) | 0.74849 (5) | 0.03498 (17) | |
N | 0.7116 (3) | 0.3242 (3) | 0.5233 (2) | 0.0496 (7) | |
C11 | 0.8282 (4) | 0.4979 (3) | 0.8258 (2) | 0.0420 (7) | |
H11 | 0.8702 | 0.545 | 0.8926 | 0.05* | |
C12 | 0.6951 (4) | 0.3510 (4) | 0.8252 (3) | 0.0545 (9) | |
H12A | 0.6467 | 0.3071 | 0.7587 | 0.065* | |
H12B | 0.6171 | 0.366 | 0.8525 | 0.065* | |
C13 | 0.7541 (6) | 0.2473 (5) | 0.8845 (3) | 0.0758 (12) | |
H13A | 0.792 | 0.2863 | 0.9524 | 0.091* | |
H13B | 0.6687 | 0.1531 | 0.8799 | 0.091* | |
C14 | 0.8837 (6) | 0.2275 (5) | 0.8483 (3) | 0.0793 (13) | |
H14A | 0.9225 | 0.1663 | 0.8897 | 0.095* | |
H14B | 0.8427 | 0.1782 | 0.7828 | 0.095* | |
C15 | 1.0152 (5) | 0.3712 (5) | 0.8482 (3) | 0.0745 (12) | |
H15A | 1.0921 | 0.3552 | 0.8204 | 0.089* | |
H15B | 1.0647 | 0.415 | 0.9147 | 0.089* | |
C16 | 0.9582 (4) | 0.4757 (4) | 0.7898 (3) | 0.0535 (9) | |
H16A | 0.9202 | 0.4372 | 0.7218 | 0.064* | |
H16B | 1.0446 | 0.5692 | 0.7948 | 0.064* | |
C21 | 0.6083 (4) | 0.6419 (3) | 0.8017 (2) | 0.0403 (7) | |
H21 | 0.5195 | 0.5473 | 0.7889 | 0.048* | |
C22 | 0.5502 (4) | 0.7498 (4) | 0.7480 (2) | 0.0523 (8) | |
H22A | 0.5176 | 0.7192 | 0.6787 | 0.063* | |
H22B | 0.6344 | 0.8457 | 0.7585 | 0.063* | |
C23 | 0.4137 (5) | 0.7582 (5) | 0.7837 (3) | 0.0680 (11) | |
H23A | 0.3842 | 0.8322 | 0.752 | 0.082* | |
H23B | 0.3253 | 0.6653 | 0.7659 | 0.082* | |
C24 | 0.4547 (5) | 0.7946 (5) | 0.8927 (3) | 0.0713 (11) | |
H24A | 0.5336 | 0.8932 | 0.9096 | 0.086* | |
H24B | 0.3633 | 0.7912 | 0.9132 | 0.086* | |
C25 | 0.5139 (5) | 0.6903 (5) | 0.9458 (3) | 0.0643 (10) | |
H25A | 0.4306 | 0.5939 | 0.9355 | 0.077* | |
H25B | 0.5458 | 0.7213 | 1.015 | 0.077* | |
C26 | 0.6511 (4) | 0.6823 (4) | 0.9116 (2) | 0.0512 (8) | |
H26A | 0.6819 | 0.6099 | 0.9447 | 0.061* | |
H26B | 0.7386 | 0.776 | 0.9282 | 0.061* | |
C31 | 0.9209 (3) | 0.7958 (3) | 0.7758 (2) | 0.0386 (7) | |
C32 | 0.9355 (4) | 0.8901 (4) | 0.7032 (2) | 0.0473 (8) | |
H32 | 0.8637 | 0.8606 | 0.6435 | 0.057* | |
C33 | 1.0555 (5) | 1.0272 (4) | 0.7185 (3) | 0.0628 (10) | |
H33 | 1.0619 | 1.0899 | 0.6698 | 0.075* | |
C34 | 1.1638 (5) | 1.0704 (4) | 0.8043 (4) | 0.0713 (12) | |
H34 | 1.2464 | 1.1611 | 0.8134 | 0.086* | |
C35 | 1.1515 (5) | 0.9803 (4) | 0.8779 (3) | 0.0714 (12) | |
H35 | 1.2242 | 1.011 | 0.9374 | 0.086* | |
C36 | 1.0303 (4) | 0.8434 (4) | 0.8631 (3) | 0.0583 (9) | |
H36 | 1.0227 | 0.7828 | 0.913 | 0.07* | |
C41 | 0.6644 (5) | 0.1923 (4) | 0.5544 (3) | 0.0605 (10) | |
H41 | 0.592 | 0.1694 | 0.5925 | 0.073* | |
C42 | 0.7168 (5) | 0.0881 (4) | 0.5333 (3) | 0.0694 (11) | |
H42 | 0.6801 | −0.0032 | 0.5562 | 0.083* | |
C43 | 0.8250 (5) | 0.1217 (5) | 0.4776 (3) | 0.0759 (12) | |
H43 | 0.8629 | 0.0536 | 0.462 | 0.091* | |
C44 | 0.8749 (5) | 0.2560 (5) | 0.4461 (3) | 0.0742 (12) | |
H44 | 0.9491 | 0.2818 | 0.4092 | 0.089* | |
C45 | 0.8155 (4) | 0.3540 (4) | 0.4688 (3) | 0.0577 (9) | |
H45 | 0.8491 | 0.445 | 0.4453 | 0.069* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ag | 0.05080 (15) | 0.04133 (14) | 0.03791 (14) | 0.01641 (11) | 0.01097 (11) | 0.00158 (10) |
I | 0.04314 (13) | 0.04213 (13) | 0.04845 (13) | 0.00716 (9) | 0.01405 (9) | 0.01362 (9) |
P | 0.0372 (4) | 0.0322 (4) | 0.0333 (4) | 0.0111 (3) | 0.0089 (3) | 0.0039 (3) |
N | 0.0534 (17) | 0.0422 (16) | 0.0540 (17) | 0.0210 (13) | 0.0105 (13) | −0.0023 (13) |
C11 | 0.0486 (18) | 0.0421 (18) | 0.0354 (16) | 0.0202 (15) | 0.0056 (13) | 0.0075 (13) |
C12 | 0.069 (2) | 0.044 (2) | 0.058 (2) | 0.0240 (18) | 0.0271 (18) | 0.0196 (16) |
C13 | 0.113 (4) | 0.055 (2) | 0.077 (3) | 0.043 (3) | 0.039 (3) | 0.033 (2) |
C14 | 0.116 (4) | 0.065 (3) | 0.083 (3) | 0.061 (3) | 0.029 (3) | 0.025 (2) |
C15 | 0.087 (3) | 0.082 (3) | 0.073 (3) | 0.059 (3) | 0.008 (2) | 0.010 (2) |
C16 | 0.049 (2) | 0.056 (2) | 0.060 (2) | 0.0265 (18) | 0.0120 (16) | 0.0077 (17) |
C21 | 0.0408 (16) | 0.0372 (17) | 0.0412 (17) | 0.0113 (14) | 0.0144 (13) | 0.0015 (13) |
C22 | 0.058 (2) | 0.061 (2) | 0.048 (2) | 0.0319 (18) | 0.0179 (16) | 0.0101 (16) |
C23 | 0.061 (2) | 0.089 (3) | 0.069 (3) | 0.045 (2) | 0.018 (2) | 0.012 (2) |
C24 | 0.072 (3) | 0.083 (3) | 0.077 (3) | 0.041 (2) | 0.036 (2) | 0.006 (2) |
C25 | 0.070 (3) | 0.074 (3) | 0.052 (2) | 0.023 (2) | 0.0297 (19) | 0.0040 (19) |
C26 | 0.060 (2) | 0.058 (2) | 0.0408 (18) | 0.0264 (18) | 0.0168 (16) | 0.0084 (16) |
C31 | 0.0359 (16) | 0.0343 (16) | 0.0443 (17) | 0.0119 (13) | 0.0106 (13) | 0.0023 (13) |
C32 | 0.0523 (19) | 0.0419 (18) | 0.0453 (18) | 0.0133 (15) | 0.0170 (15) | 0.0050 (14) |
C33 | 0.065 (2) | 0.044 (2) | 0.071 (3) | 0.0054 (18) | 0.029 (2) | 0.0085 (18) |
C34 | 0.051 (2) | 0.041 (2) | 0.107 (4) | 0.0028 (17) | 0.019 (2) | −0.005 (2) |
C35 | 0.058 (2) | 0.049 (2) | 0.081 (3) | 0.0091 (19) | −0.014 (2) | −0.013 (2) |
C36 | 0.057 (2) | 0.049 (2) | 0.055 (2) | 0.0164 (18) | −0.0032 (17) | 0.0035 (17) |
C41 | 0.066 (2) | 0.050 (2) | 0.069 (2) | 0.0227 (19) | 0.023 (2) | 0.0046 (18) |
C42 | 0.083 (3) | 0.046 (2) | 0.080 (3) | 0.030 (2) | 0.013 (2) | 0.003 (2) |
C43 | 0.080 (3) | 0.068 (3) | 0.094 (3) | 0.050 (3) | 0.012 (3) | −0.009 (2) |
C44 | 0.066 (3) | 0.071 (3) | 0.097 (3) | 0.035 (2) | 0.029 (2) | −0.003 (2) |
C45 | 0.053 (2) | 0.052 (2) | 0.069 (2) | 0.0200 (18) | 0.0172 (18) | 0.0013 (18) |
Ag—N | 2.386 (3) | C22—H22B | 0.97 |
Ag—P | 2.4436 (8) | C23—C24 | 1.510 (5) |
Ag—I | 2.8186 (4) | C23—H23A | 0.97 |
Ag—Ii | 2.9449 (5) | C23—H23B | 0.97 |
Ag—Agi | 3.1008 (6) | C24—C25 | 1.503 (5) |
I—Agi | 2.9449 (4) | C24—H24A | 0.97 |
P—C31 | 1.827 (3) | C24—H24B | 0.97 |
P—C11 | 1.847 (3) | C25—C26 | 1.525 (5) |
P—C21 | 1.847 (3) | C25—H25A | 0.97 |
N—C41 | 1.329 (4) | C25—H25B | 0.97 |
N—C45 | 1.334 (4) | C26—H26A | 0.97 |
C11—C12 | 1.527 (5) | C26—H26B | 0.97 |
C11—C16 | 1.532 (4) | C31—C36 | 1.379 (4) |
C11—H11 | 0.98 | C31—C32 | 1.391 (4) |
C12—C13 | 1.536 (5) | C32—C33 | 1.384 (5) |
C12—H12A | 0.97 | C32—H32 | 0.93 |
C12—H12B | 0.97 | C33—C34 | 1.358 (6) |
C13—C14 | 1.521 (6) | C33—H33 | 0.93 |
C13—H13A | 0.97 | C34—C35 | 1.376 (6) |
C13—H13B | 0.97 | C34—H34 | 0.93 |
C14—C15 | 1.501 (6) | C35—C36 | 1.389 (5) |
C14—H14A | 0.97 | C35—H35 | 0.93 |
C14—H14B | 0.97 | C36—H36 | 0.93 |
C15—C16 | 1.526 (5) | C41—C42 | 1.374 (5) |
C15—H15A | 0.97 | C41—H41 | 0.93 |
C15—H15B | 0.97 | C42—C43 | 1.378 (6) |
C16—H16A | 0.97 | C42—H42 | 0.93 |
C16—H16B | 0.97 | C43—C44 | 1.353 (6) |
C21—C26 | 1.528 (4) | C43—H43 | 0.93 |
C21—C22 | 1.530 (4) | C44—C45 | 1.376 (5) |
C21—H21 | 0.98 | C44—H44 | 0.93 |
C22—C23 | 1.532 (5) | C45—H45 | 0.93 |
C22—H22A | 0.97 | ||
N—Ag—P | 118.15 (7) | C21—C22—H22A | 109.4 |
N—Ag—I | 98.31 (7) | C23—C22—H22A | 109.4 |
P—Ag—I | 123.82 (2) | C21—C22—H22B | 109.4 |
N—Ag—Ii | 95.85 (7) | C23—C22—H22B | 109.4 |
P—Ag—Ii | 102.83 (2) | H22A—C22—H22B | 108 |
I—Ag—Ii | 114.947 (10) | C24—C23—C22 | 111.6 (3) |
N—Ag—Agi | 103.19 (7) | C24—C23—H23A | 109.3 |
P—Ag—Agi | 135.80 (2) | C22—C23—H23A | 109.3 |
I—Ag—Agi | 59.443 (10) | C24—C23—H23B | 109.3 |
Ii—Ag—Agi | 55.505 (11) | C22—C23—H23B | 109.3 |
Ag—I—Agi | 65.053 (10) | H23A—C23—H23B | 108 |
C31—P—C11 | 104.16 (14) | C25—C24—C23 | 111.7 (3) |
C31—P—C21 | 104.32 (14) | C25—C24—H24A | 109.3 |
C11—P—C21 | 105.76 (14) | C23—C24—H24A | 109.3 |
C31—P—Ag | 119.07 (10) | C25—C24—H24B | 109.3 |
C11—P—Ag | 112.57 (10) | C23—C24—H24B | 109.3 |
C21—P—Ag | 109.89 (10) | H24A—C24—H24B | 107.9 |
C41—N—C45 | 116.9 (3) | C24—C25—C26 | 111.9 (3) |
C41—N—Ag | 122.4 (2) | C24—C25—H25A | 109.2 |
C45—N—Ag | 120.1 (2) | C26—C25—H25A | 109.2 |
C12—C11—C16 | 110.3 (3) | C24—C25—H25B | 109.2 |
C12—C11—P | 110.5 (2) | C26—C25—H25B | 109.2 |
C16—C11—P | 109.9 (2) | H25A—C25—H25B | 107.9 |
C12—C11—H11 | 108.7 | C25—C26—C21 | 110.9 (3) |
C16—C11—H11 | 108.7 | C25—C26—H26A | 109.5 |
P—C11—H11 | 108.7 | C21—C26—H26A | 109.5 |
C11—C12—C13 | 110.9 (3) | C25—C26—H26B | 109.5 |
C11—C12—H12A | 109.5 | C21—C26—H26B | 109.5 |
C13—C12—H12A | 109.5 | H26A—C26—H26B | 108.1 |
C11—C12—H12B | 109.5 | C36—C31—C32 | 117.7 (3) |
C13—C12—H12B | 109.5 | C36—C31—P | 124.7 (3) |
H12A—C12—H12B | 108 | C32—C31—P | 117.6 (2) |
C14—C13—C12 | 111.5 (3) | C33—C32—C31 | 121.0 (3) |
C14—C13—H13A | 109.3 | C33—C32—H32 | 119.5 |
C12—C13—H13A | 109.3 | C31—C32—H32 | 119.5 |
C14—C13—H13B | 109.3 | C34—C33—C32 | 120.2 (4) |
C12—C13—H13B | 109.3 | C34—C33—H33 | 119.9 |
H13A—C13—H13B | 108 | C32—C33—H33 | 119.9 |
C15—C14—C13 | 111.6 (4) | C33—C34—C35 | 120.1 (3) |
C15—C14—H14A | 109.3 | C33—C34—H34 | 119.9 |
C13—C14—H14A | 109.3 | C35—C34—H34 | 119.9 |
C15—C14—H14B | 109.3 | C34—C35—C36 | 119.7 (4) |
C13—C14—H14B | 109.3 | C34—C35—H35 | 120.1 |
H14A—C14—H14B | 108 | C36—C35—H35 | 120.1 |
C14—C15—C16 | 111.4 (4) | C31—C36—C35 | 121.2 (4) |
C14—C15—H15A | 109.4 | C31—C36—H36 | 119.4 |
C16—C15—H15A | 109.4 | C35—C36—H36 | 119.4 |
C14—C15—H15B | 109.4 | N—C41—C42 | 123.5 (4) |
C16—C15—H15B | 109.4 | N—C41—H41 | 118.2 |
H15A—C15—H15B | 108 | C42—C41—H41 | 118.2 |
C15—C16—C11 | 112.1 (3) | C41—C42—C43 | 118.6 (4) |
C15—C16—H16A | 109.2 | C41—C42—H42 | 120.7 |
C11—C16—H16A | 109.2 | C43—C42—H42 | 120.7 |
C15—C16—H16B | 109.2 | C44—C43—C42 | 118.5 (4) |
C11—C16—H16B | 109.2 | C44—C43—H43 | 120.8 |
H16A—C16—H16B | 107.9 | C42—C43—H43 | 120.8 |
C26—C21—C22 | 110.5 (3) | C43—C44—C45 | 119.7 (4) |
C26—C21—P | 116.8 (2) | C43—C44—H44 | 120.2 |
C22—C21—P | 110.4 (2) | C45—C44—H44 | 120.2 |
C26—C21—H21 | 106.2 | N—C45—C44 | 122.8 (4) |
C22—C21—H21 | 106.2 | N—C45—H45 | 118.6 |
P—C21—H21 | 106.2 | C44—C45—H45 | 118.6 |
C21—C22—C23 | 111.1 (3) | ||
N—Ag—I—Agi | 100.46 (7) | C31—P—C21—C26 | −61.2 (3) |
P—Ag—I—Agi | −127.34 (3) | C11—P—C21—C26 | 48.3 (3) |
Ii—Ag—I—Agi | 0 | Ag—P—C21—C26 | 170.1 (2) |
N—Ag—P—C31 | 102.47 (14) | C31—P—C21—C22 | 66.0 (3) |
I—Ag—P—C31 | −21.28 (12) | C11—P—C21—C22 | 175.6 (2) |
Ii—Ag—P—C31 | −153.61 (11) | Ag—P—C21—C22 | −62.7 (2) |
Agi—Ag—P—C31 | −100.40 (12) | C26—C21—C22—C23 | −55.6 (4) |
N—Ag—P—C11 | −19.81 (14) | P—C21—C22—C23 | 173.7 (3) |
I—Ag—P—C11 | −143.57 (11) | C21—C22—C23—C24 | 54.9 (5) |
Ii—Ag—P—C11 | 84.11 (11) | C22—C23—C24—C25 | −54.4 (5) |
Agi—Ag—P—C11 | 137.32 (11) | C23—C24—C25—C26 | 54.9 (5) |
N—Ag—P—C21 | −137.39 (13) | C24—C25—C26—C21 | −55.8 (4) |
I—Ag—P—C21 | 98.85 (11) | C22—C21—C26—C25 | 55.9 (4) |
Ii—Ag—P—C21 | −33.48 (11) | P—C21—C26—C25 | −176.9 (2) |
Agi—Ag—P—C21 | 19.73 (11) | C11—P—C31—C36 | −28.3 (3) |
P—Ag—N—C41 | 68.4 (3) | C21—P—C31—C36 | 82.4 (3) |
I—Ag—N—C41 | −155.9 (3) | Ag—P—C31—C36 | −154.7 (3) |
Ii—Ag—N—C41 | −39.6 (3) | C11—P—C31—C32 | 151.8 (2) |
Agi—Ag—N—C41 | −95.5 (3) | C21—P—C31—C32 | −97.5 (3) |
P—Ag—N—C45 | −102.6 (3) | Ag—P—C31—C32 | 25.4 (3) |
I—Ag—N—C45 | 33.1 (3) | C36—C31—C32—C33 | −0.3 (5) |
Ii—Ag—N—C45 | 149.5 (3) | P—C31—C32—C33 | 179.6 (3) |
Agi—Ag—N—C45 | 93.6 (3) | C31—C32—C33—C34 | 1.8 (6) |
C31—P—C11—C12 | 169.8 (2) | C32—C33—C34—C35 | −2.5 (6) |
C21—P—C11—C12 | 60.2 (3) | C33—C34—C35—C36 | 1.7 (6) |
Ag—P—C11—C12 | −59.8 (2) | C32—C31—C36—C35 | −0.5 (5) |
C31—P—C11—C16 | −68.2 (3) | P—C31—C36—C35 | 179.6 (3) |
C21—P—C11—C16 | −177.8 (2) | C34—C35—C36—C31 | −0.2 (6) |
Ag—P—C11—C16 | 62.2 (2) | C45—N—C41—C42 | −0.1 (6) |
C16—C11—C12—C13 | 55.0 (4) | Ag—N—C41—C42 | −171.3 (3) |
P—C11—C12—C13 | 176.8 (2) | N—C41—C42—C43 | 0.5 (6) |
C11—C12—C13—C14 | −55.7 (5) | C41—C42—C43—C44 | 0.0 (7) |
C12—C13—C14—C15 | 55.5 (5) | C42—C43—C44—C45 | −1.0 (7) |
C13—C14—C15—C16 | −54.9 (5) | C41—N—C45—C44 | −1.0 (6) |
C14—C15—C16—C11 | 55.2 (4) | Ag—N—C45—C44 | 170.5 (3) |
C12—C11—C16—C15 | −55.1 (4) | C43—C44—C45—N | 1.5 (7) |
P—C11—C16—C15 | −177.2 (3) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Ag2I2(C5H5N)2(C18H27P)2] |
Mr | 1176.47 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 9.5970 (12), 9.9816 (13), 14.1437 (18) |
α, β, γ (°) | 90.484 (3), 102.404 (2), 112.704 (2) |
V (Å3) | 1214.4 (3) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 2.18 |
Crystal size (mm) | 0.3 × 0.22 × 0.09 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2004) |
Tmin, Tmax | 0.562, 0.828 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7951, 5723, 4310 |
Rint | 0.014 |
(sin θ/λ)max (Å−1) | 0.661 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.031, 0.073, 1.02 |
No. of reflections | 5723 |
No. of parameters | 244 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.50, −0.81 |
Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).
Ag—N | 2.386 (3) | Ag—Ii | 2.9449 (5) |
Ag—P | 2.4436 (8) | Ag—Agi | 3.1008 (6) |
Ag—I | 2.8186 (4) | ||
N—Ag—P | 118.15 (7) | N—Ag—Agi | 103.19 (7) |
N—Ag—I | 98.31 (7) | P—Ag—Agi | 135.80 (2) |
P—Ag—I | 123.82 (2) | I—Ag—Agi | 59.443 (10) |
N—Ag—Ii | 95.85 (7) | Ii—Ag—Agi | 55.505 (11) |
I—Ag—Ii | 114.947 (10) | Ag—I—Agi | 65.053 (10) |
N—Ag—I—Agi | 100.46 (7) | P—Ag—I—Agi | −127.34 (3) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
X | Ag—X | Ag—X | Ag···Ag | Ag—N | Ag—P | X—Ag—X | Ag—I—Ag |
Ia | 2.8186 (4) | 2.9449 (5) | 3.1008 (6) | 2.386 (3) | 2.4436 (8) | 114.947 (10) | 65.053 (10) |
Ib | 2.8402 (12) | 2.8644 (8) | 3.1130 (18) | 2.392 (3) | 2.4489 (12) | 113.84 (4) | 66.16 (4) |
Ic | 2.814 | 2.875 | 3.343 | 2.422 | 2.440 | 108.02 | 71.98 |
Brc | 2.701 | 2.733 | 3.499 | 2.391 | 2.415 | 99.85 | 80.15 |
Clc | 2.614 | 2.618 | 3.507 | 2.402 | 2.400 | 95.82 | 84.18 |
Notes: (a) This work; (b) Meijboom & Muller (2006); (c) Gotsis et al. (1989), extracted from the Cambridge Structural Database (Allen (2002), CSD CODES are VEFRUT for X = I, VEFRON for X = Br and VEFRIH for X = Cl. |
Acknowledgements
Financial assistance from the South African National Research Foundation and the University of Johannesburg is gratefully acknowledged. The University of the Witwatersrand (Professor D. Levendis and Professor D. G. Billing) is thanked for use of its diffractometer. Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NRF.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Berners-Price, S. J., Bowen, R. J., Harvey, P. J., Healy, P. C. & Koutsantonis, G. A. (1998). J. Chem. Soc. Dalton Trans. pp. 1743–1750. CSD CrossRef Google Scholar
Bowmaker, G. A., Effendy, Harvey, P. J., Healy, P. C., Skelton, B. W. & White, A. H. (1996). J. Chem. Soc. Dalton Trans. pp. 2459–2465. CSD CrossRef Web of Science Google Scholar
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2004). SMART, SADABS and SAINT. Bruker AXS Inc., Mdison, Wisconsin, USA. Google Scholar
Engelhardt, L. M., Healy, P. C., Kildea, J. D. & White, A. H. (1989). Aust. J. Chem. 42, 907–912. CSD CrossRef CAS Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Gotsis, S., Engelhardt, L. M., Healy, P. C., Kildea, J. D. & White, A. H. (1989). Aust. J. Chem. 42, 923–931. CSD CrossRef CAS Google Scholar
Liu, J. J., Galetis, P., Farr, A., Maharaj, L., Samarasinha, H., McGechan, A. C., Baguley, B. C., Bowen, R. J., Berners-Price, S. J. & McKeage, M. J. (2008). J. Inorg. Biochem. 102, 303–310. Web of Science CrossRef PubMed CAS Google Scholar
Meijboom, R., Bowen, R. J. & Berners-Price, S. J. (2009). Coord. Chem. Rev. 253, 325–342. Web of Science CrossRef CAS Google Scholar
Meijboom, R. & Muller, A. (2006). Acta Cryst. E62, m3191–m3193. Web of Science CSD CrossRef IUCr Journals Google Scholar
Muetterties, E. L. & Alegranti, C. W. (1972). J. Am. Chem. Soc. 94, 6386–6391. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The chemistry of silver(I) complexes has been reviewed recently with regards to the coordination chemistry, the design of coordination networks and polymers containing nitrogen-donor ligands and to the chemistry of silver scorpionates and carboxylates (Meijboom et al., 2009). Our interest has been on the coordination chemistry of AgX salts (X- = F-, Cl-, Br-, I-, BF4-, PF6-, NO3- etc.) with Group 15 donor ligands with the main focus on tertiary phosphines and in their context as potential antitumor agents (Berners-Price et al., 1998; Liu et al., 2008).
Tertiary phosphine silver(I) complexes of mixed-base species have been reported but are not very common (Meijboom et al., 2009). Examples of these complexes include [XAg(py)(PPh3)2] (X = Cl or Br) (Engelhardt et al., 1989), [XAg(py)PPh3]2.C5H5N (X = Cl, Br or I) (Gotsis et al., 1989) and [IAg(py)(P-p-tol-Ph3)]2 (Meijboom & Muller, 2006). The preparation of [IAg(py)(Pcy2Ph)]2 (I) is similar to those reported and involves heating together stoichiometric mixtures of silver(I)iodide and dicyclohexylphenylphosphine in pyridine solution.
As pointed out earlier by Meijboom & Muller (2006), the resulting complex comprises of a 1:1:1 µ,µ'-diiodo-bridged dimer. The Ag atoms of this centrosymmetric title compound are coordinated to a phosphine ligand, a pyridine ligand and two iodide anions in a distorted tetrahedral manner. The bond angles around the Ag atoms are listed in Table 1. The Ag—P, Ag—N and Ag—I bond distances are typical of similar complexes. However the difference in the Ag—I and Ag—I' bond distances [2.8186 (4) and 2.9449 (5) Å] which results in an unsymmetrical core (Ag—I—Ag'-I') of the complex has been attributed to the partial separation of dimer into monomer of such complexes (Bowmaker et al., 1996; Meijboom & Muller, 2006).
In comparison (see Table 2), the same Ag—X bond distance seems larger in (I) as compared to those in [XAg(py)(PPh3)]2.C5H5N (X = Cl, Br or I) (Gotsis et al., 1989) and [IAg(py)(P-(p-tol)3)]2 (Meijboom and Muller, 2006) which are only slightly different. The bond angles in the core (Ag—X—Ag' and X—Ag—X') are similar in (I), [IAg(py)(P-(p-tol)3)]2 and [XAg(py)(PPh3)]2.C5H5N (X = I). In these structures the Ag—X—Ag' is much smaller than X—Ag—X'. The situation is slightly different for [XAg(py)(PPh3)]2.C5H5N (X = Cl or Br) in which the two angles are closer to 90°. Similarly the Ag···Ag bond distances are shorter in (I) and [IAg(py)(P-(p-tol)3)]2 but increases in [XAg(py)(PPh3)]2.C5H5N (X = Cl, Br or I). Ag—P and Ag—N bond distances are comparable in all five structures listed in Table 2.
Despite the number of structural reports of [LnAgX] complexes, their solution behaviour, initiated by Muetterties & Alegranti (1972), has always shown that the coordinating ligands were labile in all complexes studied. Rapid ligand-exchange reactions have been reported for all 31P NMR spectroscopic investigations of ionic AgI monodentate phosphine complexes, thus making NMR spectroscopy of limited use for these types of complexes.