metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{μ-1,3-Bis[(3,5-di­methyl­pyrazol-1-yl)meth­yl]benzene-κ2N2:N2′}di-μ-chlorido-bis­­[chloridopalladium(II)] toluene solvate

aDepartment of Chemistry, University of Johannesburg, PO Box 524, Auckland Park, 2006 Johannesburg, South Africa
*Correspondence e-mail: bernardowaga@gmail.com

(Received 17 March 2009; accepted 23 March 2009; online 25 March 2009)

In the title complex, [Pd2Cl4(C18H22N4)]·C7H8, each of the two four-coordinated PdII atoms is in a slightly distorted square-planar geometry, defined by one N atom from the ligand, two bridging Cl atoms and one terminal Cl atom. Inter­molecular C—H⋯π inter­actions between the pyrazole ring H atom and the toluene ring stabilize the crystal structure.

Related literature

For general background to poly(pyrazol-1-yl-meth­yl)benzene ligands and their palladium complexes, see: Hartshorn & Steel (1995[Hartshorn, C. M. & Steel, P. J. (1995). J. Aust. Chem. 48, 1587-1591.], 1997[Hartshorn, C. M. & Steel, P. J. (1997). Chem. Commun. pp. 541-542.], 1998[Hartshorn, C. M. & Steel, P. J. (1998). Organometallics, 17, 3487-3496.]); Motsoane et al. (2007[Motsoane, N. M., Guzei, I. A. & Darkwa, J. (2007). Z. Naturforsch. Teil B, 62, 323-330.]); Yen et al. (2006[Yen, S. K., Koh, L. L., Hahn, F. E., Huynh, H. V. & Hor, T. S. A. (2006). Organometallics, 25, 5112-5118.]). For related structures, see: Guzei et al. (2003[Guzei, I. A., Li, K., Bikzhanova, G. A., Darkwa, J. & Mapolie, S. F. (2003). Dalton Trans. pp. 715-717.]).

[Scheme 1]

Experimental

Crystal data
  • [Pd2Cl4(C18H22N4)]·C7H8

  • Mr = 741.13

  • Monoclinic, P 21 /n

  • a = 10.4572 (10) Å

  • b = 25.376 (2) Å

  • c = 12.0782 (12) Å

  • β = 112.395 (4)°

  • V = 2963.4 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.60 mm−1

  • T = 298 K

  • 0.50 × 0.12 × 0.06 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.503, Tmax = 0.910

  • 22587 measured reflections

  • 7158 independent reflections

  • 4777 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.098

  • S = 1.02

  • 7158 reflections

  • 321 parameters

  • 10 restraints

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Selected bond lengths (Å)

N2—Pd1 2.005 (3)
N4—Pd2 2.002 (3)
Cl1—Pd1 2.2647 (11)
Cl2—Pd2 2.2774 (12)
Cl3—Pd2 2.3421 (11)
Cl3—Pd1 2.3502 (10)
Cl4—Pd2 2.3092 (11)
Cl4—Pd1 2.3135 (12)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯Cg1i 0.93 2.93 3.802 (6) 157
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]. Cg1 is the centroid of the C20–C25 ring.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound is of interest as part of a study of poly(pyrazol-1-yl-methyl)benzene palladium complexes as catalyst precursors for olefin oligomerization and polymerization. In a recent report (Motsoane et al., 2007), coordination of Pd atom was shown to vary depending on the position of the pyrazol-1-yl-methyl group on the benzene linker. Poly(pyrazol-1-yl-methyl)benzene ligands can coordinate to Pd atoms through two independent pyrazolyl units (Motsoane et al., 2007) or as a chelate ligand to a dinuclear unit with two bridging halides between the Pd atoms in a Pd2X4 (X = Cl) fashion (Yen et al., 2006). This potential of poly(pyrazol-1-yl-methyl)benzene ligands exhibiting a variety of coordination modes was first reported in 1995 (Hartshorn & Steel, 1995). For the palladium complexes, two bonding modes have been reported. The first is a cage structure with six PdCl2 units and four 1,3,5-tris(pyrazol-1-yl-methyl)-2,4,6-triethylbenzene ligands, with coordination through the pyrazole N atoms (Hartshorn & Steel, 1997), and the second involves C—H activation, where coordination is through a pyrazole N atom as well as through the activated C atom (Hartshorn & Steel, 1998).

The title compound (Fig. 1) crystallizes from a mixture of chloroform and toluene and contains a dinuclear Pd complex molecule and a solvent toluene molecule in the asymmetric unit. The two PdII atoms are bridged by two Cl atoms. There are examples of similar structures in the literature, where the metal centers are bridged by halogen atoms (Cl or Br) (Guzei et al., 2003; Motsoane et al., 2007). Each of the Pd atoms has a distorted square-planar geometry (Table 1). The two square planes defined by the atoms around the Pd centers, N2, Cl1, Cl3, Cl4 for Pd1 and N4, Cl2, Cl3,Cl4 for Pd2, have a dihedral angle of 39.59 (1)° and atomic deviations from the planes of 0.018 and 0.011 Å, respectively. This dihedral angle results in a close contact between the two Pd centers [3.2116 (5) Å] and is probably due to steric bulk of the whole complex. The terminal as well as bridging Pd—Cl distances average 2.310 Å, which is close to the same distances of similar structues from the CSD (Guzei et al., 2003; Motsoane et al., 2007). The Pd—N bond distances [2.005 (3) and 2.002 (3) Å] are shorter than the corresponding distances from the CSD (2.1 (1) Å), as calculated by Guzei et al. (2003).

In the crystal structure, the dinuclear complex molecule is connected to the toluene molecule through a C—H···π interaction, with an H16···π distance of 2.93 Å (Fig. 2).

Related literature top

For general background to poly(pyrazol-1-yl-methyl)benzene ligands and their palladium complexes, see: Hartshorn & Steel (1995, 1997, 1998); Motsoane et al. (2007); Yen et al. (2006). For related structures, see: Guzei et al. (2003).

Experimental top

To a solution of PdCl2(NCMe)2 (0.44 g, 1.70 mmol) in CH2Cl2 (25 mL) was added 1,3-bis[(3,5-dimethylpyrazole-1-yl)methyl]benzene (0.50 g, 1.70 mmol). The resultant solution was stired overnight, and after removal of solvent, a dark orange solid was obtained. Recrystallization was done in a mixture of CHCl3 and toluene, giving needle-shaped crystals.

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic), 0.97 (CH2) and 0.96 (CH3) Å and with Uiso(H) = 1.2(or 1.5 for methyl)Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms and toluene molecule have been omitted for clarity.
[Figure 2] Fig. 2. Packing diagram of the title compound, showing the intermolecular C—H···π interactions (dashed lines) linking the Pd complex and the toluene solvent molecule. [Symmetry code: (i) 1/2+x, 3/2-y, -1/2+z.]
{µ-1,3-Bis[(3,5-dimethylpyrazol-1-yl)methyl]benzene-κ2N2:N2'}di-µ- chlorido-bis[chloridopalladium(II)] toluene solvate top
Crystal data top
[Pd2Cl4(C18H22N4)]·C7H8F(000) = 1472
Mr = 741.13Dx = 1.661 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 22587 reflections
a = 10.4572 (10) Åθ = 2.0–28.0°
b = 25.376 (2) ŵ = 1.60 mm1
c = 12.0782 (12) ÅT = 298 K
β = 112.395 (4)°Needle, brown
V = 2963.4 (5) Å30.50 × 0.12 × 0.06 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
7158 independent reflections
Radiation source: fine-focus sealed tube4777 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ϕ and ω scansθmax = 28.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1313
Tmin = 0.503, Tmax = 0.910k = 2433
22587 measured reflectionsl = 1015
Refinement top
Refinement on F210 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0445P)2 + 1.0406P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.098(Δ/σ)max = 0.012
S = 1.02Δρmax = 0.53 e Å3
7158 reflectionsΔρmin = 0.58 e Å3
321 parameters
Crystal data top
[Pd2Cl4(C18H22N4)]·C7H8V = 2963.4 (5) Å3
Mr = 741.13Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.4572 (10) ŵ = 1.60 mm1
b = 25.376 (2) ÅT = 298 K
c = 12.0782 (12) Å0.50 × 0.12 × 0.06 mm
β = 112.395 (4)°
Data collection top
Bruker SMART APEX CCD
diffractometer
7158 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
4777 reflections with I > 2σ(I)
Tmin = 0.503, Tmax = 0.910Rint = 0.045
22587 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04210 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.02Δρmax = 0.53 e Å3
7158 reflectionsΔρmin = 0.58 e Å3
321 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1871 (7)0.8038 (2)0.2496 (6)0.099 (2)
H1A0.10590.80100.17750.149*
H1B0.19310.77380.29960.149*
H1C0.26760.80520.22970.149*
C20.1790 (5)0.85270 (18)0.3147 (5)0.0595 (13)
C30.1918 (5)0.8599 (2)0.4306 (5)0.0695 (14)
H30.20750.83370.48820.083*
C40.1771 (4)0.9140 (2)0.4470 (4)0.0571 (11)
C50.1804 (7)0.9431 (2)0.5530 (5)0.0889 (18)
H5A0.19830.97970.54440.133*
H5B0.25220.92910.62310.133*
H5C0.09280.93960.56090.133*
C60.1524 (4)0.91608 (18)0.1445 (4)0.0514 (11)
H6A0.07090.93760.10510.062*
H6B0.14450.88480.09630.062*
C70.2807 (4)0.94690 (18)0.1525 (4)0.0471 (11)
C80.4127 (5)0.9274 (2)0.2212 (5)0.0604 (13)
H80.42250.89550.26150.073*
C90.5274 (5)0.9558 (2)0.2283 (5)0.0695 (15)
H90.61510.94280.27270.083*
C100.5141 (4)1.0033 (2)0.1707 (5)0.0576 (13)
H100.59281.02200.17640.069*
C110.3838 (4)1.02362 (17)0.1036 (4)0.0450 (10)
C120.2680 (4)0.99412 (17)0.0948 (4)0.0433 (10)
H120.18031.00680.04880.052*
C130.3681 (4)1.07703 (17)0.0446 (4)0.0494 (11)
H13A0.40331.07550.01890.059*
H13B0.27091.08620.00900.059*
C140.6392 (5)1.1343 (2)0.0648 (5)0.0722 (15)
H14A0.66851.09830.06910.108*
H14B0.71871.15700.08930.108*
H14C0.57961.14260.01600.108*
C150.5632 (4)1.14228 (18)0.1452 (4)0.0493 (11)
C160.5951 (4)1.17376 (19)0.2460 (4)0.0579 (13)
H160.67141.19580.27800.070*
C170.4926 (4)1.16631 (17)0.2904 (4)0.0501 (11)
C180.4749 (5)1.1888 (2)0.3991 (5)0.0672 (14)
H18A0.38031.19910.37840.101*
H18B0.53391.21890.42710.101*
H18C0.49931.16260.46110.101*
N10.1581 (3)0.90068 (14)0.2629 (3)0.0473 (9)
N20.1594 (3)0.93824 (14)0.3438 (3)0.0446 (8)
N30.4434 (3)1.11796 (13)0.1316 (3)0.0453 (8)
N40.3997 (3)1.13181 (13)0.2198 (3)0.0435 (8)
Cl10.12855 (10)0.97616 (5)0.21818 (11)0.0614 (3)
Cl20.11537 (12)1.17589 (5)0.07665 (12)0.0656 (3)
Cl30.30569 (10)1.05135 (4)0.37297 (10)0.0524 (3)
Cl40.00312 (10)1.09512 (5)0.23267 (12)0.0601 (3)
Pd10.08672 (3)1.011252 (13)0.29434 (3)0.04228 (10)
Pd20.21405 (3)1.114894 (13)0.22275 (3)0.04230 (10)
C190.2046 (12)0.1522 (5)0.5868 (12)0.230 (7)
H19A0.17070.17320.51540.345*
H19B0.12810.13600.59920.345*
H19C0.26500.12530.57850.345*
C200.2793 (10)0.1850 (4)0.6875 (11)0.136 (3)
C210.3754 (11)0.2193 (4)0.6843 (11)0.147 (4)
H210.39400.22330.61540.177*
C220.4488 (12)0.2496 (5)0.7898 (14)0.165 (5)
H220.51580.27360.78920.198*
C230.4229 (9)0.2439 (4)0.8855 (11)0.149 (4)
H230.47040.26360.95380.179*
C240.3204 (9)0.2070 (4)0.8840 (9)0.126 (3)
H240.30320.20300.95360.151*
C250.2452 (9)0.1769 (3)0.7868 (10)0.129 (3)
H250.17750.15330.78720.155*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.134 (6)0.049 (4)0.098 (5)0.006 (3)0.026 (4)0.002 (3)
C20.060 (3)0.039 (3)0.067 (4)0.002 (2)0.011 (2)0.008 (3)
C30.068 (3)0.058 (2)0.067 (4)0.004 (2)0.009 (3)0.022 (3)
C40.054 (2)0.063 (2)0.046 (2)0.003 (2)0.010 (2)0.012 (2)
C50.120 (5)0.093 (5)0.054 (3)0.018 (4)0.033 (3)0.010 (3)
C60.055 (2)0.049 (3)0.045 (3)0.0004 (19)0.013 (2)0.007 (2)
C70.046 (2)0.049 (3)0.041 (2)0.0039 (18)0.0108 (18)0.011 (2)
C80.060 (3)0.052 (3)0.065 (3)0.009 (2)0.019 (2)0.004 (3)
C90.047 (2)0.074 (4)0.081 (4)0.016 (2)0.016 (2)0.013 (3)
C100.044 (2)0.060 (3)0.065 (3)0.003 (2)0.016 (2)0.002 (3)
C110.045 (2)0.049 (3)0.039 (2)0.0046 (18)0.0148 (17)0.006 (2)
C120.0423 (19)0.048 (3)0.033 (2)0.0029 (17)0.0066 (16)0.006 (2)
C130.047 (2)0.055 (3)0.046 (3)0.0024 (19)0.0171 (19)0.006 (2)
C140.055 (3)0.091 (4)0.076 (4)0.001 (3)0.031 (3)0.012 (3)
C150.041 (2)0.054 (3)0.048 (3)0.0002 (19)0.0114 (18)0.008 (2)
C160.045 (2)0.051 (3)0.065 (3)0.0112 (19)0.006 (2)0.000 (3)
C170.047 (2)0.041 (3)0.051 (3)0.0023 (18)0.0063 (19)0.001 (2)
C180.077 (3)0.052 (3)0.059 (3)0.009 (2)0.011 (3)0.015 (3)
N10.0525 (19)0.038 (2)0.047 (2)0.0025 (15)0.0139 (16)0.0023 (18)
N20.0427 (17)0.047 (2)0.040 (2)0.0013 (15)0.0111 (15)0.0000 (18)
N30.0402 (16)0.043 (2)0.047 (2)0.0019 (14)0.0114 (15)0.0005 (17)
N40.0421 (16)0.041 (2)0.046 (2)0.0030 (14)0.0150 (15)0.0042 (17)
Cl10.0409 (5)0.0746 (9)0.0621 (8)0.0089 (5)0.0123 (5)0.0036 (6)
Cl20.0581 (6)0.0569 (8)0.0727 (9)0.0068 (5)0.0148 (6)0.0169 (7)
Cl30.0417 (5)0.0538 (7)0.0524 (7)0.0020 (4)0.0074 (4)0.0048 (5)
Cl40.0436 (5)0.0561 (7)0.0845 (9)0.0107 (5)0.0286 (5)0.0119 (7)
Pd10.03703 (15)0.0461 (2)0.04121 (19)0.00065 (13)0.01216 (13)0.00031 (16)
Pd20.03750 (15)0.03964 (19)0.0467 (2)0.00144 (12)0.01255 (13)0.00171 (15)
C190.199 (12)0.186 (12)0.217 (13)0.093 (10)0.019 (10)0.040 (11)
C200.126 (7)0.115 (7)0.167 (9)0.043 (5)0.056 (6)0.040 (7)
C210.153 (9)0.128 (9)0.208 (11)0.062 (5)0.122 (9)0.070 (7)
C220.174 (11)0.131 (9)0.249 (14)0.052 (7)0.145 (11)0.050 (8)
C230.118 (6)0.126 (7)0.220 (11)0.052 (4)0.082 (7)0.070 (8)
C240.115 (6)0.116 (7)0.167 (8)0.061 (4)0.076 (6)0.075 (6)
C250.116 (6)0.091 (6)0.187 (9)0.054 (5)0.065 (6)0.068 (6)
Geometric parameters (Å, º) top
C1—C21.488 (8)C15—N31.349 (5)
C1—H1A0.9600C15—C161.387 (6)
C1—H1B0.9600C16—C171.381 (7)
C1—H1C0.9600C16—H160.9300
C2—N11.348 (6)C17—N41.344 (5)
C2—C31.367 (7)C17—C181.506 (7)
C3—C41.403 (7)C18—H18A0.9600
C3—H30.9300C18—H18B0.9600
C4—N21.339 (6)C18—H18C0.9600
C4—C51.468 (7)N1—N21.361 (5)
C5—H5A0.9600N2—Pd12.005 (3)
C5—H5B0.9600N3—N41.356 (5)
C5—H5C0.9600N4—Pd22.002 (3)
C6—N11.462 (6)Cl1—Pd12.2647 (11)
C6—C71.524 (6)Cl2—Pd22.2774 (12)
C6—H6A0.9700Cl3—Pd22.3421 (11)
C6—H6B0.9700Cl3—Pd12.3502 (10)
C7—C121.367 (6)Cl4—Pd22.3092 (11)
C7—C81.402 (6)Cl4—Pd12.3135 (12)
C8—C91.375 (7)Pd1—Pd23.2117 (5)
C8—H80.9300C19—C201.435 (11)
C9—C101.371 (7)C19—H19A0.9600
C9—H90.9300C19—H19B0.9600
C10—C111.393 (6)C19—H19C0.9600
C10—H100.9300C20—C211.341 (13)
C11—C121.393 (6)C20—C251.391 (13)
C11—C131.511 (6)C21—C221.435 (15)
C12—H120.9300C21—H210.9300
C13—N31.474 (5)C22—C231.292 (13)
C13—H13A0.9700C22—H220.9300
C13—H13B0.9700C23—C241.418 (12)
C14—C151.484 (7)C23—H230.9300
C14—H14A0.9600C24—C251.370 (12)
C14—H14B0.9600C24—H240.9300
C14—H14C0.9600C25—H250.9300
C2—C1—H1A109.5C16—C17—C18131.1 (4)
C2—C1—H1B109.5C17—C18—H18A109.5
H1A—C1—H1B109.5C17—C18—H18B109.5
C2—C1—H1C109.5H18A—C18—H18B109.5
H1A—C1—H1C109.5C17—C18—H18C109.5
H1B—C1—H1C109.5H18A—C18—H18C109.5
N1—C2—C3106.9 (4)H18B—C18—H18C109.5
N1—C2—C1122.6 (5)C2—N1—N2110.1 (4)
C3—C2—C1130.5 (5)C2—N1—C6129.4 (4)
C2—C3—C4107.6 (5)N2—N1—C6120.0 (3)
C2—C3—H3126.2C4—N2—N1107.8 (4)
C4—C3—H3126.2C4—N2—Pd1127.2 (3)
N2—C4—C3107.6 (5)N1—N2—Pd1122.3 (3)
N2—C4—C5122.0 (5)C15—N3—N4111.1 (3)
C3—C4—C5130.5 (5)C15—N3—C13128.9 (4)
C4—C5—H5A109.5N4—N3—C13119.6 (3)
C4—C5—H5B109.5C17—N4—N3106.8 (3)
H5A—C5—H5B109.5C17—N4—Pd2126.8 (3)
C4—C5—H5C109.5N3—N4—Pd2125.3 (2)
H5A—C5—H5C109.5Pd2—Cl3—Pd186.39 (3)
H5B—C5—H5C109.5Pd2—Cl4—Pd188.01 (4)
N1—C6—C7111.6 (3)N2—Pd1—Cl187.88 (10)
N1—C6—H6A109.3N2—Pd1—Cl4178.57 (11)
C7—C6—H6A109.3Cl1—Pd1—Cl492.05 (4)
N1—C6—H6B109.3N2—Pd1—Cl394.55 (9)
C7—C6—H6B109.3Cl1—Pd1—Cl3177.47 (5)
H6A—C6—H6B108.0Cl4—Pd1—Cl385.54 (4)
C12—C7—C8119.7 (4)N2—Pd1—Pd2133.45 (9)
C12—C7—C6120.3 (4)Cl1—Pd1—Pd2131.49 (4)
C8—C7—C6120.0 (4)Cl4—Pd1—Pd245.94 (3)
C9—C8—C7119.3 (5)Cl3—Pd1—Pd246.70 (3)
C9—C8—H8120.4N4—Pd2—Cl289.80 (10)
C7—C8—H8120.4N4—Pd2—Cl4178.19 (11)
C10—C9—C8120.9 (4)Cl2—Pd2—Cl491.61 (4)
C10—C9—H9119.6N4—Pd2—Cl392.76 (10)
C8—C9—H9119.6Cl2—Pd2—Cl3177.44 (4)
C9—C10—C11120.5 (4)Cl4—Pd2—Cl385.82 (4)
C9—C10—H10119.7N4—Pd2—Pd1133.22 (10)
C11—C10—H10119.7Cl2—Pd2—Pd1130.78 (3)
C12—C11—C10118.4 (4)Cl4—Pd2—Pd146.05 (3)
C12—C11—C13120.8 (4)Cl3—Pd2—Pd146.91 (3)
C10—C11—C13120.8 (4)C20—C19—H19A109.5
C7—C12—C11121.3 (4)C20—C19—H19B109.5
C7—C12—H12119.4H19A—C19—H19B109.5
C11—C12—H12119.4C20—C19—H19C109.5
N3—C13—C11111.3 (3)H19A—C19—H19C109.5
N3—C13—H13A109.4H19B—C19—H19C109.5
C11—C13—H13A109.4C21—C20—C19121.7 (13)
N3—C13—H13B109.4C21—C20—C25124.1 (12)
C11—C13—H13B109.4C19—C20—C25114.2 (12)
H13A—C13—H13B108.0C20—C21—C22118.4 (12)
C15—C14—H14A109.5C20—C21—H21120.8
C15—C14—H14B109.5C22—C21—H21120.8
H14A—C14—H14B109.5C23—C22—C21120.7 (13)
C15—C14—H14C109.5C23—C22—H22119.6
H14A—C14—H14C109.5C21—C22—H22119.6
H14B—C14—H14C109.5C22—C23—C24118.5 (13)
N3—C15—C16105.8 (4)C22—C23—H23120.7
N3—C15—C14124.2 (4)C24—C23—H23120.7
C16—C15—C14130.1 (4)C25—C24—C23124.3 (11)
C17—C16—C15107.4 (4)C25—C24—H24117.9
C17—C16—H16126.3C23—C24—H24117.9
C15—C16—H16126.3C24—C25—C20113.9 (10)
N4—C17—C16108.9 (4)C24—C25—H25123.0
N4—C17—C18120.0 (4)C20—C25—H25123.0
N1—C2—C3—C40.3 (5)C15—N3—N4—C170.9 (5)
C1—C2—C3—C4179.3 (5)C13—N3—N4—C17175.2 (3)
C2—C3—C4—N21.5 (5)C15—N3—N4—Pd2169.8 (3)
C2—C3—C4—C5179.3 (5)C13—N3—N4—Pd215.8 (5)
N1—C6—C7—C12129.2 (4)C4—N2—Pd1—Cl188.8 (3)
N1—C6—C7—C849.6 (6)N1—N2—Pd1—Cl170.3 (3)
C12—C7—C8—C90.7 (7)C4—N2—Pd1—Cl390.5 (3)
C6—C7—C8—C9179.5 (5)N1—N2—Pd1—Cl3110.3 (3)
C7—C8—C9—C101.0 (8)C4—N2—Pd1—Pd2119.8 (3)
C8—C9—C10—C110.0 (8)N1—N2—Pd1—Pd281.1 (3)
C9—C10—C11—C121.2 (7)Pd2—Cl4—Pd1—Cl1152.62 (5)
C9—C10—C11—C13177.1 (4)Pd2—Cl4—Pd1—Cl328.14 (4)
C8—C7—C12—C110.6 (6)Pd2—Cl3—Pd1—N2150.81 (11)
C6—C7—C12—C11178.2 (4)Pd2—Cl3—Pd1—Cl427.75 (4)
C10—C11—C12—C71.5 (6)C17—N4—Pd2—Cl294.0 (4)
C13—C11—C12—C7176.8 (4)N3—N4—Pd2—Cl272.8 (3)
C12—C11—C13—N3125.1 (4)C17—N4—Pd2—Cl386.0 (3)
C10—C11—C13—N353.2 (5)N3—N4—Pd2—Cl3107.2 (3)
N3—C15—C16—C170.9 (5)C17—N4—Pd2—Pd1112.8 (3)
C14—C15—C16—C17178.7 (5)N3—N4—Pd2—Pd180.5 (3)
C15—C16—C17—N40.4 (5)Pd1—Cl4—Pd2—Cl2151.71 (5)
C15—C16—C17—C18178.1 (5)Pd1—Cl4—Pd2—Cl328.24 (4)
C3—C2—N1—N20.9 (5)Pd1—Cl3—Pd2—N4153.33 (10)
C1—C2—N1—N2178.2 (5)Pd1—Cl3—Pd2—Cl427.80 (4)
C3—C2—N1—C6172.8 (4)N2—Pd1—Pd2—N44.1 (2)
C1—C2—N1—C66.3 (7)Cl1—Pd1—Pd2—N4144.43 (15)
C7—C6—N1—C2107.5 (5)Cl4—Pd1—Pd2—N4177.72 (15)
C7—C6—N1—N263.6 (5)Cl3—Pd1—Pd2—N437.97 (14)
C3—C4—N2—N12.0 (5)N2—Pd1—Pd2—Cl2139.48 (15)
C5—C4—N2—N1178.7 (4)Cl1—Pd1—Pd2—Cl20.88 (7)
C3—C4—N2—Pd1163.6 (3)Cl4—Pd1—Pd2—Cl238.73 (7)
C5—C4—N2—Pd117.1 (6)Cl3—Pd1—Pd2—Cl2178.48 (7)
C2—N1—N2—C41.9 (4)N2—Pd1—Pd2—Cl4178.21 (15)
C6—N1—N2—C4174.6 (3)Cl1—Pd1—Pd2—Cl437.85 (7)
C2—N1—N2—Pd1164.5 (3)Cl3—Pd1—Pd2—Cl4139.75 (6)
C6—N1—N2—Pd122.7 (4)N2—Pd1—Pd2—Cl342.04 (14)
C16—C15—N3—N41.1 (5)Cl1—Pd1—Pd2—Cl3177.61 (6)
C14—C15—N3—N4178.5 (4)Cl4—Pd1—Pd2—Cl3139.75 (7)
C16—C15—N3—C13174.8 (4)C19—C20—C21—C22178.1 (9)
C14—C15—N3—C134.9 (7)C25—C20—C21—C220.3 (14)
C11—C13—N3—C15105.7 (5)C20—C21—C22—C230.0 (16)
C11—C13—N3—N467.5 (4)C21—C22—C23—C240.1 (15)
C16—C17—N4—N30.3 (5)C22—C23—C24—C250.6 (13)
C18—C17—N4—N3178.9 (4)C23—C24—C25—C200.9 (12)
C16—C17—N4—Pd2169.0 (3)C21—C20—C25—C240.8 (12)
C18—C17—N4—Pd212.3 (6)C19—C20—C25—C24177.8 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···Cg1i0.932.933.802 (6)157
Symmetry code: (i) x+1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Pd2Cl4(C18H22N4)]·C7H8
Mr741.13
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)10.4572 (10), 25.376 (2), 12.0782 (12)
β (°) 112.395 (4)
V3)2963.4 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.60
Crystal size (mm)0.50 × 0.12 × 0.06
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.503, 0.910
No. of measured, independent and
observed [I > 2σ(I)] reflections
22587, 7158, 4777
Rint0.045
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.098, 1.02
No. of reflections7158
No. of parameters321
No. of restraints10
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.58

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1999), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
N2—Pd12.005 (3)Cl3—Pd22.3421 (11)
N4—Pd22.002 (3)Cl3—Pd12.3502 (10)
Cl1—Pd12.2647 (11)Cl4—Pd22.3092 (11)
Cl2—Pd22.2774 (12)Cl4—Pd12.3135 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···Cg1i0.932.933.802 (6)157
Symmetry code: (i) x+1/2, y+3/2, z1/2.
 

Acknowledgements

We thank the University of Johannesburg and the National Research Foundation (South Africa) for financial support for this project.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGuzei, I. A., Li, K., Bikzhanova, G. A., Darkwa, J. & Mapolie, S. F. (2003). Dalton Trans. pp. 715–717.  Web of Science CSD CrossRef Google Scholar
First citationHartshorn, C. M. & Steel, P. J. (1995). J. Aust. Chem. 48, 1587–1591.  CSD CrossRef CAS Web of Science Google Scholar
First citationHartshorn, C. M. & Steel, P. J. (1997). Chem. Commun. pp. 541–542.  CSD CrossRef Web of Science Google Scholar
First citationHartshorn, C. M. & Steel, P. J. (1998). Organometallics, 17, 3487–3496.  Web of Science CSD CrossRef CAS Google Scholar
First citationMotsoane, N. M., Guzei, I. A. & Darkwa, J. (2007). Z. Naturforsch. Teil B, 62, 323–330.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYen, S. K., Koh, L. L., Hahn, F. E., Huynh, H. V. & Hor, T. S. A. (2006). Organometallics, 25, 5112–5118.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds