metal-organic compounds
Bis(3-methylpyridinium) tetrachloridocuprate(II)
aDepartment of Chemistry Education and Center for Plastic Information Systems, Pusan National University, Pusan 609-735, Republic of Korea, and bDepartment of Chemistry, Chungnam National University, Daejeon 305-764, Republic of Korea
*Correspondence e-mail: skkang@cnu.ac.kr
The title compound, (C6H8N)2[CuCl4], is composed of two 3-methylpyridinium cation and one tetrachloridocuprate(II) anion. The geometry around the copper(II) ion is that of a distorted tetrahedron. In the the anions and cations are linked by three different N—H⋯Cl hydrogen bonds. In addition, the exhibits aromatic π–π interactions between the pyridinium rings of two discrete units [centroid–centroid distance = 3.704 (2) Å].
Related literature
For general background on the influence of crystal-packing forces on the geometry of the tetrahalogenidocuprate(II) species, see: Schneider et al. (2007); Parent et al. (2007); Haddad et al. (2006); Marzotto et al. (2001); Choi et al. (2002); Awwadi et al. (2007). For the electronic spectrum in DMF solution, see Lee et al. (2002). For related literature, see: Lee et al. (2008).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 2002); cell SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536809007818/lx2094sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809007818/lx2094Isup2.hkl
A total 1 mmol (0.093 g) of 3-methylpyridine and 1 mmol (0.170 g) of CuCl2.2H2O were dissolved in 10 mL of ethanol acidified with 5 mL of concentrated HCl. The mixture solution was heated and refluxed for 1 hr. The single crystals were obtained by slow evaporation in ethanol solution for 7 days. Elemental analysis was performed at the Korean Basic Science Center. Anal. (%) calculated for C12H16Cl4CuN2: C, 36.62; H, 4.10; N, 7.12; found: C, 37.23; H, 4.33; N, 7.17. Spectroscopic analysis: The electronic spectrum in DMF solution: ν1; 874 nm (ε = 20M-1cm-1), ν2; 1038 (71), ν3; 1326 (62). The peak was analyzed into three peaks based on the distorted tetrahedral structure around copper(II) metal ion (Lee et al., 2002). These bands are tentatively assigned to dx2-y2(2B2) —> dxz, dyz(2E), dx2-y2 —> dxy(2B1), dx2-y2 —> dz2(2A1), respectively.
The H1 and H8 atoms were located in a difference map and refined freely. Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 - 0.96 Å, and with Uiso(H) = 1.2Ueq(C) for aromatic and 1.5Ueq(C) for methyl H atoms.
Data collection: SMART (Bruker, 2002); cell
SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: WinGX (Farrugia, 1999).(C6H8N)2[CuCl4] | F(000) = 796 |
Mr = 393.61 | Dx = 1.658 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 7316 reflections |
a = 9.0438 (3) Å | θ = 2.8–28.3° |
b = 13.0530 (4) Å | µ = 2.05 mm−1 |
c = 13.7391 (5) Å | T = 123 K |
β = 103.541 (2)° | Block, orange |
V = 1576.80 (9) Å3 | 0.25 × 0.24 × 0.23 mm |
Z = 4 |
Bruker SMART CCD area-detector diffractometer | 3429 reflections with I > 2σ(I) |
ϕ and ω scans | Rint = 0.036 |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | θmax = 28.3°, θmin = 2.2° |
Tmin = 0.603, Tmax = 0.62 | h = −11→12 |
16009 measured reflections | k = −17→17 |
3899 independent reflections | l = −17→18 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.024 | w = 1/[σ2(Fo2) + (0.0228P)2 + 0.7012P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.062 | (Δ/σ)max = 0.001 |
S = 1.04 | Δρmax = 0.36 e Å−3 |
3899 reflections | Δρmin = −0.35 e Å−3 |
182 parameters |
(C6H8N)2[CuCl4] | V = 1576.80 (9) Å3 |
Mr = 393.61 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 9.0438 (3) Å | µ = 2.05 mm−1 |
b = 13.0530 (4) Å | T = 123 K |
c = 13.7391 (5) Å | 0.25 × 0.24 × 0.23 mm |
β = 103.541 (2)° |
Bruker SMART CCD area-detector diffractometer | 3899 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | 3429 reflections with I > 2σ(I) |
Tmin = 0.603, Tmax = 0.62 | Rint = 0.036 |
16009 measured reflections |
R[F2 > 2σ(F2)] = 0.024 | 0 restraints |
wR(F2) = 0.062 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.36 e Å−3 |
3899 reflections | Δρmin = −0.35 e Å−3 |
182 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cu | 0.55797 (2) | 0.545725 (15) | 0.703075 (14) | 0.01588 (6) | |
Cl1 | 0.65531 (4) | 0.43858 (3) | 0.60513 (3) | 0.02068 (9) | |
Cl2 | 0.75323 (4) | 0.65743 (3) | 0.73115 (3) | 0.02099 (9) | |
Cl3 | 0.36357 (4) | 0.65699 (3) | 0.68081 (3) | 0.01929 (9) | |
Cl4 | 0.46771 (5) | 0.42349 (3) | 0.78922 (3) | 0.02114 (9) | |
N1 | 0.44305 (15) | 0.24760 (11) | 0.59904 (10) | 0.0181 (3) | |
H1 | 0.486 (2) | 0.2980 (17) | 0.6238 (15) | 0.031 (6)* | |
C1 | 0.46256 (17) | 0.21958 (12) | 0.50880 (11) | 0.0172 (3) | |
H1A | 0.5226 | 0.2594 | 0.4771 | 0.021* | |
C2 | 0.39398 (17) | 0.13197 (12) | 0.46271 (11) | 0.0175 (3) | |
C3 | 0.30426 (18) | 0.07611 (13) | 0.51325 (12) | 0.0207 (3) | |
H3 | 0.2563 | 0.0168 | 0.4843 | 0.025* | |
C4 | 0.28506 (18) | 0.10739 (13) | 0.60617 (12) | 0.0214 (3) | |
H4 | 0.2243 | 0.0698 | 0.6392 | 0.026* | |
C5 | 0.35733 (18) | 0.19485 (13) | 0.64851 (12) | 0.0198 (3) | |
H5 | 0.3467 | 0.217 | 0.7108 | 0.024* | |
C6 | 0.4135 (2) | 0.10069 (14) | 0.36131 (12) | 0.0244 (4) | |
H6A | 0.3316 | 0.1282 | 0.3106 | 0.037* | |
H6B | 0.413 | 0.0273 | 0.3567 | 0.037* | |
H6C | 0.5086 | 0.1266 | 0.3519 | 0.037* | |
N2 | 0.85716 (15) | 0.61542 (11) | 0.52789 (10) | 0.0188 (3) | |
H2 | 0.820 (3) | 0.5984 (19) | 0.5735 (17) | 0.044 (7)* | |
C7 | 0.94635 (17) | 0.69916 (13) | 0.54089 (11) | 0.0182 (3) | |
H7 | 0.9581 | 0.7377 | 0.5992 | 0.022* | |
C8 | 1.02028 (17) | 0.72809 (12) | 0.46826 (11) | 0.0178 (3) | |
C9 | 0.99762 (18) | 0.66842 (13) | 0.38198 (12) | 0.0197 (3) | |
H9 | 1.0457 | 0.6861 | 0.3315 | 0.024* | |
C10 | 0.90430 (19) | 0.58299 (13) | 0.37064 (12) | 0.0223 (3) | |
H10 | 0.8895 | 0.5436 | 0.3128 | 0.027* | |
C11 | 0.83398 (19) | 0.55690 (13) | 0.44509 (12) | 0.0214 (3) | |
H11 | 0.7712 | 0.4997 | 0.4386 | 0.026* | |
C12 | 1.1178 (2) | 0.82208 (13) | 0.48099 (13) | 0.0253 (4) | |
H12A | 1.0547 | 0.8815 | 0.4636 | 0.038* | |
H12B | 1.1875 | 0.8177 | 0.4381 | 0.038* | |
H12C | 1.1738 | 0.8273 | 0.5494 | 0.038* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu | 0.01598 (11) | 0.01411 (10) | 0.01823 (11) | −0.00095 (7) | 0.00540 (8) | −0.00009 (7) |
Cl1 | 0.0225 (2) | 0.01704 (18) | 0.0254 (2) | −0.00297 (15) | 0.01148 (16) | −0.00423 (14) |
Cl2 | 0.02040 (19) | 0.02015 (19) | 0.02291 (19) | −0.00627 (15) | 0.00604 (15) | −0.00435 (15) |
Cl3 | 0.02013 (19) | 0.01763 (18) | 0.02150 (19) | 0.00232 (14) | 0.00768 (15) | 0.00053 (14) |
Cl4 | 0.0242 (2) | 0.01839 (19) | 0.02248 (19) | −0.00029 (15) | 0.00882 (15) | 0.00461 (14) |
N1 | 0.0172 (6) | 0.0156 (7) | 0.0202 (7) | −0.0019 (5) | 0.0016 (5) | −0.0005 (5) |
C1 | 0.0163 (7) | 0.0172 (7) | 0.0186 (7) | 0.0000 (6) | 0.0048 (6) | 0.0028 (6) |
C2 | 0.0168 (7) | 0.0177 (7) | 0.0174 (7) | 0.0020 (6) | 0.0028 (6) | 0.0017 (6) |
C3 | 0.0197 (8) | 0.0171 (8) | 0.0243 (8) | −0.0027 (6) | 0.0029 (6) | 0.0012 (6) |
C4 | 0.0189 (8) | 0.0215 (8) | 0.0245 (8) | −0.0009 (6) | 0.0066 (6) | 0.0061 (7) |
C5 | 0.0184 (7) | 0.0233 (8) | 0.0177 (7) | 0.0030 (6) | 0.0042 (6) | 0.0025 (6) |
C6 | 0.0300 (9) | 0.0238 (9) | 0.0192 (8) | 0.0011 (7) | 0.0053 (7) | −0.0024 (7) |
N2 | 0.0180 (7) | 0.0204 (7) | 0.0185 (7) | −0.0002 (5) | 0.0056 (5) | 0.0027 (5) |
C7 | 0.0186 (8) | 0.0183 (8) | 0.0173 (7) | 0.0003 (6) | 0.0034 (6) | −0.0004 (6) |
C8 | 0.0157 (7) | 0.0185 (8) | 0.0191 (7) | 0.0030 (6) | 0.0039 (6) | 0.0029 (6) |
C9 | 0.0206 (8) | 0.0228 (8) | 0.0162 (7) | 0.0069 (6) | 0.0056 (6) | 0.0042 (6) |
C10 | 0.0254 (8) | 0.0225 (8) | 0.0172 (7) | 0.0039 (7) | 0.0015 (6) | −0.0035 (6) |
C11 | 0.0196 (8) | 0.0186 (8) | 0.0238 (8) | −0.0006 (6) | 0.0005 (6) | 0.0001 (6) |
C12 | 0.0263 (9) | 0.0237 (9) | 0.0272 (9) | −0.0058 (7) | 0.0089 (7) | 0.0020 (7) |
Cu—Cl3 | 2.2455 (4) | C6—H6B | 0.96 |
Cu—Cl4 | 2.2506 (4) | C6—H6C | 0.96 |
Cu—Cl2 | 2.2526 (4) | N2—C7 | 1.345 (2) |
Cu—Cl1 | 2.2576 (4) | N2—C11 | 1.345 (2) |
N1—C5 | 1.336 (2) | N2—H2 | 0.81 (2) |
N1—C1 | 1.343 (2) | C7—C8 | 1.378 (2) |
N1—H1 | 0.80 (2) | C7—H7 | 0.93 |
C1—C2 | 1.382 (2) | C8—C9 | 1.393 (2) |
C1—H1A | 0.93 | C8—C12 | 1.497 (2) |
C2—C3 | 1.391 (2) | C9—C10 | 1.385 (2) |
C2—C6 | 1.501 (2) | C9—H9 | 0.93 |
C3—C4 | 1.389 (2) | C10—C11 | 1.368 (2) |
C3—H3 | 0.93 | C10—H10 | 0.93 |
C4—C5 | 1.375 (2) | C11—H11 | 0.93 |
C4—H4 | 0.93 | C12—H12A | 0.96 |
C5—H5 | 0.93 | C12—H12B | 0.96 |
C6—H6A | 0.96 | C12—H12C | 0.96 |
Cl3—Cu—Cl4 | 99.283 (16) | C2—C6—H6C | 109.5 |
Cl3—Cu—Cl2 | 99.327 (17) | H6A—C6—H6C | 109.5 |
Cl4—Cu—Cl2 | 137.322 (16) | H6B—C6—H6C | 109.5 |
Cl3—Cu—Cl1 | 136.189 (16) | C7—N2—C11 | 122.92 (15) |
Cl4—Cu—Cl1 | 96.568 (17) | C7—N2—H2 | 117.7 (17) |
Cl2—Cu—Cl1 | 95.946 (16) | C11—N2—H2 | 119.3 (17) |
C5—N1—C1 | 123.14 (15) | N2—C7—C8 | 120.27 (15) |
C5—N1—H1 | 119.2 (15) | N2—C7—H7 | 119.9 |
C1—N1—H1 | 117.7 (15) | C8—C7—H7 | 119.9 |
N1—C1—C2 | 120.43 (15) | C7—C8—C9 | 117.62 (15) |
N1—C1—H1A | 119.8 | C7—C8—C12 | 120.84 (15) |
C2—C1—H1A | 119.8 | C9—C8—C12 | 121.53 (15) |
C1—C2—C3 | 117.17 (15) | C10—C9—C8 | 120.68 (15) |
C1—C2—C6 | 120.83 (15) | C10—C9—H9 | 119.7 |
C3—C2—C6 | 121.98 (15) | C8—C9—H9 | 119.7 |
C4—C3—C2 | 121.16 (15) | C11—C10—C9 | 119.60 (15) |
C4—C3—H3 | 119.4 | C11—C10—H10 | 120.2 |
C2—C3—H3 | 119.4 | C9—C10—H10 | 120.2 |
C5—C4—C3 | 118.91 (16) | N2—C11—C10 | 118.90 (16) |
C5—C4—H4 | 120.5 | N2—C11—H11 | 120.5 |
C3—C4—H4 | 120.5 | C10—C11—H11 | 120.5 |
N1—C5—C4 | 119.19 (16) | C8—C12—H12A | 109.5 |
N1—C5—H5 | 120.4 | C8—C12—H12B | 109.5 |
C4—C5—H5 | 120.4 | H12A—C12—H12B | 109.5 |
C2—C6—H6A | 109.5 | C8—C12—H12C | 109.5 |
C2—C6—H6B | 109.5 | H12A—C12—H12C | 109.5 |
H6A—C6—H6B | 109.5 | H12B—C12—H12C | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···Cl1 | 0.80 (2) | 2.44 (2) | 3.136 (2) | 146 (2) |
N2—H2···Cl1 | 0.81 (2) | 2.66 (2) | 3.270 (2) | 134 (2) |
N2—H2···Cl2 | 0.81 (2) | 2.50 (2) | 3.196 (2) | 145 (2) |
Experimental details
Crystal data | |
Chemical formula | (C6H8N)2[CuCl4] |
Mr | 393.61 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 123 |
a, b, c (Å) | 9.0438 (3), 13.0530 (4), 13.7391 (5) |
β (°) | 103.541 (2) |
V (Å3) | 1576.80 (9) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.05 |
Crystal size (mm) | 0.25 × 0.24 × 0.23 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2002) |
Tmin, Tmax | 0.603, 0.62 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 16009, 3899, 3429 |
Rint | 0.036 |
(sin θ/λ)max (Å−1) | 0.667 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.024, 0.062, 1.04 |
No. of reflections | 3899 |
No. of parameters | 182 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.36, −0.35 |
Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1998), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···Cl1 | 0.80 (2) | 2.44 (2) | 3.136 (2) | 146 (2) |
N2—H2···Cl1 | 0.81 (2) | 2.66 (2) | 3.270 (2) | 134 (2) |
N2—H2···Cl2 | 0.81 (2) | 2.50 (2) | 3.196 (2) | 145 (2) |
Acknowledgements
This study was supported financially by the Research Fund of Chungnam National University in 2008.
References
Awwadi, F. F., Willett, R. D. & Twamly, B. (2007). Cryst. Growth Des. 7, 624–632. Web of Science CSD CrossRef CAS Google Scholar
Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Choi, S.-N., Lee, Y.-M., Lee, H.-W., Kang, S. K. & Kim, Y.-I. (2002). Acta Cryst. E58, m583–m585. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Haddad, S. F., Aidamen, M. A. & Willett, R. D. (2006). Inorg. Chim. Acta, 359, 424–432. Web of Science CrossRef CAS Google Scholar
Lee, Y. M., Kim, Y. K., Jung, H. C., Kim, Y. I. & Choi, S. N. (2002). Bull. Korean Chem. Soc. 23, 404–412. CAS Google Scholar
Lee, H. W., Sengottuvelan, N., Seo, H. J., Choi, J. S., Kang, S. K. & Kim, Y. I. (2008). Bull. Korean Chem. Soc. 29, 1711–1716. CAS Google Scholar
Marzotto, A., Clemente, D. A., Benetollo, F. & Valle, G. (2001). Polyhedron, 20, 171–177. Web of Science CSD CrossRef CAS Google Scholar
Parent, A. R., Landee, C. P. & Turnbull, M. M. (2007). Inorg. Chim. Acta, 360, 1943–1953. Web of Science CSD CrossRef CAS Google Scholar
Schneider, T. T., Landee, C. P., Turnbull, M. M., Awwadi, F. F. & Twamley, B. (2007). Polyhedron, 26, 1849–1858. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The four–coordinated tetrahalocuprate (II) ions, [CuCl4]2- possess a variety of geometries from square planar to near tetrahedral symmetry, and the geometry of tetrahalocuprate (II) species is influenced by the crystal-packing forces resulted from the size and shape of counter cations (Schneider et al., 2007; Parent et al., 2007), hydrogen bonding to cations (Haddad et al., 2006; Marzotto et al., 2001; Choi et al., 2002), and halide-halide interactions in solid (Awwadi et al., 2007). Herein, we report the crystal structure of the title compound, bis(3-methylpyridinium)tetrachloridocuprate(II) (Fig. 1).
The [CuCl4]2- anion in the title compound is distorted to be approximately D2d, somewhat distorted from tetrahedral as a result of hydrogen bonding interactions with two 3-methylpyridinium cations. The range of Cl—Cu—Cl angles is 99.28 (2)–137.32 (2)°, which is far away from tetrahedral geometry. The Cl1 atom of [CuCl4]2- anion forms a three-center hydrogen bond with two protonated pyridinium N atoms (Fig. 2 & Table 1). On the other hand, the Cl2 atom forms a common two–center hydrogen bond with nicotinium cations. As shown in Fig. 2, there are weak π—π interactions between pyridinium rings of two discrete units. The Cg1···Cg2i distance is 3.704 (2) Å (Cg1 and Cg2 are the centroids of the C1–C5/N1 pyridinium ring and the C7–C11/N2 pyridinium ring, respectively; symmetry code as in Fig.2 & Table 1).