metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(3-methyl­pyridinium) tetra­chlorido­cuprate(II)

aDepartment of Chemistry Education and Center for Plastic Information Systems, Pusan National University, Pusan 609-735, Republic of Korea, and bDepartment of Chemistry, Chungnam National University, Daejeon 305-764, Republic of Korea
*Correspondence e-mail: skkang@cnu.ac.kr

(Received 19 February 2009; accepted 4 March 2009; online 11 March 2009)

The title compound, (C6H8N)2[CuCl4], is composed of two 3-methyl­pyridinium cation and one tetra­chloridocuprate(II) anion. The geometry around the copper(II) ion is that of a distorted tetra­hedron. In the crystal structure, the anions and cations are linked by three different N—H⋯Cl hydrogen bonds. In addition, the crystal structure exhibits aromatic ππ inter­actions between the pyridinium rings of two discrete units [centroid–centroid distance = 3.704 (2) Å].

Related literature

For general background on the influence of crystal-packing forces on the geometry of the tetrahalogenidocuprate(II) species, see: Schneider et al. (2007[Schneider, T. T., Landee, C. P., Turnbull, M. M., Awwadi, F. F. & Twamley, B. (2007). Polyhedron, 26, 1849-1858.]); Parent et al. (2007[Parent, A. R., Landee, C. P. & Turnbull, M. M. (2007). Inorg. Chim. Acta, 360, 1943-1953.]); Haddad et al. (2006[Haddad, S. F., Aidamen, M. A. & Willett, R. D. (2006). Inorg. Chim. Acta, 359, 424-432.]); Marzotto et al. (2001[Marzotto, A., Clemente, D. A., Benetollo, F. & Valle, G. (2001). Polyhedron, 20, 171-177.]); Choi et al. (2002[Choi, S.-N., Lee, Y.-M., Lee, H.-W., Kang, S. K. & Kim, Y.-I. (2002). Acta Cryst. E58, m583-m585.]); Awwadi et al. (2007[Awwadi, F. F., Willett, R. D. & Twamly, B. (2007). Cryst. Growth Des. 7, 624-632.]). For the electronic spectrum in DMF solution, see Lee et al. (2002[Lee, Y. M., Kim, Y. K., Jung, H. C., Kim, Y. I. & Choi, S. N. (2002). Bull. Korean Chem. Soc. 23, 404-412.]). For related literature, see: Lee et al. (2008[Lee, H. W., Sengottuvelan, N., Seo, H. J., Choi, J. S., Kang, S. K. & Kim, Y. I. (2008). Bull. Korean Chem. Soc. 29, 1711-1716.]).

[Scheme 1]

Experimental

Crystal data
  • (C6H8N)2[CuCl4]

  • Mr = 393.61

  • Monoclinic, P 21 /n

  • a = 9.0438 (3) Å

  • b = 13.0530 (4) Å

  • c = 13.7391 (5) Å

  • β = 103.541 (2)°

  • V = 1576.80 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.05 mm−1

  • T = 123 K

  • 0.25 × 0.24 × 0.23 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.603, Tmax = 0.62

  • 16009 measured reflections

  • 3899 independent reflections

  • 3429 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.062

  • S = 1.04

  • 3899 reflections

  • 182 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl1 0.80 (2) 2.44 (2) 3.136 (2) 146 (2)
N2—H2⋯Cl1 0.81 (2) 2.66 (2) 3.270 (2) 134 (2)
N2—H2⋯Cl2 0.81 (2) 2.50 (2) 3.196 (2) 145 (2)

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The four–coordinated tetrahalocuprate (II) ions, [CuCl4]2- possess a variety of geometries from square planar to near tetrahedral symmetry, and the geometry of tetrahalocuprate (II) species is influenced by the crystal-packing forces resulted from the size and shape of counter cations (Schneider et al., 2007; Parent et al., 2007), hydrogen bonding to cations (Haddad et al., 2006; Marzotto et al., 2001; Choi et al., 2002), and halide-halide interactions in solid (Awwadi et al., 2007). Herein, we report the crystal structure of the title compound, bis(3-methylpyridinium)tetrachloridocuprate(II) (Fig. 1).

The [CuCl4]2- anion in the title compound is distorted to be approximately D2d, somewhat distorted from tetrahedral as a result of hydrogen bonding interactions with two 3-methylpyridinium cations. The range of Cl—Cu—Cl angles is 99.28 (2)–137.32 (2)°, which is far away from tetrahedral geometry. The Cl1 atom of [CuCl4]2- anion forms a three-center hydrogen bond with two protonated pyridinium N atoms (Fig. 2 & Table 1). On the other hand, the Cl2 atom forms a common two–center hydrogen bond with nicotinium cations. As shown in Fig. 2, there are weak ππ interactions between pyridinium rings of two discrete units. The Cg1···Cg2i distance is 3.704 (2) Å (Cg1 and Cg2 are the centroids of the C1–C5/N1 pyridinium ring and the C7–C11/N2 pyridinium ring, respectively; symmetry code as in Fig.2 & Table 1).

Related literature top

For general background on the influence of crystal-packing forces on the geometry of the tetrahalocuprate(II) species, see: Schneider et al. (2007); Parent et al. (2007); Haddad et al. (2006); Marzotto et al. (2001); Choi et al. (2002); Awwadi et al. (2007). For the electronic spectrum in DMF solution, see Lee et al. (2002). For related literature, see: Lee et al. (2008).

Experimental top

A total 1 mmol (0.093 g) of 3-methylpyridine and 1 mmol (0.170 g) of CuCl2.2H2O were dissolved in 10 mL of ethanol acidified with 5 mL of concentrated HCl. The mixture solution was heated and refluxed for 1 hr. The single crystals were obtained by slow evaporation in ethanol solution for 7 days. Elemental analysis was performed at the Korean Basic Science Center. Anal. (%) calculated for C12H16Cl4CuN2: C, 36.62; H, 4.10; N, 7.12; found: C, 37.23; H, 4.33; N, 7.17. Spectroscopic analysis: The electronic spectrum in DMF solution: ν1; 874 nm (ε = 20M-1cm-1), ν2; 1038 (71), ν3; 1326 (62). The peak was analyzed into three peaks based on the distorted tetrahedral structure around copper(II) metal ion (Lee et al., 2002). These bands are tentatively assigned to dx2-y2(2B2) —> dxz, dyz(2E), dx2-y2 —> dxy(2B1), dx2-y2 —> dz2(2A1), respectively.

Refinement top

The H1 and H8 atoms were located in a difference map and refined freely. Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 - 0.96 Å, and with Uiso(H) = 1.2Ueq(C) for aromatic and 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. N—H···Cl and ππ interactions (dotted lines) in the title compound. Cg denotes the ring centroid. [Symmetry code: (i) -x+1, -y+1, -z+1]
Bis(3-methylpyridinium) tetrachloridocuprate(II) top
Crystal data top
(C6H8N)2[CuCl4]F(000) = 796
Mr = 393.61Dx = 1.658 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7316 reflections
a = 9.0438 (3) Åθ = 2.8–28.3°
b = 13.0530 (4) ŵ = 2.05 mm1
c = 13.7391 (5) ÅT = 123 K
β = 103.541 (2)°Block, orange
V = 1576.80 (9) Å30.25 × 0.24 × 0.23 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3429 reflections with I > 2σ(I)
ϕ and ω scansRint = 0.036
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
θmax = 28.3°, θmin = 2.2°
Tmin = 0.603, Tmax = 0.62h = 1112
16009 measured reflectionsk = 1717
3899 independent reflectionsl = 1718
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.024 w = 1/[σ2(Fo2) + (0.0228P)2 + 0.7012P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.062(Δ/σ)max = 0.001
S = 1.04Δρmax = 0.36 e Å3
3899 reflectionsΔρmin = 0.35 e Å3
182 parameters
Crystal data top
(C6H8N)2[CuCl4]V = 1576.80 (9) Å3
Mr = 393.61Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.0438 (3) ŵ = 2.05 mm1
b = 13.0530 (4) ÅT = 123 K
c = 13.7391 (5) Å0.25 × 0.24 × 0.23 mm
β = 103.541 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3899 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
3429 reflections with I > 2σ(I)
Tmin = 0.603, Tmax = 0.62Rint = 0.036
16009 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.062H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.36 e Å3
3899 reflectionsΔρmin = 0.35 e Å3
182 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.55797 (2)0.545725 (15)0.703075 (14)0.01588 (6)
Cl10.65531 (4)0.43858 (3)0.60513 (3)0.02068 (9)
Cl20.75323 (4)0.65743 (3)0.73115 (3)0.02099 (9)
Cl30.36357 (4)0.65699 (3)0.68081 (3)0.01929 (9)
Cl40.46771 (5)0.42349 (3)0.78922 (3)0.02114 (9)
N10.44305 (15)0.24760 (11)0.59904 (10)0.0181 (3)
H10.486 (2)0.2980 (17)0.6238 (15)0.031 (6)*
C10.46256 (17)0.21958 (12)0.50880 (11)0.0172 (3)
H1A0.52260.25940.47710.021*
C20.39398 (17)0.13197 (12)0.46271 (11)0.0175 (3)
C30.30426 (18)0.07611 (13)0.51325 (12)0.0207 (3)
H30.25630.01680.48430.025*
C40.28506 (18)0.10739 (13)0.60617 (12)0.0214 (3)
H40.22430.06980.63920.026*
C50.35733 (18)0.19485 (13)0.64851 (12)0.0198 (3)
H50.34670.2170.71080.024*
C60.4135 (2)0.10069 (14)0.36131 (12)0.0244 (4)
H6A0.33160.12820.31060.037*
H6B0.4130.02730.35670.037*
H6C0.50860.12660.35190.037*
N20.85716 (15)0.61542 (11)0.52789 (10)0.0188 (3)
H20.820 (3)0.5984 (19)0.5735 (17)0.044 (7)*
C70.94635 (17)0.69916 (13)0.54089 (11)0.0182 (3)
H70.95810.73770.59920.022*
C81.02028 (17)0.72809 (12)0.46826 (11)0.0178 (3)
C90.99762 (18)0.66842 (13)0.38198 (12)0.0197 (3)
H91.04570.68610.33150.024*
C100.90430 (19)0.58299 (13)0.37064 (12)0.0223 (3)
H100.88950.54360.31280.027*
C110.83398 (19)0.55690 (13)0.44509 (12)0.0214 (3)
H110.77120.49970.43860.026*
C121.1178 (2)0.82208 (13)0.48099 (13)0.0253 (4)
H12A1.05470.88150.46360.038*
H12B1.18750.81770.43810.038*
H12C1.17380.82730.54940.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.01598 (11)0.01411 (10)0.01823 (11)0.00095 (7)0.00540 (8)0.00009 (7)
Cl10.0225 (2)0.01704 (18)0.0254 (2)0.00297 (15)0.01148 (16)0.00423 (14)
Cl20.02040 (19)0.02015 (19)0.02291 (19)0.00627 (15)0.00604 (15)0.00435 (15)
Cl30.02013 (19)0.01763 (18)0.02150 (19)0.00232 (14)0.00768 (15)0.00053 (14)
Cl40.0242 (2)0.01839 (19)0.02248 (19)0.00029 (15)0.00882 (15)0.00461 (14)
N10.0172 (6)0.0156 (7)0.0202 (7)0.0019 (5)0.0016 (5)0.0005 (5)
C10.0163 (7)0.0172 (7)0.0186 (7)0.0000 (6)0.0048 (6)0.0028 (6)
C20.0168 (7)0.0177 (7)0.0174 (7)0.0020 (6)0.0028 (6)0.0017 (6)
C30.0197 (8)0.0171 (8)0.0243 (8)0.0027 (6)0.0029 (6)0.0012 (6)
C40.0189 (8)0.0215 (8)0.0245 (8)0.0009 (6)0.0066 (6)0.0061 (7)
C50.0184 (7)0.0233 (8)0.0177 (7)0.0030 (6)0.0042 (6)0.0025 (6)
C60.0300 (9)0.0238 (9)0.0192 (8)0.0011 (7)0.0053 (7)0.0024 (7)
N20.0180 (7)0.0204 (7)0.0185 (7)0.0002 (5)0.0056 (5)0.0027 (5)
C70.0186 (8)0.0183 (8)0.0173 (7)0.0003 (6)0.0034 (6)0.0004 (6)
C80.0157 (7)0.0185 (8)0.0191 (7)0.0030 (6)0.0039 (6)0.0029 (6)
C90.0206 (8)0.0228 (8)0.0162 (7)0.0069 (6)0.0056 (6)0.0042 (6)
C100.0254 (8)0.0225 (8)0.0172 (7)0.0039 (7)0.0015 (6)0.0035 (6)
C110.0196 (8)0.0186 (8)0.0238 (8)0.0006 (6)0.0005 (6)0.0001 (6)
C120.0263 (9)0.0237 (9)0.0272 (9)0.0058 (7)0.0089 (7)0.0020 (7)
Geometric parameters (Å, º) top
Cu—Cl32.2455 (4)C6—H6B0.96
Cu—Cl42.2506 (4)C6—H6C0.96
Cu—Cl22.2526 (4)N2—C71.345 (2)
Cu—Cl12.2576 (4)N2—C111.345 (2)
N1—C51.336 (2)N2—H20.81 (2)
N1—C11.343 (2)C7—C81.378 (2)
N1—H10.80 (2)C7—H70.93
C1—C21.382 (2)C8—C91.393 (2)
C1—H1A0.93C8—C121.497 (2)
C2—C31.391 (2)C9—C101.385 (2)
C2—C61.501 (2)C9—H90.93
C3—C41.389 (2)C10—C111.368 (2)
C3—H30.93C10—H100.93
C4—C51.375 (2)C11—H110.93
C4—H40.93C12—H12A0.96
C5—H50.93C12—H12B0.96
C6—H6A0.96C12—H12C0.96
Cl3—Cu—Cl499.283 (16)C2—C6—H6C109.5
Cl3—Cu—Cl299.327 (17)H6A—C6—H6C109.5
Cl4—Cu—Cl2137.322 (16)H6B—C6—H6C109.5
Cl3—Cu—Cl1136.189 (16)C7—N2—C11122.92 (15)
Cl4—Cu—Cl196.568 (17)C7—N2—H2117.7 (17)
Cl2—Cu—Cl195.946 (16)C11—N2—H2119.3 (17)
C5—N1—C1123.14 (15)N2—C7—C8120.27 (15)
C5—N1—H1119.2 (15)N2—C7—H7119.9
C1—N1—H1117.7 (15)C8—C7—H7119.9
N1—C1—C2120.43 (15)C7—C8—C9117.62 (15)
N1—C1—H1A119.8C7—C8—C12120.84 (15)
C2—C1—H1A119.8C9—C8—C12121.53 (15)
C1—C2—C3117.17 (15)C10—C9—C8120.68 (15)
C1—C2—C6120.83 (15)C10—C9—H9119.7
C3—C2—C6121.98 (15)C8—C9—H9119.7
C4—C3—C2121.16 (15)C11—C10—C9119.60 (15)
C4—C3—H3119.4C11—C10—H10120.2
C2—C3—H3119.4C9—C10—H10120.2
C5—C4—C3118.91 (16)N2—C11—C10118.90 (16)
C5—C4—H4120.5N2—C11—H11120.5
C3—C4—H4120.5C10—C11—H11120.5
N1—C5—C4119.19 (16)C8—C12—H12A109.5
N1—C5—H5120.4C8—C12—H12B109.5
C4—C5—H5120.4H12A—C12—H12B109.5
C2—C6—H6A109.5C8—C12—H12C109.5
C2—C6—H6B109.5H12A—C12—H12C109.5
H6A—C6—H6B109.5H12B—C12—H12C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.80 (2)2.44 (2)3.136 (2)146 (2)
N2—H2···Cl10.81 (2)2.66 (2)3.270 (2)134 (2)
N2—H2···Cl20.81 (2)2.50 (2)3.196 (2)145 (2)

Experimental details

Crystal data
Chemical formula(C6H8N)2[CuCl4]
Mr393.61
Crystal system, space groupMonoclinic, P21/n
Temperature (K)123
a, b, c (Å)9.0438 (3), 13.0530 (4), 13.7391 (5)
β (°) 103.541 (2)
V3)1576.80 (9)
Z4
Radiation typeMo Kα
µ (mm1)2.05
Crystal size (mm)0.25 × 0.24 × 0.23
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.603, 0.62
No. of measured, independent and
observed [I > 2σ(I)] reflections
16009, 3899, 3429
Rint0.036
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.062, 1.04
No. of reflections3899
No. of parameters182
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.35

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1998), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.80 (2)2.44 (2)3.136 (2)146 (2)
N2—H2···Cl10.81 (2)2.66 (2)3.270 (2)134 (2)
N2—H2···Cl20.81 (2)2.50 (2)3.196 (2)145 (2)
 

Acknowledgements

This study was supported financially by the Research Fund of Chungnam National University in 2008.

References

First citationAwwadi, F. F., Willett, R. D. & Twamly, B. (2007). Cryst. Growth Des. 7, 624–632.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, S.-N., Lee, Y.-M., Lee, H.-W., Kang, S. K. & Kim, Y.-I. (2002). Acta Cryst. E58, m583–m585.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHaddad, S. F., Aidamen, M. A. & Willett, R. D. (2006). Inorg. Chim. Acta, 359, 424–432.  Web of Science CrossRef CAS Google Scholar
First citationLee, Y. M., Kim, Y. K., Jung, H. C., Kim, Y. I. & Choi, S. N. (2002). Bull. Korean Chem. Soc. 23, 404–412.  CAS Google Scholar
First citationLee, H. W., Sengottuvelan, N., Seo, H. J., Choi, J. S., Kang, S. K. & Kim, Y. I. (2008). Bull. Korean Chem. Soc. 29, 1711–1716.  CAS Google Scholar
First citationMarzotto, A., Clemente, D. A., Benetollo, F. & Valle, G. (2001). Polyhedron, 20, 171–177.  Web of Science CSD CrossRef CAS Google Scholar
First citationParent, A. R., Landee, C. P. & Turnbull, M. M. (2007). Inorg. Chim. Acta, 360, 1943–1953.  Web of Science CSD CrossRef CAS Google Scholar
First citationSchneider, T. T., Landee, C. P., Turnbull, M. M., Awwadi, F. F. & Twamley, B. (2007). Polyhedron, 26, 1849–1858.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds