metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages m387-m388

Poly[octa-μ-aqua-tetra­aqua­bis­(μ-5-sul­fon­ato­benzene-1,3-di­carboxyl­ato)cobalt(II)tetra­sodium]

aDepartment of Chemistry, Zhejiang University, People's Republic of China
*Correspondence e-mail: xudj@mail.hz.zj.cn

(Received 24 February 2009; accepted 5 March 2009; online 11 March 2009)

The title compound, [CoNa4(C8H3O7S)2(H2O)12]n, is a three-dimensional coordination polymer bridged by sulfoisophthalate trianions and water mol­ecules. The CoII atom, located on an inversion centre, is coordinated by two carboxyl­ate groups of the sulfoisophthalate trianions and by four water mol­ecules in a distorted CoO6 octa­hedral geometry. Two independent NaI atoms also have a distorted octa­hedral coordination geometry formed by water, carboxyl­ate O and sulfonate O atoms. An extensive O—H⋯O and C—H⋯O hydrogen-bonding network is present in the crystal structure, as well as weak π-π stacking [centroid–centroid distance = 3.9553 (11) Å].

Related literature

For the role played by ππ stacking between aromatic rings in the electron-transfer process in some biological systems, see: Deisenhofer & Michel (1989[Deisenhofer, J. & Michel, H. (1989). EMBO, 8, 2149-2170.]); Su & Xu (2004[Su, J.-R. & Xu, D.-J. (2004). J. Coord. Chem. 57, 223-229.]); Liu et al. (2004[Liu, B.-X., Su, J.-R. & Xu, D.-J. (2004). Acta Cryst. C60, m183-m185.]); Pan et al. (2006[Pan, T.-T., Su, J.-R. & Xu, D.-J. (2006). Acta Cryst. E62, m2183-m2185.]). For a related structure, see: Zhang et al. (2008[Zhang, B.-Y., Nie, J.-J. & Xu, D.-J. (2008). Acta Cryst. E64, m986.]).

[Scheme 1]

Experimental

Crystal data
  • [CoNa4(C8H3O7S)2(H2O)12]

  • Mr = 853.41

  • Monoclinic, P 21 /n

  • a = 7.8756 (12) Å

  • b = 17.294 (3) Å

  • c = 11.7700 (18) Å

  • β = 93.281 (5)°

  • V = 1600.5 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.82 mm−1

  • T = 295 K

  • 0.35 × 0.32 × 0.25 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.756, Tmax = 0.819

  • 9383 measured reflections

  • 3120 independent reflections

  • 2899 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.066

  • S = 1.08

  • 3120 reflections

  • 223 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Selected bond lengths (Å)

Co—O1 2.0541 (11)
Co—O8 2.1039 (13)
Co—O9 2.1122 (11)
Na1—O5i 2.3477 (13)
Na1—O9 2.4322 (13)
Na1—O10 2.4702 (14)
Na1—O11 2.5343 (15)
Na1—O12 2.4048 (14)
Na1—O13 2.4037 (15)
Na2—O2 2.4557 (13)
Na2—O5ii 2.4785 (13)
Na2—O6iii 2.4344 (13)
Na2—O10 2.4787 (15)
Na2—O11iv 2.3506 (14)
Na2—O12iv 2.5222 (14)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H8A⋯O13v 0.84 2.02 2.8584 (19) 172
O8—H8B⋯O4ii 0.85 1.98 2.8028 (18) 160
O9—H9A⋯O7iii 0.86 2.16 2.9932 (16) 164
O9—H9B⋯O2 0.84 1.83 2.6222 (16) 158
O10—H10A⋯O7ii 0.83 2.04 2.8602 (17) 168
O10—H10B⋯O3vi 0.85 1.84 2.6676 (18) 165
O11—H11A⋯O7iii 0.89 1.89 2.7621 (17) 167
O11—H11B⋯O3vi 0.87 1.92 2.7904 (19) 175
O12—H12A⋯O1vii 0.84 2.12 2.9531 (17) 174
O12—H12B⋯O4viii 0.89 2.05 2.9076 (18) 162
O13—H13A⋯O4ii 0.84 1.93 2.7277 (18) 157
O13—H13B⋯O6i 0.88 2.22 2.9597 (17) 142
C7—H7⋯O11iv 0.93 2.49 3.371 (2) 157
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) -x+2, -y+1, -z+1; (vi) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (vii) -x+1, -y+1, -z+1; (viii) x+1, y, z+1.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texsas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As π-π stacking between aromatic rings plays an important role in electron transfer process in some biological system (Deisenhofer & Michel, 1989), π-π stacking has attracted our much attention in past years (Su & Xu, 2004; Liu et al., 2004; Pan et al., 2006). In order to investigate the influence of substituents of the aromatic compounds on stacking between parallel aromatic rings, the title CoII compound incorporating sulfoisophthalate ligand has recently been prepared and its crystal structure is reported here.

The title compound is a three dimensional polymeric complex bridged by sulfoisophthalate trianions and water molecules (Fig. 1). The Co atom occupies a special position in an inversion centre and is coordinated by four water molecules and two carboxyl groups from sulfoisophthalate trianions in a distorted CoO6 octahedral geometry (Table 1). The crystal structure contains two independent NaI atoms, both in distorted octahedral coordination geometry. The Na1 atom is coordinated by five water molecules and one sulfonate O atom, while the Na2 atom is coordinated by three water molecules, two sulfonate O atoms and one carboxy O atom. The C8-carboxy group of the sulfoisophthalate ligand is not coordinated to the metal atom in the structure.

The extensive O—H···O hydrogen bonding network presents in the crystal structure (Table 2), weak C—H···O hydrogen bonding also helps to stabilize the crystal structure. A partial overlapped arrangement between centro-symmetric benzene rings is observed in the crystal structure (Fig. 2), perpendicular distance of the centroid of the C2-benzne ring on the C2vbenzene ring is 3.563 Å, [symmetry code: (v) 1 - x,1 - y,-z], which suggests a weak π-π stacking involving sulfoisophthalate ligand (Zhang et al., 2008).

Related literature top

For the role played by ππ stacking between aromatic rings in the electron-transfer process in some biological systems, see: Deisenhofer & Michel (1989); Su & Xu (2004); Liu et al. (2004); Pan et al. (2006). For a related structure, see: Zhang et al. (2008).

Experimental top

A water-ethanol solution (25 ml, 3:2) containing monosodium 5-sulfoisophthalate (0.270 g, 1 mmol), Na2CO3 (0.212 g, 2 mmol), NaOH (0.081 g, 2 mmol) and CoCl2.6H2O (0.595 g, 2.5 mmol) was refluxed for 7.5 h and filtered after cooling to room temperature. The single crystals of the title compound were obtained from the filtrate after one month.

Refinement top

Water H atoms were located in a difference Fourier map and refined as riding in as-found relative positions, with Uiso(H) = 1.5Ueq(O). Other H atoms were placed in calculated positions (C—H = 0.93 Å) and refined in riding mode, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A part of the polymeric structure of the title compound with 50% probability displacement (arbitrary spheres for H atoms) [symmetry codes: (i) -x + 3/2,+y - 1/2,-z + 1/2; (ii) -x + 1/2,+y - 1/2,-z + 1/2; (iii) -x + 1,-y + 1,-z + 1; (iv) x - 1/2,-y + 1/2,+z - 1/2; (v) -x + 1,-y + 1,-z].
[Figure 2] Fig. 2. π-π stacking between benzene rings [symmetry code: (v) -x + 1,-y + 1,-z].
Poly[octa-µ-aqua-tetraaquabis(µ-5-sulfonatobenzene-1,3- dicarboxylato)cobalt(II)tetrasodium] top
Crystal data top
[CoNa4(C8H3O7S)2(H2O)12]F(000) = 874
Mr = 853.41Dx = 1.771 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2508 reflections
a = 7.8756 (12) Åθ = 2.5–25.0°
b = 17.294 (3) ŵ = 0.82 mm1
c = 11.7700 (18) ÅT = 295 K
β = 93.281 (5)°Chuck, red
V = 1600.5 (4) Å30.35 × 0.32 × 0.25 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
3120 independent reflections
Radiation source: fine-focus sealed tube2899 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
Detector resolution: 10.0 pixels mm-1θmax = 26.0°, θmin = 2.1°
ω scansh = 99
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 2121
Tmin = 0.756, Tmax = 0.819l = 1414
9383 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.035P)2 + 0.6342P]
where P = (Fo2 + 2Fc2)/3
3120 reflections(Δ/σ)max = 0.002
223 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
[CoNa4(C8H3O7S)2(H2O)12]V = 1600.5 (4) Å3
Mr = 853.41Z = 2
Monoclinic, P21/nMo Kα radiation
a = 7.8756 (12) ŵ = 0.82 mm1
b = 17.294 (3) ÅT = 295 K
c = 11.7700 (18) Å0.35 × 0.32 × 0.25 mm
β = 93.281 (5)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
3120 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2899 reflections with I > 2σ(I)
Tmin = 0.756, Tmax = 0.819Rint = 0.016
9383 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.066H-atom parameters constrained
S = 1.08Δρmax = 0.42 e Å3
3120 reflectionsΔρmin = 0.40 e Å3
223 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co0.50000.50000.50000.01857 (9)
Na10.82210 (8)0.33026 (4)0.45527 (6)0.02963 (16)
Na20.40642 (9)0.26855 (4)0.19976 (5)0.02861 (16)
S0.28585 (5)0.72991 (2)0.01806 (3)0.01880 (10)
O10.42263 (15)0.52219 (6)0.33357 (9)0.0254 (2)
O20.42504 (18)0.40595 (6)0.25165 (9)0.0338 (3)
O30.1617 (2)0.37979 (7)0.13019 (11)0.0444 (4)
O40.11425 (17)0.47988 (7)0.24435 (10)0.0324 (3)
O50.45517 (15)0.74752 (7)0.01734 (10)0.0274 (3)
O60.25309 (16)0.76048 (6)0.12948 (10)0.0294 (3)
O70.15486 (14)0.75313 (6)0.06860 (10)0.0266 (3)
O80.75313 (16)0.52064 (8)0.46031 (11)0.0384 (3)
H8A0.82140.54390.50620.058*
H8B0.78120.53100.39290.058*
O90.53565 (14)0.38179 (6)0.46304 (9)0.0240 (2)
H9A0.46720.35210.49630.036*
H9B0.50480.37720.39410.036*
O100.70112 (17)0.26175 (7)0.28516 (10)0.0334 (3)
H10A0.75400.26170.22630.050*
H10B0.69970.21400.30270.050*
O110.68645 (15)0.21915 (7)0.55730 (11)0.0322 (3)
H11A0.57800.22600.57090.048*
H11B0.68040.18600.50180.048*
O120.86980 (15)0.37242 (7)0.64918 (10)0.0315 (3)
H12A0.79160.40450.65730.047*
H12B0.95420.39620.68850.047*
O131.03883 (16)0.40306 (7)0.36711 (11)0.0354 (3)
H13A1.00310.43250.31410.053*
H13B1.11130.37130.33710.053*
C10.4040 (2)0.47732 (9)0.24890 (13)0.0208 (3)
C20.3461 (2)0.51502 (9)0.13824 (13)0.0210 (3)
C30.3431 (2)0.59494 (8)0.12797 (12)0.0208 (3)
H30.38440.62600.18790.025*
C40.27793 (19)0.62793 (8)0.02779 (12)0.0190 (3)
C50.2182 (2)0.58293 (9)0.06349 (13)0.0212 (3)
H50.17470.60610.13030.025*
C60.2241 (2)0.50268 (8)0.05391 (13)0.0222 (3)
C70.2891 (2)0.46985 (9)0.04690 (13)0.0238 (3)
H70.29440.41630.05320.029*
C80.1620 (2)0.45023 (9)0.15059 (13)0.0244 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co0.02424 (17)0.01734 (15)0.01366 (15)0.00223 (11)0.00299 (11)0.00032 (10)
Na10.0267 (4)0.0352 (4)0.0267 (3)0.0019 (3)0.0009 (3)0.0029 (3)
Na20.0307 (4)0.0317 (4)0.0234 (3)0.0005 (3)0.0014 (3)0.0039 (3)
S0.0222 (2)0.01579 (17)0.01856 (19)0.00060 (13)0.00249 (14)0.00052 (13)
O10.0398 (7)0.0203 (5)0.0152 (5)0.0030 (5)0.0061 (5)0.0009 (4)
O20.0610 (9)0.0191 (6)0.0200 (6)0.0054 (5)0.0091 (5)0.0002 (4)
O30.0828 (11)0.0193 (6)0.0289 (7)0.0026 (6)0.0164 (7)0.0035 (5)
O40.0490 (8)0.0294 (6)0.0178 (6)0.0020 (5)0.0087 (5)0.0020 (5)
O50.0246 (6)0.0290 (6)0.0288 (6)0.0064 (5)0.0045 (5)0.0014 (5)
O60.0445 (7)0.0214 (5)0.0233 (6)0.0008 (5)0.0098 (5)0.0034 (4)
O70.0267 (6)0.0243 (5)0.0284 (6)0.0028 (5)0.0010 (5)0.0059 (5)
O80.0302 (7)0.0608 (8)0.0242 (6)0.0087 (6)0.0021 (5)0.0028 (6)
O90.0324 (6)0.0194 (5)0.0196 (5)0.0014 (4)0.0048 (4)0.0005 (4)
O100.0469 (8)0.0290 (6)0.0246 (6)0.0013 (5)0.0035 (5)0.0039 (5)
O110.0273 (7)0.0309 (6)0.0379 (7)0.0038 (5)0.0036 (5)0.0058 (5)
O120.0329 (7)0.0296 (6)0.0315 (6)0.0027 (5)0.0013 (5)0.0076 (5)
O130.0377 (7)0.0306 (6)0.0380 (7)0.0067 (5)0.0035 (6)0.0064 (5)
C10.0270 (8)0.0190 (7)0.0159 (7)0.0000 (6)0.0023 (6)0.0005 (6)
C20.0270 (8)0.0202 (7)0.0155 (7)0.0008 (6)0.0020 (6)0.0001 (6)
C30.0268 (8)0.0199 (7)0.0155 (7)0.0013 (6)0.0002 (6)0.0027 (6)
C40.0219 (8)0.0158 (7)0.0196 (7)0.0004 (6)0.0026 (6)0.0004 (6)
C50.0264 (8)0.0210 (7)0.0158 (7)0.0004 (6)0.0018 (6)0.0022 (6)
C60.0284 (9)0.0216 (8)0.0163 (8)0.0006 (6)0.0015 (6)0.0010 (6)
C70.0344 (9)0.0171 (7)0.0195 (8)0.0004 (6)0.0025 (6)0.0006 (6)
C80.0315 (9)0.0229 (8)0.0182 (8)0.0004 (6)0.0030 (6)0.0023 (6)
Geometric parameters (Å, º) top
Co—O1i2.0541 (11)O4—C81.2550 (19)
Co—O12.0541 (11)O8—H8A0.8421
Co—O82.1039 (13)O8—H8B0.8549
Co—O8i2.1039 (13)O9—H9A0.8546
Co—O9i2.1122 (11)O9—H9B0.8373
Co—O92.1122 (11)O10—H10A0.8284
Na1—O5ii2.3477 (13)O10—H10B0.8512
Na1—O92.4322 (13)O11—H11A0.8860
Na1—O102.4702 (14)O11—H11B0.8680
Na1—O112.5343 (15)O12—H12A0.8381
Na1—O122.4048 (14)O12—H12B0.8887
Na1—O132.4037 (15)O13—H13A0.8406
Na2—O22.4557 (13)O13—H13B0.8803
Na2—O5iii2.4785 (13)C1—C21.504 (2)
Na2—O6iv2.4344 (13)C2—C71.383 (2)
Na2—O102.4787 (15)C2—C31.388 (2)
Na2—O11v2.3506 (14)C3—C41.382 (2)
Na2—O12v2.5222 (14)C3—H30.9300
S—O61.4508 (12)C4—C51.387 (2)
S—O51.4519 (12)C5—C61.393 (2)
S—O71.4647 (12)C5—H50.9300
S—C41.7688 (14)C6—C71.387 (2)
O1—C11.2648 (18)C6—C81.514 (2)
O2—C11.2456 (19)C7—H70.9300
O3—C81.242 (2)
O1i—Co—O1180.000 (1)S—O6—Na2vii153.39 (8)
O1—Co—O889.41 (5)Co—O8—H8A121.1
O1—Co—O8i90.59 (5)Co—O8—H8B122.7
O8—Co—O8i180.00 (8)H8A—O8—H8B107.8
O1—Co—O9i88.85 (4)Co—O9—Na1119.79 (5)
O8—Co—O9i91.17 (5)Co—O9—H9A113.1
O1—Co—O991.15 (4)Na1—O9—H9A114.1
O8—Co—O988.83 (5)Co—O9—H9B104.8
O9i—Co—O9180.0Na1—O9—H9B98.5
O5ii—Na1—O1385.25 (5)H9A—O9—H9B103.4
O5ii—Na1—O1279.41 (5)Na1—O10—Na2127.93 (6)
O13—Na1—O12100.06 (5)Na1—O10—H10A119.3
O5ii—Na1—O9152.84 (5)Na2—O10—H10A99.5
O13—Na1—O9120.49 (5)Na1—O10—H10B106.2
O12—Na1—O987.02 (4)Na2—O10—H10B96.8
O5ii—Na1—O10101.92 (5)H10A—O10—H10B102.5
O13—Na1—O1098.73 (5)Na2viii—O11—Na187.47 (5)
O12—Na1—O10161.21 (5)Na2viii—O11—H11A122.5
O9—Na1—O1083.72 (4)Na1—O11—H11A114.9
O5ii—Na1—O1173.63 (4)Na2viii—O11—H11B127.1
O13—Na1—O11158.54 (5)Na1—O11—H11B98.6
O12—Na1—O1180.06 (5)H11A—O11—H11B102.3
O9—Na1—O1180.96 (4)Na1—O12—Na2viii86.59 (4)
O10—Na1—O1182.35 (5)Na1—O12—H12A103.5
O11v—Na2—O6iv101.54 (5)Na2viii—O12—H12A133.4
O11v—Na2—O296.94 (5)Na1—O12—H12B134.9
O6iv—Na2—O282.90 (4)Na2viii—O12—H12B104.6
O11v—Na2—O5iii74.63 (5)H12A—O12—H12B99.6
O6iv—Na2—O5iii169.14 (5)Na1—O13—H13A114.9
O2—Na2—O5iii107.52 (5)Na1—O13—H13B109.8
O11v—Na2—O10158.18 (5)H13A—O13—H13B106.1
O6iv—Na2—O10100.25 (5)O2—C1—O1125.33 (14)
O2—Na2—O1084.48 (5)O2—C1—C2119.03 (13)
O5iii—Na2—O1084.15 (5)O1—C1—C2115.60 (13)
O11v—Na2—O12v81.34 (4)C7—C2—C3119.46 (14)
O6iv—Na2—O12v94.71 (4)C7—C2—C1119.83 (13)
O2—Na2—O12v176.74 (5)C3—C2—C1120.67 (13)
O5iii—Na2—O12v74.76 (4)C4—C3—C2119.29 (13)
O10—Na2—O12v98.15 (4)C4—C3—H3120.4
O11v—Na2—Na1v48.51 (4)C2—C3—H3120.4
O6iv—Na2—Na1v126.05 (4)C3—C4—C5121.49 (13)
O2—Na2—Na1v134.99 (4)C3—C4—S117.01 (11)
O5iii—Na2—Na1v43.99 (3)C5—C4—S121.40 (11)
O10—Na2—Na1v117.07 (4)C4—C5—C6119.21 (14)
O12v—Na2—Na1v45.26 (3)C4—C5—H5120.4
O6—S—O5113.37 (7)C6—C5—H5120.4
O6—S—O7112.02 (7)C7—C6—C5119.09 (14)
O5—S—O7111.38 (7)C7—C6—C8119.03 (13)
O6—S—C4107.22 (7)C5—C6—C8121.88 (14)
O5—S—C4105.31 (7)C2—C7—C6121.43 (14)
O7—S—C4107.00 (7)C2—C7—H7119.3
C1—O1—Co130.65 (10)C6—C7—H7119.3
C1—O2—Na2161.18 (11)O3—C8—O4124.55 (15)
S—O5—Na1vi136.11 (7)O3—C8—C6116.52 (14)
S—O5—Na2iii132.98 (7)O4—C8—C6118.93 (14)
Na1vi—O5—Na2iii88.86 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3/2, y1/2, z+1/2; (iii) x+1, y+1, z; (iv) x+1/2, y1/2, z+1/2; (v) x1/2, y+1/2, z1/2; (vi) x+3/2, y+1/2, z+1/2; (vii) x+1/2, y+1/2, z+1/2; (viii) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8A···O13ix0.842.022.8584 (19)172
O8—H8B···O4iii0.851.982.8028 (18)160
O9—H9A···O7iv0.862.162.9932 (16)164
O9—H9B···O20.841.832.6222 (16)158
O10—H10A···O7iii0.832.042.8602 (17)168
O10—H10B···O3viii0.851.842.6676 (18)165
O11—H11A···O7iv0.891.892.7621 (17)167
O11—H11B···O3viii0.871.922.7904 (19)175
O12—H12A···O1i0.842.122.9531 (17)174
O12—H12B···O4x0.892.052.9076 (18)162
O13—H13A···O4iii0.841.932.7277 (18)157
O13—H13B···O6ii0.882.222.9597 (17)142
C7—H7···O11v0.932.493.371 (2)157
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3/2, y1/2, z+1/2; (iii) x+1, y+1, z; (iv) x+1/2, y1/2, z+1/2; (v) x1/2, y+1/2, z1/2; (viii) x+1/2, y+1/2, z+1/2; (ix) x+2, y+1, z+1; (x) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[CoNa4(C8H3O7S)2(H2O)12]
Mr853.41
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)7.8756 (12), 17.294 (3), 11.7700 (18)
β (°) 93.281 (5)
V3)1600.5 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.82
Crystal size (mm)0.35 × 0.32 × 0.25
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.756, 0.819
No. of measured, independent and
observed [I > 2σ(I)] reflections
9383, 3120, 2899
Rint0.016
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.066, 1.08
No. of reflections3120
No. of parameters223
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.40

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Co—O12.0541 (11)Na1—O132.4037 (15)
Co—O82.1039 (13)Na2—O22.4557 (13)
Co—O92.1122 (11)Na2—O5ii2.4785 (13)
Na1—O5i2.3477 (13)Na2—O6iii2.4344 (13)
Na1—O92.4322 (13)Na2—O102.4787 (15)
Na1—O102.4702 (14)Na2—O11iv2.3506 (14)
Na1—O112.5343 (15)Na2—O12iv2.5222 (14)
Na1—O122.4048 (14)
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+1, y+1, z; (iii) x+1/2, y1/2, z+1/2; (iv) x1/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8A···O13v0.842.022.8584 (19)172
O8—H8B···O4ii0.851.982.8028 (18)160
O9—H9A···O7iii0.862.162.9932 (16)164
O9—H9B···O20.841.832.6222 (16)158
O10—H10A···O7ii0.832.042.8602 (17)168
O10—H10B···O3vi0.851.842.6676 (18)165
O11—H11A···O7iii0.891.892.7621 (17)167
O11—H11B···O3vi0.871.922.7904 (19)175
O12—H12A···O1vii0.842.122.9531 (17)174
O12—H12B···O4viii0.892.052.9076 (18)162
O13—H13A···O4ii0.841.932.7277 (18)157
O13—H13B···O6i0.882.222.9597 (17)142
C7—H7···O11iv0.932.493.371 (2)157
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+1, y+1, z; (iii) x+1/2, y1/2, z+1/2; (iv) x1/2, y+1/2, z1/2; (v) x+2, y+1, z+1; (vi) x+1/2, y+1/2, z+1/2; (vii) x+1, y+1, z+1; (viii) x+1, y, z+1.
 

Acknowledgements

The work was supported by the ZIJIN project of Zhejiang University, China.

References

First citationDeisenhofer, J. & Michel, H. (1989). EMBO, 8, 2149–2170.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLiu, B.-X., Su, J.-R. & Xu, D.-J. (2004). Acta Cryst. C60, m183–m185.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPan, T.-T., Su, J.-R. & Xu, D.-J. (2006). Acta Cryst. E62, m2183–m2185.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texsas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, J.-R. & Xu, D.-J. (2004). J. Coord. Chem. 57, 223–229.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, B.-Y., Nie, J.-J. & Xu, D.-J. (2008). Acta Cryst. E64, m986.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages m387-m388
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds