metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[μ-chlorido-[μ4-5-(4-pyrid­yl)tetra­zol­ato]dicopper(I)]

aYangming School, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China, and bDepartment of Biological Engineering, Zibo Vocational Institute, Zibo, Shandong 255314, People's Republic of China
*Correspondence e-mail: wcklx@nbu.edu.cn

(Received 25 December 2008; accepted 23 February 2009; online 6 March 2009)

The title three-dimensional coordination polymer, [Cu2Cl(C6H4N5)]n, is the product of the hydro­thermal reaction of CuCl2·2H2O and 5-(4-pyrid­yl)-1H-tetra­zole (4-Hptz). The two independent CuI ions are coordinated in distorted tetra­hedral and distorted trigonal coordination environments. In the unique 5-(4-pyrid­yl)-1H-tetra­zolate ligand, the dihedral angle between the pyridine and tetra­zole rings is 17.3 (2)°.

Related literature

For related transition metals complexes of 5-(4-pyrid­yl)-1H-tetra­zole, see: Xue et al. (2002[Xue, X., Wang, X.-S., Wang, L.-Z., Xiong, R.-G., Abrahams, B. F., You, X.-Z., Xue, Z.-L. & Che, C.-M. (2002). Inorg. Chem. 41, 6544-6546.]); Jiang et al. (2004[Jiang, C., Yu, Z., Wang, S., Jiao, C., Li, J., Wang, Z. & Cui, Y. (2004). Eur. J. Inorg. Chem. pp. 3662-3667.]); Luo et al. (2005[Luo, T.-T., Tsai, H.-L., Yang, S.-L., Liu, Y.-H., Yadav, R. D., Su, C.-C., Ueng, C.-H., Lin, L.-G. & Lu, K.-L. (2005). Angew. Chem. Int. Ed. 44, 6063-6067.]); Lin et al. (2005[Lin, P., Clegg, W., Harrington, R. W. & Henderson, R. A. (2005). Dalton Trans. pp. 2388-2394.]); Chen et al. (2008[Chen, Y., Ren, Z.-G., Li, H.-X., Tang, X.-Y., Zhang, W.-H., Zhang, Y. & Lang, J.-P. (2008). J. Mol. Struct. 875, 339-345.]). For the applications of tetra­zoles, see: Butler (1996[Butler, R. N. (1996). Comprehensive Heterocyclic Chemistry, Vol. 4, edited by A. R. Katritzky, C. W. Rees & E. F. V. Scriven. Oxford: Pergamon.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2Cl(C6H4N5)]

  • Mr = 308.67

  • Monoclinic, C c

  • a = 19.6899 (7) Å

  • b = 3.64790 (10) Å

  • c = 11.6337 (3) Å

  • β = 102.923 (2)°

  • V = 814.45 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.50 mm−1

  • T = 298 K

  • 0.30 × 0.26 × 0.24 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.230, Tmax = 0.269

  • 3752 measured reflections

  • 1572 independent reflections

  • 1415 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.092

  • S = 1.11

  • 1572 reflections

  • 128 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.71 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 621 Friedel pairs

  • Flack parameter: 0.19 (3)

Table 1
Selected geometric parameters (Å, °)

Cu1—N3i 1.958 (5)
Cu1—N1 2.038 (5)
Cu1—Cl1 2.4422 (15)
Cu1—Cl1ii 2.5090 (16)
Cu2—N2iii 1.921 (5)
Cu2—N5iv 1.931 (4)
Cu2—Cl1 2.4923 (18)
N3i—Cu1—N1 133.4 (2)
N3i—Cu1—Cl1 116.27 (15)
N1—Cu1—Cl1 97.70 (14)
N3i—Cu1—Cl1ii 106.89 (15)
N1—Cu1—Cl1ii 100.51 (13)
Cl1—Cu1—Cl1ii 94.90 (6)
N2iii—Cu2—N5iv 152.3 (2)
N2iii—Cu2—Cl1 101.13 (17)
N5iv—Cu2—Cl1 106.30 (16)
Cu1—Cl1—Cu2 123.48 (7)
Cu1—Cl1—Cu1iii 94.90 (6)
Cu2—Cl1—Cu1iii 78.17 (5)
Symmetry codes: (i) [x, -y+2, z-{\script{1\over 2}}]; (ii) x, y+1, z; (iii) x, y-1, z; (iv) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2003[Bruker (2003). APEX2 and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) ; cell refinement: SAINT (Bruker, 2003[Bruker (2003). APEX2 and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Tetrazoles have found a wide range of applications in areas as diverse as coordination chemistry, medicinal chemistry and materials science (Butler, 1996). The study of complexes containing substituted tetrazole ligands is of interest to delineate the ways in which tetrazoles bind to metal centres. Recently, a series of 5-(4-pyridyl)-1H-tetrazole complexes of transition metals have been reported in which a range of coordination modes for the ligand were observed and extended two-dimensional and three-dimensional structures identified (Xue et al., 2002; Jiang et al., 2004; Luo et al., 2005; Lin et al., 2005; Chen et al., 2008). Herein, we report the crystal structure of a three-dimensional coordination polymer, [CuI2Cl(4-ptz)]n, derived from 5-(4-pyridyl)-1H-tetrazole and CuCl2.2H2O under hydrothermal reaction.

The asymmetric unit of the title complex contains of two independent CuI ions, one Cl-, and one 4-ptz ligand. As shown in Fig. 1, atom Cu1 adopts distorted tetrahedral geometry with a Cl2N2 donor set and atom Cu2 is in a disorted trigonal coordination geometry with an N2Cl donor set. Atom Cl1 is bonded to three CuI atoms, and the 4-ptz ligand coordinates to four CuI ions. It is noteworthy that atoms N1, N2, and N3 bond to three CuI atoms, respectively, forming a µ3-1,2,3-tetrazolyl coordination mode. The overall structure of title complex is a three-dimensional network (Fig. 2).

Related literature top

For related transition metals complexes of 5-(4-pyridyl)-1H-tetrazole, see: Xue et al. (2002); Jiang et al. (2004); Luo et al. (2005); Lin et al. (2005); Chen et al. (2008). For the applications of tetrazoles, see: Butler (1996).

Experimental top

A mixture of CuCl2.2H2O (0.172 g, 1 mmol), 5-(4-pyridyl)-1H-tetrazole (0.074 g, 0.5 mmol) in 8 ml deionized water was homogenized at room temperature for 30 minutes. Then the final solution was sealed in a 20 mL stainless-steelautoclave at 433 K for 72 h. A quantity of crystals was obtained after the solution was cooled to room temperature. The crystals were filtered, washed with deionized water and dried at room temperature. The yield is ca 64% based on CuCl2.2H2O.

Refinement top

All H atoms on C atoms were positioned geometrically and allowed to ride on their respective parent atoms, with C—H = 0.93 and Uiso(H) = 1.2 Ueq(C). The crystal is an inversion twin with the ratio of twin components 0.81 (3):0.19 (3).

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the coordination environment around the CuI ions and 4-ptz ligand of title complex with labeling scheme and 30% thermal ellipsoids. Symmetry codes: (i) x, -y + 2, z - 1/2; (ii) x, y + 1, z; (iii) x, y - 1, z; (iv) x - 1/2, y - 1/2, z;(v) x, -y + 2, z + 1/2; (vi) x + 1/2, y + 1/2, z.
[Figure 2] Fig. 2. Part of the crystal structure of the title complex.
Poly[µ-chlorido-[µ4-5-(4-pyridyl)tetrazolato]dicopper(I)] top
Crystal data top
[Cu2Cl(C6H4N5)]F(000) = 600
Mr = 308.67Dx = 2.517 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 1367 reflections
a = 19.6899 (7) Åθ = 2.1–27.8°
b = 3.6479 (1) ŵ = 5.50 mm1
c = 11.6337 (3) ÅT = 298 K
β = 102.923 (2)°Block, yellow
V = 814.45 (4) Å30.30 × 0.26 × 0.24 mm
Z = 4
Data collection top
Bruker SMART CCD APEXII
diffractometer
1572 independent reflections
Radiation source: fine-focus sealed tube1415 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 8.40 pixels mm-1θmax = 27.8°, θmin = 2.1°
ω scansh = 2125
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 44
Tmin = 0.230, Tmax = 0.269l = 1515
3752 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0547P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
1572 reflectionsΔρmax = 0.71 e Å3
128 parametersΔρmin = 0.71 e Å3
2 restraintsAbsolute structure: Flack (1983), 621 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.19 (3)
Crystal data top
[Cu2Cl(C6H4N5)]V = 814.45 (4) Å3
Mr = 308.67Z = 4
Monoclinic, CcMo Kα radiation
a = 19.6899 (7) ŵ = 5.50 mm1
b = 3.6479 (1) ÅT = 298 K
c = 11.6337 (3) Å0.30 × 0.26 × 0.24 mm
β = 102.923 (2)°
Data collection top
Bruker SMART CCD APEXII
diffractometer
1572 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1415 reflections with I > 2σ(I)
Tmin = 0.230, Tmax = 0.269Rint = 0.027
3752 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.092Δρmax = 0.71 e Å3
S = 1.11Δρmin = 0.71 e Å3
1572 reflectionsAbsolute structure: Flack (1983), 621 Friedel pairs
128 parametersAbsolute structure parameter: 0.19 (3)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.17283 (4)0.9867 (2)0.16168 (5)0.0302 (2)
Cu20.07924 (5)0.1504 (3)0.34304 (8)0.0341 (2)
Cl10.08796 (8)0.4991 (4)0.16267 (13)0.0264 (3)
N10.2207 (2)0.9667 (13)0.3361 (4)0.0188 (9)
N20.1753 (3)1.0294 (14)0.4064 (5)0.0209 (9)
N30.2072 (3)0.9615 (14)0.5171 (4)0.0219 (10)
N40.2723 (3)0.8552 (15)0.5223 (4)0.0232 (10)
N50.4827 (2)0.6742 (14)0.3528 (4)0.0215 (10)
C10.4640 (3)0.5674 (16)0.4514 (6)0.0234 (12)
H1A0.49710.45350.51010.028*
C20.3980 (3)0.6184 (16)0.4700 (5)0.0203 (11)
H2A0.38760.54500.54070.024*
C30.4326 (3)0.8253 (16)0.2677 (5)0.0230 (11)
H3A0.44460.90030.19850.028*
C40.3644 (3)0.8755 (16)0.2771 (5)0.0203 (11)
H4A0.33120.97040.21450.024*
C50.3469 (3)0.7798 (14)0.3829 (5)0.0176 (10)
C60.2791 (3)0.8611 (16)0.4091 (5)0.0173 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0279 (4)0.0496 (4)0.0144 (3)0.0021 (4)0.0076 (3)0.0018 (3)
Cu20.0125 (3)0.0561 (5)0.0334 (4)0.0066 (4)0.0042 (3)0.0033 (4)
Cl10.0223 (7)0.0274 (6)0.0276 (8)0.0018 (5)0.0016 (6)0.0035 (5)
N10.012 (2)0.032 (2)0.012 (2)0.0020 (18)0.0023 (17)0.0003 (18)
N20.013 (2)0.036 (2)0.014 (2)0.0013 (19)0.0042 (16)0.001 (2)
N30.017 (2)0.038 (3)0.011 (2)0.0014 (19)0.0038 (18)0.0001 (18)
N40.018 (2)0.040 (3)0.011 (2)0.004 (2)0.0035 (18)0.001 (2)
N50.014 (2)0.028 (2)0.022 (2)0.0037 (19)0.0043 (19)0.0005 (19)
C10.016 (3)0.028 (3)0.025 (3)0.006 (2)0.001 (2)0.006 (2)
C20.019 (3)0.030 (3)0.012 (3)0.002 (2)0.003 (2)0.002 (2)
C30.017 (3)0.034 (3)0.018 (3)0.002 (2)0.005 (2)0.001 (2)
C40.021 (3)0.028 (3)0.012 (3)0.004 (2)0.002 (2)0.002 (2)
C50.012 (2)0.023 (2)0.017 (3)0.002 (2)0.002 (2)0.0028 (19)
C60.014 (2)0.024 (2)0.012 (2)0.000 (2)0.0001 (19)0.002 (2)
Geometric parameters (Å, º) top
Cu1—N3i1.958 (5)N4—C61.354 (7)
Cu1—N12.038 (5)N5—C11.339 (8)
Cu1—Cl12.4422 (15)N5—C31.349 (7)
Cu1—Cl1ii2.5090 (16)N5—Cu2vi1.931 (4)
Cu2—N2iii1.921 (5)C1—C21.377 (8)
Cu2—N5iv1.931 (4)C1—H1A0.9300
Cu2—Cl12.4923 (18)C2—C51.389 (8)
Cl1—Cu1iii2.5090 (16)C2—H2A0.9300
N1—C61.325 (7)C3—C41.383 (8)
N1—N21.360 (7)C3—H3A0.9300
N2—N31.323 (7)C4—C51.395 (8)
N2—Cu2ii1.921 (5)C4—H4A0.9300
N3—N41.327 (7)C5—C61.464 (7)
N3—Cu1v1.958 (5)
N3i—Cu1—N1133.4 (2)C1—N5—C3116.8 (5)
N3i—Cu1—Cl1116.27 (15)C1—N5—Cu2vi120.1 (4)
N1—Cu1—Cl197.70 (14)C3—N5—Cu2vi122.9 (4)
N3i—Cu1—Cl1ii106.89 (15)N5—C1—C2123.1 (5)
N1—Cu1—Cl1ii100.51 (13)N5—C1—H1A118.5
Cl1—Cu1—Cl1ii94.90 (6)C2—C1—H1A118.5
N2iii—Cu2—N5iv152.3 (2)C1—C2—C5119.8 (5)
N2iii—Cu2—Cl1101.13 (17)C1—C2—H2A120.1
N5iv—Cu2—Cl1106.30 (16)C5—C2—H2A120.1
Cu1—Cl1—Cu2123.48 (7)N5—C3—C4124.0 (5)
Cu1—Cl1—Cu1iii94.90 (6)N5—C3—H3A118.0
Cu2—Cl1—Cu1iii78.17 (5)C4—C3—H3A118.0
C6—N1—N2104.9 (5)C3—C4—C5118.2 (5)
C6—N1—Cu1142.2 (4)C3—C4—H4A120.9
N2—N1—Cu1111.9 (4)C5—C4—H4A120.9
N3—N2—N1108.7 (5)C2—C5—C4117.9 (5)
N3—N2—Cu2ii128.9 (4)C2—C5—C6118.6 (5)
N1—N2—Cu2ii122.1 (4)C4—C5—C6123.4 (5)
N2—N3—N4110.1 (4)N1—C6—N4111.5 (5)
N2—N3—Cu1v129.6 (4)N1—C6—C5128.8 (5)
N4—N3—Cu1v120.3 (4)N4—C6—C5119.6 (5)
N3—N4—C6104.8 (4)
Symmetry codes: (i) x, y+2, z1/2; (ii) x, y+1, z; (iii) x, y1, z; (iv) x1/2, y1/2, z; (v) x, y+2, z+1/2; (vi) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Cu2Cl(C6H4N5)]
Mr308.67
Crystal system, space groupMonoclinic, Cc
Temperature (K)298
a, b, c (Å)19.6899 (7), 3.6479 (1), 11.6337 (3)
β (°) 102.923 (2)
V3)814.45 (4)
Z4
Radiation typeMo Kα
µ (mm1)5.50
Crystal size (mm)0.30 × 0.26 × 0.24
Data collection
DiffractometerBruker SMART CCD APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.230, 0.269
No. of measured, independent and
observed [I > 2σ(I)] reflections
3752, 1572, 1415
Rint0.027
(sin θ/λ)max1)0.655
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.092, 1.11
No. of reflections1572
No. of parameters128
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.71, 0.71
Absolute structureFlack (1983), 621 Friedel pairs
Absolute structure parameter0.19 (3)

Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu1—N3i1.958 (5)Cu2—N2iii1.921 (5)
Cu1—N12.038 (5)Cu2—N5iv1.931 (4)
Cu1—Cl12.4422 (15)Cu2—Cl12.4923 (18)
Cu1—Cl1ii2.5090 (16)
N3i—Cu1—N1133.4 (2)N2iii—Cu2—N5iv152.3 (2)
N3i—Cu1—Cl1116.27 (15)N2iii—Cu2—Cl1101.13 (17)
N1—Cu1—Cl197.70 (14)N5iv—Cu2—Cl1106.30 (16)
N3i—Cu1—Cl1ii106.89 (15)Cu1—Cl1—Cu2123.48 (7)
N1—Cu1—Cl1ii100.51 (13)Cu1—Cl1—Cu1iii94.90 (6)
Cl1—Cu1—Cl1ii94.90 (6)Cu2—Cl1—Cu1iii78.17 (5)
Symmetry codes: (i) x, y+2, z1/2; (ii) x, y+1, z; (iii) x, y1, z; (iv) x1/2, y1/2, z.
 

Acknowledgements

This work was supported by the K. C. Wong Magna Fund in Ningbo University.

References

First citationBruker (2003). APEX2 and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationButler, R. N. (1996). Comprehensive Heterocyclic Chemistry, Vol. 4, edited by A. R. Katritzky, C. W. Rees & E. F. V. Scriven. Oxford: Pergamon.  Google Scholar
First citationChen, Y., Ren, Z.-G., Li, H.-X., Tang, X.-Y., Zhang, W.-H., Zhang, Y. & Lang, J.-P. (2008). J. Mol. Struct. 875, 339–345.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJiang, C., Yu, Z., Wang, S., Jiao, C., Li, J., Wang, Z. & Cui, Y. (2004). Eur. J. Inorg. Chem. pp. 3662-3667.  Google Scholar
First citationLin, P., Clegg, W., Harrington, R. W. & Henderson, R. A. (2005). Dalton Trans. pp. 2388–2394.  Web of Science CSD CrossRef Google Scholar
First citationLuo, T.-T., Tsai, H.-L., Yang, S.-L., Liu, Y.-H., Yadav, R. D., Su, C.-C., Ueng, C.-H., Lin, L.-G. & Lu, K.-L. (2005). Angew. Chem. Int. Ed. 44, 6063-6067.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXue, X., Wang, X.-S., Wang, L.-Z., Xiong, R.-G., Abrahams, B. F., You, X.-Z., Xue, Z.-L. & Che, C.-M. (2002). Inorg. Chem. 41, 6544-6546.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds