metal-organic compounds
Poly[μ-chlorido-[μ4-5-(4-pyridyl)tetrazolato]dicopper(I)]
aYangming School, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China, and bDepartment of Biological Engineering, Zibo Vocational Institute, Zibo, Shandong 255314, People's Republic of China
*Correspondence e-mail: wcklx@nbu.edu.cn
The title three-dimensional coordination polymer, [Cu2Cl(C6H4N5)]n, is the product of the hydrothermal reaction of CuCl2·2H2O and 5-(4-pyridyl)-1H-tetrazole (4-Hptz). The two independent CuI ions are coordinated in distorted tetrahedral and distorted trigonal coordination environments. In the unique 5-(4-pyridyl)-1H-tetrazolate ligand, the dihedral angle between the pyridine and tetrazole rings is 17.3 (2)°.
Related literature
For related transition metals complexes of 5-(4-pyridyl)-1H-tetrazole, see: Xue et al. (2002); Jiang et al. (2004); Luo et al. (2005); Lin et al. (2005); Chen et al. (2008). For the applications of tetrazoles, see: Butler (1996).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2003) ; cell SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536809006564/lh2752sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809006564/lh2752Isup2.hkl
A mixture of CuCl2.2H2O (0.172 g, 1 mmol), 5-(4-pyridyl)-1H-tetrazole (0.074 g, 0.5 mmol) in 8 ml deionized water was homogenized at room temperature for 30 minutes. Then the final solution was sealed in a 20 mL stainless-steelautoclave at 433 K for 72 h. A quantity of crystals was obtained after the solution was cooled to room temperature. The crystals were filtered, washed with deionized water and dried at room temperature. The yield is ca 64% based on CuCl2.2H2O.
All H atoms on C atoms were positioned geometrically and allowed to ride on their respective parent atoms, with C—H = 0.93 and Uiso(H) = 1.2 Ueq(C). The crystal is an
with the ratio of twin components 0.81 (3):0.19 (3).Data collection: APEX2 (Bruker, 2003); cell
SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. View of the coordination environment around the CuI ions and 4-ptz ligand of title complex with labeling scheme and 30% thermal ellipsoids. Symmetry codes: (i) x, -y + 2, z - 1/2; (ii) x, y + 1, z; (iii) x, y - 1, z; (iv) x - 1/2, y - 1/2, z;(v) x, -y + 2, z + 1/2; (vi) x + 1/2, y + 1/2, z. | |
Fig. 2. Part of the crystal structure of the title complex. |
[Cu2Cl(C6H4N5)] | F(000) = 600 |
Mr = 308.67 | Dx = 2.517 Mg m−3 |
Monoclinic, Cc | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: C -2yc | Cell parameters from 1367 reflections |
a = 19.6899 (7) Å | θ = 2.1–27.8° |
b = 3.6479 (1) Å | µ = 5.50 mm−1 |
c = 11.6337 (3) Å | T = 298 K |
β = 102.923 (2)° | Block, yellow |
V = 814.45 (4) Å3 | 0.30 × 0.26 × 0.24 mm |
Z = 4 |
Bruker SMART CCD APEXII diffractometer | 1572 independent reflections |
Radiation source: fine-focus sealed tube | 1415 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
Detector resolution: 8.40 pixels mm-1 | θmax = 27.8°, θmin = 2.1° |
ω scans | h = −21→25 |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | k = −4→4 |
Tmin = 0.230, Tmax = 0.269 | l = −15→15 |
3752 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.027 | H-atom parameters constrained |
wR(F2) = 0.092 | w = 1/[σ2(Fo2) + (0.0547P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.11 | (Δ/σ)max < 0.001 |
1572 reflections | Δρmax = 0.71 e Å−3 |
128 parameters | Δρmin = −0.71 e Å−3 |
2 restraints | Absolute structure: Flack (1983), 621 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.19 (3) |
[Cu2Cl(C6H4N5)] | V = 814.45 (4) Å3 |
Mr = 308.67 | Z = 4 |
Monoclinic, Cc | Mo Kα radiation |
a = 19.6899 (7) Å | µ = 5.50 mm−1 |
b = 3.6479 (1) Å | T = 298 K |
c = 11.6337 (3) Å | 0.30 × 0.26 × 0.24 mm |
β = 102.923 (2)° |
Bruker SMART CCD APEXII diffractometer | 1572 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1415 reflections with I > 2σ(I) |
Tmin = 0.230, Tmax = 0.269 | Rint = 0.027 |
3752 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | H-atom parameters constrained |
wR(F2) = 0.092 | Δρmax = 0.71 e Å−3 |
S = 1.11 | Δρmin = −0.71 e Å−3 |
1572 reflections | Absolute structure: Flack (1983), 621 Friedel pairs |
128 parameters | Absolute structure parameter: 0.19 (3) |
2 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.17283 (4) | 0.9867 (2) | 0.16168 (5) | 0.0302 (2) | |
Cu2 | 0.07924 (5) | 0.1504 (3) | 0.34304 (8) | 0.0341 (2) | |
Cl1 | 0.08796 (8) | 0.4991 (4) | 0.16267 (13) | 0.0264 (3) | |
N1 | 0.2207 (2) | 0.9667 (13) | 0.3361 (4) | 0.0188 (9) | |
N2 | 0.1753 (3) | 1.0294 (14) | 0.4064 (5) | 0.0209 (9) | |
N3 | 0.2072 (3) | 0.9615 (14) | 0.5171 (4) | 0.0219 (10) | |
N4 | 0.2723 (3) | 0.8552 (15) | 0.5223 (4) | 0.0232 (10) | |
N5 | 0.4827 (2) | 0.6742 (14) | 0.3528 (4) | 0.0215 (10) | |
C1 | 0.4640 (3) | 0.5674 (16) | 0.4514 (6) | 0.0234 (12) | |
H1A | 0.4971 | 0.4535 | 0.5101 | 0.028* | |
C2 | 0.3980 (3) | 0.6184 (16) | 0.4700 (5) | 0.0203 (11) | |
H2A | 0.3876 | 0.5450 | 0.5407 | 0.024* | |
C3 | 0.4326 (3) | 0.8253 (16) | 0.2677 (5) | 0.0230 (11) | |
H3A | 0.4446 | 0.9003 | 0.1985 | 0.028* | |
C4 | 0.3644 (3) | 0.8755 (16) | 0.2771 (5) | 0.0203 (11) | |
H4A | 0.3312 | 0.9704 | 0.2145 | 0.024* | |
C5 | 0.3469 (3) | 0.7798 (14) | 0.3829 (5) | 0.0176 (10) | |
C6 | 0.2791 (3) | 0.8611 (16) | 0.4091 (5) | 0.0173 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0279 (4) | 0.0496 (4) | 0.0144 (3) | −0.0021 (4) | 0.0076 (3) | 0.0018 (3) |
Cu2 | 0.0125 (3) | 0.0561 (5) | 0.0334 (4) | 0.0066 (4) | 0.0042 (3) | 0.0033 (4) |
Cl1 | 0.0223 (7) | 0.0274 (6) | 0.0276 (8) | −0.0018 (5) | 0.0016 (6) | 0.0035 (5) |
N1 | 0.012 (2) | 0.032 (2) | 0.012 (2) | 0.0020 (18) | 0.0023 (17) | 0.0003 (18) |
N2 | 0.013 (2) | 0.036 (2) | 0.014 (2) | 0.0013 (19) | 0.0042 (16) | −0.001 (2) |
N3 | 0.017 (2) | 0.038 (3) | 0.011 (2) | 0.0014 (19) | 0.0038 (18) | −0.0001 (18) |
N4 | 0.018 (2) | 0.040 (3) | 0.011 (2) | 0.004 (2) | 0.0035 (18) | 0.001 (2) |
N5 | 0.014 (2) | 0.028 (2) | 0.022 (2) | 0.0037 (19) | 0.0043 (19) | −0.0005 (19) |
C1 | 0.016 (3) | 0.028 (3) | 0.025 (3) | 0.006 (2) | 0.001 (2) | 0.006 (2) |
C2 | 0.019 (3) | 0.030 (3) | 0.012 (3) | 0.002 (2) | 0.003 (2) | 0.002 (2) |
C3 | 0.017 (3) | 0.034 (3) | 0.018 (3) | 0.002 (2) | 0.005 (2) | −0.001 (2) |
C4 | 0.021 (3) | 0.028 (3) | 0.012 (3) | 0.004 (2) | 0.002 (2) | −0.002 (2) |
C5 | 0.012 (2) | 0.023 (2) | 0.017 (3) | 0.002 (2) | 0.002 (2) | −0.0028 (19) |
C6 | 0.014 (2) | 0.024 (2) | 0.012 (2) | 0.000 (2) | 0.0001 (19) | −0.002 (2) |
Cu1—N3i | 1.958 (5) | N4—C6 | 1.354 (7) |
Cu1—N1 | 2.038 (5) | N5—C1 | 1.339 (8) |
Cu1—Cl1 | 2.4422 (15) | N5—C3 | 1.349 (7) |
Cu1—Cl1ii | 2.5090 (16) | N5—Cu2vi | 1.931 (4) |
Cu2—N2iii | 1.921 (5) | C1—C2 | 1.377 (8) |
Cu2—N5iv | 1.931 (4) | C1—H1A | 0.9300 |
Cu2—Cl1 | 2.4923 (18) | C2—C5 | 1.389 (8) |
Cl1—Cu1iii | 2.5090 (16) | C2—H2A | 0.9300 |
N1—C6 | 1.325 (7) | C3—C4 | 1.383 (8) |
N1—N2 | 1.360 (7) | C3—H3A | 0.9300 |
N2—N3 | 1.323 (7) | C4—C5 | 1.395 (8) |
N2—Cu2ii | 1.921 (5) | C4—H4A | 0.9300 |
N3—N4 | 1.327 (7) | C5—C6 | 1.464 (7) |
N3—Cu1v | 1.958 (5) | ||
N3i—Cu1—N1 | 133.4 (2) | C1—N5—C3 | 116.8 (5) |
N3i—Cu1—Cl1 | 116.27 (15) | C1—N5—Cu2vi | 120.1 (4) |
N1—Cu1—Cl1 | 97.70 (14) | C3—N5—Cu2vi | 122.9 (4) |
N3i—Cu1—Cl1ii | 106.89 (15) | N5—C1—C2 | 123.1 (5) |
N1—Cu1—Cl1ii | 100.51 (13) | N5—C1—H1A | 118.5 |
Cl1—Cu1—Cl1ii | 94.90 (6) | C2—C1—H1A | 118.5 |
N2iii—Cu2—N5iv | 152.3 (2) | C1—C2—C5 | 119.8 (5) |
N2iii—Cu2—Cl1 | 101.13 (17) | C1—C2—H2A | 120.1 |
N5iv—Cu2—Cl1 | 106.30 (16) | C5—C2—H2A | 120.1 |
Cu1—Cl1—Cu2 | 123.48 (7) | N5—C3—C4 | 124.0 (5) |
Cu1—Cl1—Cu1iii | 94.90 (6) | N5—C3—H3A | 118.0 |
Cu2—Cl1—Cu1iii | 78.17 (5) | C4—C3—H3A | 118.0 |
C6—N1—N2 | 104.9 (5) | C3—C4—C5 | 118.2 (5) |
C6—N1—Cu1 | 142.2 (4) | C3—C4—H4A | 120.9 |
N2—N1—Cu1 | 111.9 (4) | C5—C4—H4A | 120.9 |
N3—N2—N1 | 108.7 (5) | C2—C5—C4 | 117.9 (5) |
N3—N2—Cu2ii | 128.9 (4) | C2—C5—C6 | 118.6 (5) |
N1—N2—Cu2ii | 122.1 (4) | C4—C5—C6 | 123.4 (5) |
N2—N3—N4 | 110.1 (4) | N1—C6—N4 | 111.5 (5) |
N2—N3—Cu1v | 129.6 (4) | N1—C6—C5 | 128.8 (5) |
N4—N3—Cu1v | 120.3 (4) | N4—C6—C5 | 119.6 (5) |
N3—N4—C6 | 104.8 (4) |
Symmetry codes: (i) x, −y+2, z−1/2; (ii) x, y+1, z; (iii) x, y−1, z; (iv) x−1/2, y−1/2, z; (v) x, −y+2, z+1/2; (vi) x+1/2, y+1/2, z. |
Experimental details
Crystal data | |
Chemical formula | [Cu2Cl(C6H4N5)] |
Mr | 308.67 |
Crystal system, space group | Monoclinic, Cc |
Temperature (K) | 298 |
a, b, c (Å) | 19.6899 (7), 3.6479 (1), 11.6337 (3) |
β (°) | 102.923 (2) |
V (Å3) | 814.45 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 5.50 |
Crystal size (mm) | 0.30 × 0.26 × 0.24 |
Data collection | |
Diffractometer | Bruker SMART CCD APEXII diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.230, 0.269 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3752, 1572, 1415 |
Rint | 0.027 |
(sin θ/λ)max (Å−1) | 0.655 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.027, 0.092, 1.11 |
No. of reflections | 1572 |
No. of parameters | 128 |
No. of restraints | 2 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.71, −0.71 |
Absolute structure | Flack (1983), 621 Friedel pairs |
Absolute structure parameter | 0.19 (3) |
Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Cu1—N3i | 1.958 (5) | Cu2—N2iii | 1.921 (5) |
Cu1—N1 | 2.038 (5) | Cu2—N5iv | 1.931 (4) |
Cu1—Cl1 | 2.4422 (15) | Cu2—Cl1 | 2.4923 (18) |
Cu1—Cl1ii | 2.5090 (16) | ||
N3i—Cu1—N1 | 133.4 (2) | N2iii—Cu2—N5iv | 152.3 (2) |
N3i—Cu1—Cl1 | 116.27 (15) | N2iii—Cu2—Cl1 | 101.13 (17) |
N1—Cu1—Cl1 | 97.70 (14) | N5iv—Cu2—Cl1 | 106.30 (16) |
N3i—Cu1—Cl1ii | 106.89 (15) | Cu1—Cl1—Cu2 | 123.48 (7) |
N1—Cu1—Cl1ii | 100.51 (13) | Cu1—Cl1—Cu1iii | 94.90 (6) |
Cl1—Cu1—Cl1ii | 94.90 (6) | Cu2—Cl1—Cu1iii | 78.17 (5) |
Symmetry codes: (i) x, −y+2, z−1/2; (ii) x, y+1, z; (iii) x, y−1, z; (iv) x−1/2, y−1/2, z. |
Acknowledgements
This work was supported by the K. C. Wong Magna Fund in Ningbo University.
References
Bruker (2003). APEX2 and SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Butler, R. N. (1996). Comprehensive Heterocyclic Chemistry, Vol. 4, edited by A. R. Katritzky, C. W. Rees & E. F. V. Scriven. Oxford: Pergamon. Google Scholar
Chen, Y., Ren, Z.-G., Li, H.-X., Tang, X.-Y., Zhang, W.-H., Zhang, Y. & Lang, J.-P. (2008). J. Mol. Struct. 875, 339–345. Web of Science CSD CrossRef CAS Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Jiang, C., Yu, Z., Wang, S., Jiao, C., Li, J., Wang, Z. & Cui, Y. (2004). Eur. J. Inorg. Chem. pp. 3662-3667. Google Scholar
Lin, P., Clegg, W., Harrington, R. W. & Henderson, R. A. (2005). Dalton Trans. pp. 2388–2394. Web of Science CSD CrossRef Google Scholar
Luo, T.-T., Tsai, H.-L., Yang, S.-L., Liu, Y.-H., Yadav, R. D., Su, C.-C., Ueng, C.-H., Lin, L.-G. & Lu, K.-L. (2005). Angew. Chem. Int. Ed. 44, 6063-6067. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xue, X., Wang, X.-S., Wang, L.-Z., Xiong, R.-G., Abrahams, B. F., You, X.-Z., Xue, Z.-L. & Che, C.-M. (2002). Inorg. Chem. 41, 6544-6546. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Tetrazoles have found a wide range of applications in areas as diverse as coordination chemistry, medicinal chemistry and materials science (Butler, 1996). The study of complexes containing substituted tetrazole ligands is of interest to delineate the ways in which tetrazoles bind to metal centres. Recently, a series of 5-(4-pyridyl)-1H-tetrazole complexes of transition metals have been reported in which a range of coordination modes for the ligand were observed and extended two-dimensional and three-dimensional structures identified (Xue et al., 2002; Jiang et al., 2004; Luo et al., 2005; Lin et al., 2005; Chen et al., 2008). Herein, we report the crystal structure of a three-dimensional coordination polymer, [CuI2Cl(4-ptz)]n, derived from 5-(4-pyridyl)-1H-tetrazole and CuCl2.2H2O under hydrothermal reaction.
The asymmetric unit of the title complex contains of two independent CuI ions, one Cl-, and one 4-ptz ligand. As shown in Fig. 1, atom Cu1 adopts distorted tetrahedral geometry with a Cl2N2 donor set and atom Cu2 is in a disorted trigonal coordination geometry with an N2Cl donor set. Atom Cl1 is bonded to three CuI atoms, and the 4-ptz ligand coordinates to four CuI ions. It is noteworthy that atoms N1, N2, and N3 bond to three CuI atoms, respectively, forming a µ3-1,2,3-tetrazolyl coordination mode. The overall structure of title complex is a three-dimensional network (Fig. 2).