metal-organic compounds
Bis(benzoylacetonato)bis(1,3-di-4-pyridylpropane)manganese(II)
aFaculty of Materials Science & Chemical Engineering, Ningbo University, Zhejiang 315211, People's Republic of China, and bKey Laboratory for Molecular Design and Nutrition Engineering of Ningbo, Ningbo Institute of Technology, Zhejiang University, Zhejiang 315100, People's Republic of China
*Correspondence e-mail: hanlei@nbu.edu.cn
In the title compound, [Mn(C10H9O2)2(C13H14N2)2], the MnII ion lies on a crystallographic inversion center and has a slightly distorted octahedral coordination environment. Weak π–π stacking interactions, with centroid–centroid distances of 3.862 (2) and 3.887 (5) Å, and significant C—H⋯π interactions help to stabilize the The atoms of the unique terminal 4-pyridinepropane group are disordered over two sites, the ratio of refined occpancies being 0.712 (7):0.288 (7).
Related literature
For the β-diketone group, see: Yoshida et al. (1999). For factors influencing structures and applications, see: Ghosh et al. (2004). For the 1-benzoylacetone ligand, see: Han & Zhou (2008); Bučar & Meštrović (2003); Meštrović et al. (2004). For 1,3-bis(4-pyridyl)propane, see: Carlucci et al. (2002); Han et al. (2007).
Experimental
Crystal data
|
Refinement
|
|
Data collection: RAPID-AUTO (Rigaku, 1998); cell RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536809009891/lh2780sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809009891/lh2780Isup2.hkl
A mixture of 1-benzoylacetone (0.0358 g, 0.2 mmol) and 1,3-bis(4-pyridyl)propane (0.0830 g, 0.4 mmol) in mixed solution of CH3CN (10ml) and H2O (10ml) was stirred for 30 min. Then MnCl2.4H2O (0.1547g, 0.8 mmol) was added to the solution and stirred for 1 h. The mixed solution was allowed to stand at room temperature for 15 days. A quantity of yellow block-shaped crystals were obtained and collected by filtration with 20% yield based on MnCl2.4H2O.
All H atoms on C atoms were positioned geometrically and allowed to ride on their respective parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for phenyl and pyridyl H atoms, C—H = 0.96 Å and Uiso(H) =1.5Ueq(C) for methyl, C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for methylene. The atoms of the unique terminal 4-pyridinepropane group are disordered over two sites with a ratio of refined occpancies being 0.712 (7):0.288 (7). The atoms of the minor component of disorder were reined with isotropic displacement parameters.
Data collection: RAPID-AUTO (Rigaku, 1998); cell
RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The molecular structure of (1) with 30% probability ellipsoids. The minor component disorder atoms have been removed for clarity (Symmetry codes (i): 1-x, 1-y, 1-z). | |
Fig. 2. Part of the crystal structure of (1), showing π···π stacking interactions and C—H···π interactions as dashed lines. The minor component disorder atoms have been removed for clarity. |
[Mn(C10H9O2)2(C13H14N2)2] | Z = 1 |
Mr = 773.81 | F(000) = 407 |
Triclinic, P1 | Dx = 1.271 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 9.771 (2) Å | Cell parameters from 9996 reflections |
b = 10.269 (2) Å | θ = 3.1–27.4° |
c = 10.485 (2) Å | µ = 0.37 mm−1 |
α = 79.84 (3)° | T = 298 K |
β = 77.68 (3)° | Block, yellow |
γ = 89.45 (3)° | 0.43 × 0.27 × 0.14 mm |
V = 1011.3 (3) Å3 |
Rigaku R-AXIS RAPID diffractometer | 4583 independent reflections |
Radiation source: fine-focus sealed tube | 2625 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.038 |
Detector resolution: 0 pixels mm-1 | θmax = 27.4°, θmin = 3.1° |
ω scans | h = −12→11 |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | k = −13→13 |
Tmin = 0.886, Tmax = 0.949 | l = −13→13 |
9996 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.054 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.131 | H-atom parameters constrained |
S = 1.11 | w = 1/[σ2(Fo2) + (0.0212P)2 + 0.8043P] where P = (Fo2 + 2Fc2)/3 |
4583 reflections | (Δ/σ)max < 0.001 |
279 parameters | Δρmax = 0.44 e Å−3 |
22 restraints | Δρmin = −0.85 e Å−3 |
[Mn(C10H9O2)2(C13H14N2)2] | γ = 89.45 (3)° |
Mr = 773.81 | V = 1011.3 (3) Å3 |
Triclinic, P1 | Z = 1 |
a = 9.771 (2) Å | Mo Kα radiation |
b = 10.269 (2) Å | µ = 0.37 mm−1 |
c = 10.485 (2) Å | T = 298 K |
α = 79.84 (3)° | 0.43 × 0.27 × 0.14 mm |
β = 77.68 (3)° |
Rigaku R-AXIS RAPID diffractometer | 4583 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 2625 reflections with I > 2σ(I) |
Tmin = 0.886, Tmax = 0.949 | Rint = 0.038 |
9996 measured reflections |
R[F2 > 2σ(F2)] = 0.054 | 22 restraints |
wR(F2) = 0.131 | H-atom parameters constrained |
S = 1.11 | Δρmax = 0.44 e Å−3 |
4583 reflections | Δρmin = −0.85 e Å−3 |
279 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Mn1 | 0.5000 | 0.5000 | 0.5000 | 0.0515 (2) | |
O1 | 0.5977 (2) | 0.4870 (2) | 0.2980 (2) | 0.0588 (6) | |
O2 | 0.4772 (2) | 0.70055 (19) | 0.4153 (2) | 0.0583 (6) | |
N1 | 0.7142 (3) | 0.5550 (2) | 0.5435 (3) | 0.0554 (7) | |
C1 | 0.6164 (3) | 0.5749 (3) | 0.1942 (3) | 0.0561 (8) | |
C2 | 0.5774 (3) | 0.7069 (3) | 0.1891 (3) | 0.0543 (8) | |
H2A | 0.5942 | 0.7611 | 0.1060 | 0.065* | |
C3 | 0.5159 (3) | 0.7642 (3) | 0.2973 (3) | 0.0497 (7) | |
C4 | 0.4914 (3) | 0.9105 (3) | 0.2811 (3) | 0.0512 (7) | |
C5 | 0.4131 (4) | 0.9594 (3) | 0.3870 (4) | 0.0663 (9) | |
H5A | 0.3739 | 0.9010 | 0.4644 | 0.080* | |
C6 | 0.3917 (4) | 1.0938 (4) | 0.3806 (4) | 0.0818 (11) | |
H6A | 0.3375 | 1.1247 | 0.4528 | 0.098* | |
C7 | 0.4501 (5) | 1.1811 (4) | 0.2680 (5) | 0.0850 (12) | |
H7A | 0.4377 | 1.2715 | 0.2640 | 0.102* | |
C8 | 0.5270 (4) | 1.1340 (4) | 0.1614 (4) | 0.0819 (12) | |
H8A | 0.5656 | 1.1929 | 0.0841 | 0.098* | |
C9 | 0.5481 (3) | 0.9997 (3) | 0.1673 (4) | 0.0649 (9) | |
H9A | 0.6009 | 0.9693 | 0.0942 | 0.078* | |
C10 | 0.6872 (5) | 0.5313 (4) | 0.0665 (3) | 0.0889 (13) | |
H10A | 0.7800 | 0.5030 | 0.0723 | 0.133* | |
H10B | 0.6927 | 0.6039 | −0.0061 | 0.133* | |
H10C | 0.6340 | 0.4591 | 0.0522 | 0.133* | |
C11 | 0.7529 (4) | 0.5049 (3) | 0.6567 (3) | 0.0638 (9) | |
H11A | 0.6941 | 0.4413 | 0.7173 | 0.077* | |
C12 | 0.8743 (4) | 0.5418 (4) | 0.6887 (4) | 0.0677 (9) | |
H12A | 0.8959 | 0.5029 | 0.7688 | 0.081* | |
C13 | 0.9645 (3) | 0.6367 (4) | 0.6023 (4) | 0.0631 (9) | |
C14 | 0.9256 (3) | 0.6873 (3) | 0.4842 (4) | 0.0655 (9) | |
H14A | 0.9830 | 0.7503 | 0.4215 | 0.079* | |
C15 | 0.8025 (3) | 0.6449 (3) | 0.4595 (3) | 0.0610 (8) | |
H15A | 0.7793 | 0.6812 | 0.3793 | 0.073* | |
C16 | 1.0969 (4) | 0.6845 (4) | 0.6333 (4) | 0.0850 (12) | |
H16A | 1.1748 | 0.6787 | 0.5599 | 0.102* | 0.712 (7) |
H16B | 1.1152 | 0.6272 | 0.7115 | 0.102* | 0.712 (7) |
C17 | 1.0873 (5) | 0.8315 (6) | 0.6584 (6) | 0.0735 (18) | 0.712 (7) |
H17A | 1.1786 | 0.8627 | 0.6649 | 0.088* | 0.712 (7) |
H17B | 1.0597 | 0.8880 | 0.5843 | 0.088* | 0.712 (7) |
C18 | 0.9821 (5) | 0.8393 (5) | 0.7845 (5) | 0.0715 (18) | 0.712 (7) |
H18A | 0.8921 | 0.8054 | 0.7778 | 0.086* | 0.712 (7) |
H18B | 1.0112 | 0.7826 | 0.8578 | 0.086* | 0.712 (7) |
C19 | 0.9642 (5) | 0.9769 (5) | 0.8155 (6) | 0.0585 (14) | 0.712 (7) |
C20 | 0.8366 (7) | 1.0339 (8) | 0.8254 (7) | 0.068 (2) | 0.712 (7) |
H20A | 0.7619 | 0.9881 | 0.8099 | 0.082* | 0.712 (7) |
C21 | 0.8167 (10) | 1.1545 (10) | 0.8570 (9) | 0.091 (4) | 0.712 (7) |
H21A | 0.7279 | 1.1890 | 0.8605 | 0.109* | 0.712 (7) |
C22 | 1.0392 (10) | 1.1755 (10) | 0.8710 (12) | 0.084 (3) | 0.712 (7) |
H22A | 1.1114 | 1.2260 | 0.8848 | 0.101* | 0.712 (7) |
C23 | 1.0715 (6) | 1.0503 (7) | 0.8387 (7) | 0.0711 (19) | 0.712 (7) |
H23A | 1.1614 | 1.0180 | 0.8331 | 0.085* | 0.712 (7) |
N2 | 0.9127 (8) | 1.2275 (7) | 0.8834 (7) | 0.083 (3)* | 0.712 (7) |
H16C | 1.1545 | 0.7357 | 0.5537 | 0.102* | 0.288 (7) |
H16D | 1.1497 | 0.6092 | 0.6635 | 0.102* | 0.288 (7) |
C17A | 1.0611 (15) | 0.7711 (11) | 0.7420 (13) | 0.067 (4)* | 0.288 (7) |
H17C | 0.9851 | 0.7311 | 0.8133 | 0.080* | 0.288 (7) |
H17D | 1.1421 | 0.7844 | 0.7785 | 0.080* | 0.288 (7) |
C18A | 1.0178 (15) | 0.9009 (11) | 0.6687 (12) | 0.067 (4)* | 0.288 (7) |
H18C | 1.0926 | 0.9332 | 0.5927 | 0.081* | 0.288 (7) |
H18D | 0.9355 | 0.8841 | 0.6355 | 0.081* | 0.288 (7) |
C19A | 0.9859 (14) | 1.0068 (12) | 0.7515 (15) | 0.059 (4)* | 0.288 (7) |
C20A | 0.8553 (17) | 1.0579 (18) | 0.7869 (19) | 0.065 (6)* | 0.288 (7) |
H20B | 0.7773 | 1.0231 | 0.7654 | 0.079* | 0.288 (7) |
C21A | 0.843 (2) | 1.1620 (17) | 0.855 (2) | 0.054 (6)* | 0.288 (7) |
H21B | 0.7535 | 1.1924 | 0.8812 | 0.064* | 0.288 (7) |
C22A | 1.071 (2) | 1.170 (2) | 0.861 (3) | 0.061 (6)* | 0.288 (7) |
H22B | 1.1456 | 1.1995 | 0.8918 | 0.073* | 0.288 (7) |
C23A | 1.0905 (17) | 1.0689 (16) | 0.7889 (16) | 0.065 (6)* | 0.288 (7) |
H23B | 1.1814 | 1.0408 | 0.7635 | 0.078* | 0.288 (7) |
N2A | 0.9475 (18) | 1.2239 (16) | 0.8872 (17) | 0.066 (5)* | 0.288 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mn1 | 0.0558 (4) | 0.0467 (4) | 0.0503 (4) | 0.0015 (3) | −0.0082 (3) | −0.0078 (3) |
O1 | 0.0646 (14) | 0.0521 (13) | 0.0569 (14) | 0.0078 (11) | −0.0061 (11) | −0.0110 (11) |
O2 | 0.0687 (14) | 0.0483 (12) | 0.0537 (13) | 0.0068 (10) | −0.0045 (11) | −0.0088 (10) |
N1 | 0.0563 (16) | 0.0563 (16) | 0.0534 (16) | 0.0028 (13) | −0.0106 (13) | −0.0110 (13) |
C1 | 0.0542 (19) | 0.063 (2) | 0.0501 (19) | 0.0049 (16) | −0.0084 (15) | −0.0119 (16) |
C2 | 0.0583 (19) | 0.0516 (18) | 0.0499 (18) | 0.0080 (15) | −0.0104 (15) | −0.0028 (15) |
C3 | 0.0432 (17) | 0.0510 (17) | 0.0534 (19) | −0.0011 (14) | −0.0101 (14) | −0.0055 (15) |
C4 | 0.0473 (17) | 0.0473 (17) | 0.0599 (19) | 0.0012 (14) | −0.0172 (15) | −0.0051 (15) |
C5 | 0.076 (2) | 0.058 (2) | 0.066 (2) | 0.0128 (18) | −0.0185 (19) | −0.0120 (17) |
C6 | 0.104 (3) | 0.064 (2) | 0.086 (3) | 0.026 (2) | −0.030 (2) | −0.026 (2) |
C7 | 0.101 (3) | 0.053 (2) | 0.111 (3) | 0.011 (2) | −0.041 (3) | −0.017 (2) |
C8 | 0.087 (3) | 0.052 (2) | 0.099 (3) | 0.000 (2) | −0.019 (2) | 0.007 (2) |
C9 | 0.063 (2) | 0.055 (2) | 0.072 (2) | 0.0001 (16) | −0.0108 (18) | −0.0048 (17) |
C10 | 0.119 (3) | 0.082 (3) | 0.059 (2) | 0.014 (2) | 0.003 (2) | −0.022 (2) |
C11 | 0.069 (2) | 0.061 (2) | 0.059 (2) | 0.0008 (17) | −0.0101 (18) | −0.0083 (17) |
C12 | 0.071 (2) | 0.075 (2) | 0.064 (2) | 0.015 (2) | −0.0243 (19) | −0.0189 (19) |
C13 | 0.0507 (19) | 0.073 (2) | 0.074 (2) | 0.0129 (17) | −0.0137 (18) | −0.036 (2) |
C14 | 0.054 (2) | 0.074 (2) | 0.067 (2) | −0.0038 (17) | −0.0042 (17) | −0.0181 (18) |
C15 | 0.060 (2) | 0.066 (2) | 0.055 (2) | 0.0002 (17) | −0.0079 (17) | −0.0105 (17) |
C16 | 0.060 (2) | 0.101 (3) | 0.110 (3) | 0.016 (2) | −0.025 (2) | −0.056 (3) |
C17 | 0.047 (3) | 0.102 (5) | 0.075 (4) | −0.007 (3) | −0.007 (3) | −0.030 (4) |
C18 | 0.069 (3) | 0.077 (4) | 0.070 (4) | −0.005 (3) | −0.009 (3) | −0.023 (3) |
C19 | 0.055 (3) | 0.071 (3) | 0.051 (3) | −0.002 (3) | −0.013 (3) | −0.011 (3) |
C20 | 0.051 (3) | 0.081 (5) | 0.074 (5) | −0.003 (3) | −0.019 (3) | −0.009 (4) |
C21 | 0.057 (5) | 0.117 (8) | 0.099 (6) | 0.012 (4) | −0.016 (4) | −0.019 (4) |
C22 | 0.078 (7) | 0.093 (6) | 0.084 (5) | −0.037 (5) | −0.017 (5) | −0.017 (4) |
C23 | 0.049 (3) | 0.096 (5) | 0.070 (5) | −0.001 (3) | −0.017 (3) | −0.014 (4) |
C16A | 0.060 (2) | 0.101 (3) | 0.110 (3) | 0.016 (2) | −0.025 (2) | −0.056 (3) |
Mn1—O2 | 2.124 (2) | C15—H15A | 0.9300 |
Mn1—O2i | 2.124 (2) | C16—C17 | 1.576 (6) |
Mn1—O1i | 2.157 (2) | C16—H16A | 0.9700 |
Mn1—O1 | 2.157 (2) | C16—H16B | 0.9700 |
Mn1—N1 | 2.330 (3) | C17—C18 | 1.506 (6) |
Mn1—N1i | 2.330 (3) | C17—H17A | 0.9700 |
O1—C1 | 1.266 (3) | C17—H17B | 0.9700 |
O2—C3 | 1.273 (3) | C18—C19 | 1.505 (6) |
N1—C15 | 1.333 (4) | C18—H18A | 0.9700 |
N1—C11 | 1.337 (4) | C18—H18B | 0.9700 |
C1—C2 | 1.400 (4) | C19—C20 | 1.364 (6) |
C1—C10 | 1.511 (4) | C19—C23 | 1.384 (6) |
C2—C3 | 1.390 (4) | C20—C21 | 1.339 (8) |
C2—H2A | 0.9300 | C20—H20A | 0.9300 |
C3—C4 | 1.505 (4) | C21—N2 | 1.310 (9) |
C4—C5 | 1.377 (4) | C21—H21A | 0.9300 |
C4—C9 | 1.383 (4) | C22—N2 | 1.331 (9) |
C5—C6 | 1.386 (5) | C22—C23 | 1.403 (8) |
C5—H5A | 0.9300 | C22—H22A | 0.9300 |
C6—C7 | 1.368 (5) | C23—H23A | 0.9300 |
C6—H6A | 0.9300 | C17A—C18A | 1.521 (13) |
C7—C8 | 1.368 (5) | C17A—H17C | 0.9700 |
C7—H7A | 0.9300 | C17A—H17D | 0.9700 |
C8—C9 | 1.385 (5) | C18A—C19A | 1.498 (13) |
C8—H8A | 0.9300 | C18A—H18C | 0.9700 |
C9—H9A | 0.9300 | C18A—H18D | 0.9700 |
C10—H10A | 0.9600 | C19A—C23A | 1.369 (13) |
C10—H10B | 0.9600 | C19A—C20A | 1.377 (14) |
C10—H10C | 0.9600 | C20A—C21A | 1.377 (14) |
C11—C12 | 1.374 (5) | C20A—H20B | 0.9300 |
C11—H11A | 0.9300 | C21A—N2A | 1.339 (15) |
C12—C13 | 1.382 (5) | C21A—H21B | 0.9300 |
C12—H12A | 0.9300 | C22A—N2A | 1.322 (15) |
C13—C14 | 1.384 (5) | C22A—C23A | 1.375 (15) |
C13—C16 | 1.506 (5) | C22A—H22B | 0.9300 |
C14—C15 | 1.374 (4) | C23A—H23B | 0.9300 |
C14—H14A | 0.9300 | ||
O2—Mn1—O2i | 180 | C13—C14—H14A | 119.9 |
O2—Mn1—O1i | 97.35 (8) | N1—C15—C14 | 123.9 (3) |
O2i—Mn1—O1i | 82.65 (8) | N1—C15—H15A | 118.1 |
O2—Mn1—O1 | 82.65 (8) | C14—C15—H15A | 118.1 |
O2i—Mn1—O1 | 97.35 (8) | C13—C16—C17 | 112.3 (3) |
O1i—Mn1—O1 | 180 | C13—C16—H16A | 109.1 |
O2—Mn1—N1 | 90.12 (9) | C17—C16—H16A | 109.1 |
O2i—Mn1—N1 | 89.88 (9) | C13—C16—H16B | 109.1 |
O1i—Mn1—N1 | 88.68 (9) | C17—C16—H16B | 109.1 |
O1—Mn1—N1 | 91.32 (9) | H16A—C16—H16B | 107.9 |
O2—Mn1—N1i | 89.88 (9) | C18—C17—C16 | 110.2 (4) |
O2i—Mn1—N1i | 90.12 (9) | C18—C17—H17A | 109.6 |
O1i—Mn1—N1i | 91.32 (9) | C16—C17—H17A | 109.6 |
O1—Mn1—N1i | 88.68 (9) | C18—C17—H17B | 109.6 |
N1—Mn1—N1i | 180 | C16—C17—H17B | 109.6 |
C1—O1—Mn1 | 129.9 (2) | H17A—C17—H17B | 108.1 |
C3—O2—Mn1 | 131.8 (2) | C19—C18—C17 | 114.0 (4) |
C15—N1—C11 | 115.8 (3) | C19—C18—H18A | 108.7 |
C15—N1—Mn1 | 121.5 (2) | C17—C18—H18A | 108.7 |
C11—N1—Mn1 | 122.6 (2) | C19—C18—H18B | 108.7 |
O1—C1—C2 | 125.5 (3) | C17—C18—H18B | 108.7 |
O1—C1—C10 | 116.2 (3) | H18A—C18—H18B | 107.6 |
C2—C1—C10 | 118.3 (3) | C20—C19—C23 | 116.6 (5) |
C3—C2—C1 | 125.7 (3) | C20—C19—C18 | 120.1 (5) |
C3—C2—H2A | 117.2 | C23—C19—C18 | 123.2 (5) |
C1—C2—H2A | 117.2 | C21—C20—C19 | 121.3 (7) |
O2—C3—C2 | 124.3 (3) | C21—C20—H20A | 119.3 |
O2—C3—C4 | 114.9 (3) | C19—C20—H20A | 119.3 |
C2—C3—C4 | 120.8 (3) | N2—C21—C20 | 125.0 (9) |
C5—C4—C9 | 118.0 (3) | N2—C21—H21A | 117.5 |
C5—C4—C3 | 118.4 (3) | C20—C21—H21A | 117.5 |
C9—C4—C3 | 123.5 (3) | N2—C22—C23 | 124.8 (7) |
C4—C5—C6 | 121.3 (3) | N2—C22—H22A | 117.6 |
C4—C5—H5A | 119.3 | C23—C22—H22A | 117.6 |
C6—C5—H5A | 119.3 | C19—C23—C22 | 117.3 (6) |
C7—C6—C5 | 120.0 (4) | C19—C23—H23A | 121.3 |
C7—C6—H6A | 120.0 | C22—C23—H23A | 121.3 |
C5—C6—H6A | 120.0 | C21—N2—C22 | 114.8 (7) |
C6—C7—C8 | 119.4 (4) | C18A—C17A—H17C | 111.1 |
C6—C7—H7A | 120.3 | C18A—C17A—H17D | 111.1 |
C8—C7—H7A | 120.3 | H17C—C17A—H17D | 109.0 |
C7—C8—C9 | 120.7 (4) | C19A—C18A—C17A | 114.2 (10) |
C7—C8—H8A | 119.7 | C19A—C18A—H18C | 108.7 |
C9—C8—H8A | 119.7 | C17A—C18A—H18C | 108.7 |
C4—C9—C8 | 120.6 (4) | C19A—C18A—H18D | 108.7 |
C4—C9—H9A | 119.7 | C17A—C18A—H18D | 108.7 |
C8—C9—H9A | 119.7 | H18C—C18A—H18D | 107.6 |
C1—C10—H10A | 109.5 | C23A—C19A—C20A | 114.3 (12) |
C1—C10—H10B | 109.5 | C23A—C19A—C18A | 121.1 (12) |
H10A—C10—H10B | 109.5 | C20A—C19A—C18A | 124.4 (12) |
C1—C10—H10C | 109.5 | C21A—C20A—C19A | 118.1 (15) |
H10A—C10—H10C | 109.5 | C21A—C20A—H20B | 120.9 |
H10B—C10—H10C | 109.5 | C19A—C20A—H20B | 120.9 |
N1—C11—C12 | 123.8 (3) | N2A—C21A—C20A | 126.7 (16) |
N1—C11—H11A | 118.1 | N2A—C21A—H21B | 116.7 |
C12—C11—H11A | 118.1 | C20A—C21A—H21B | 116.7 |
C11—C12—C13 | 120.2 (3) | N2A—C22A—C23A | 120.3 (17) |
C11—C12—H12A | 119.9 | N2A—C22A—H22B | 119.9 |
C13—C12—H12A | 119.9 | C23A—C22A—H22B | 119.9 |
C12—C13—C14 | 116.0 (3) | C19A—C23A—C22A | 125.0 (15) |
C12—C13—C16 | 122.8 (4) | C19A—C23A—H23B | 117.5 |
C14—C13—C16 | 121.2 (4) | C22A—C23A—H23B | 117.5 |
C15—C14—C13 | 120.2 (3) | C22A—N2A—C21A | 115.1 (14) |
C15—C14—H14A | 119.9 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C11—H11A···Cg1 | 0.93 | 2.56 | 3.159 (4) | 122 |
C14—H14A···Cg2ii | 0.93 | 2.91 | 3.738 (5) | 149 |
C14—H14A···Cg3ii | 0.93 | 2.63 | 3.440 (9) | 147 |
C15—H15A···Cg1 | 0.93 | 2.60 | 3.206 (3) | 123 |
C20—H20A···Cg4iii | 0.93 | 2.65 | 3.529 (7) | 158 |
Symmetry codes: (ii) −x+2, −y+2, −z+1; (iii) −x+1, −y+2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Mn(C10H9O2)2(C13H14N2)2] |
Mr | 773.81 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 298 |
a, b, c (Å) | 9.771 (2), 10.269 (2), 10.485 (2) |
α, β, γ (°) | 79.84 (3), 77.68 (3), 89.45 (3) |
V (Å3) | 1011.3 (3) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 0.37 |
Crystal size (mm) | 0.43 × 0.27 × 0.14 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.886, 0.949 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9996, 4583, 2625 |
Rint | 0.038 |
(sin θ/λ)max (Å−1) | 0.648 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.054, 0.131, 1.11 |
No. of reflections | 4583 |
No. of parameters | 279 |
No. of restraints | 22 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.44, −0.85 |
Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), ORTEPII (Johnson, 1976), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
Mn1—O2 | 2.124 (2) | Mn1—N1 | 2.330 (3) |
Mn1—O1 | 2.157 (2) | ||
O2—Mn1—O2i | 180 | O1—Mn1—N1 | 91.32 (9) |
O2—Mn1—O1i | 97.35 (8) | O2—Mn1—N1i | 89.88 (9) |
O2—Mn1—O1 | 82.65 (8) | O1—Mn1—N1i | 88.68 (9) |
O1i—Mn1—O1 | 180 | N1—Mn1—N1i | 180 |
O2—Mn1—N1 | 90.12 (9) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C11—H11A···Cg1 | 0.93 | 2.56 | 3.159 (4) | 122 |
C14—H14A···Cg2ii | 0.93 | 2.91 | 3.738 (5) | 149 |
C14—H14A···Cg3ii | 0.93 | 2.63 | 3.440 (9) | 147 |
C15—H15A···Cg1 | 0.93 | 2.60 | 3.206 (3) | 123 |
C20—H20A···Cg4iii | 0.93 | 2.65 | 3.529 (7) | 158 |
Symmetry codes: (ii) −x+2, −y+2, −z+1; (iii) −x+1, −y+2, −z+1. |
Acknowledgements
This work was supported by the National Natural Science Foundation of China (20701022), the Natural Science Foundation of Zhejiang Province (Y4080435), the Natural Science Foundation of Ningbo Municipality (2007A610024) and the K.C. Wong Magna Fund of Ningbo University.
References
Bučar, D.-K. & Meštrović, E. (2003). Acta Cryst. E59, m985–m987. Web of Science CSD CrossRef IUCr Journals Google Scholar
Carlucci, L., Ciani, G., Proserpio, D.-M. & Rizzato, S. (2002). Coord. Chem. Rev. 4, 121–129. CAS Google Scholar
Ghosh, A.-K., Ghoshal, D., Lu, T.-H., Mostafa, G. & Chaudhuri, N.-R. (2004). Cryst. Growth. Des. 4, 851–857. Web of Science CSD CrossRef CAS Google Scholar
Han, L., Valle, H. & Bu, X.-H. (2007). Inorg. Chem. 46, 1511–1513. Web of Science CSD CrossRef PubMed CAS Google Scholar
Han, L. & Zhou, Y. (2008). Inorg. Chem. Commun. 11, 385–387. Web of Science CSD CrossRef CAS Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Meštrović, E., Halasz, I., Bučar, D.-K. & Žgela, M. (2004). Acta Cryst. E60, m367–m369. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yoshida, T., Suzuki, T., Kanamori, K. & Kaizaki, S. (1999). Inorg. Chem. 38, 1059–1068. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Great attention has been given to the β-diketone group, as it can chelate divalent 3d-electron metal elements with a heterocyclic base as an electron donor and a number of complexes have been reported in the literature (Yoshida et al., 1999). Many factors, such as guests with different shapes and sizes, the shape of counterions, metal ions and nonconcovalent inter- or intramolecular forces (e.g. hydrogen bonding, π···π stacking and C—H···π interactions) play important roles in determining their structures and applications (Ghosh et al., 2004). 1-Benzoylacetone (Hbzac) is an excellent choice of ligand, not only due to its chelating coordinating effect to the metal center, but also to its ability to act as an anionic ligand to balance the charge and form a neutral framework (Han & Zhou, 2008; Bučar et al., 2003; Meštrović et al., 2004). Another organic ligand, 1,3-bis(4-pyridyl)propane) (bpp), is a long and flexible multi-functional linker, which can adopt different conformations with respect to the relative orientations of the CH2 groups (Han et al., 2007; Carlucci et al., 2002). Recently, we synthesized a neutral monomer, [Mn(bzac)2(bpp)2] through the ambient evaporation of a mixed solution, of which weak π···π stacking and significant C—H···πinteractions are observed in the crystal structure.
There title compound, [Mn(bzac)2(bpp)2] (1), is centrosymmetric with the MnII ion adopting a slightly distorted octahedral coordination geometry. As shown in Fig. 1, the asymmetric unit consists of one-half of the molecule. The MnII ion is coordinated by four O atoms from two symmetry realted bzac anionic ligands in the equatorial plane and two N atoms from two symmetry realted bpp ligands in the axial sites. The chelate ring (Mn/O1/C1/C2/C3/O2) is essentially planar and forms a dihedral angle of 84.96 (8)° with the N1/C11-C15 ring and an angle of 12.49 (9)° with the C4-C9 ring. In the crystal structure there are weak π···π interactions between symmetry related (N1/C11-C15) pyridine rings (symmetry code: 2-x,1-y,1-z) with a centroid-to-centroid distance of 3.862 (2) Å and a perpendicular distance of 3.536 (2)Å and between symmetry related N2/C19-C23 rings (symmetry code: 2-x,2-y,2-z) with a centroid-to-centroid distance of 3.887 (5)Å and a perpendicular distance of 3.280 (3)Å (see Fig .2). In addition, significant C—H···π interactions (Spek, 2009) (Table 2) help stabilize the crystal structure.