metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages m450-m451

Bis[4-(4-pyridyl)pyridinium] (4-carb­oxy­pyridine-2,6-di­carboxyl­ato-κ3O2,N,O6)(pyridine-2,4,6-tri­carboxyl­ato-κ3O2,N,O6)ferrate(III) trihydrate

aState Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Institute of Solid Materials Chemistry, Ningbo University, Zhejiang 315211, People's Republic of China
*Correspondence e-mail: zhengyueqing@nbu.edu.cn

(Received 16 March 2009; accepted 23 March 2009; online 28 March 2009)

In the title salt, (C10H9N2)2[Fe(C8H2NO6)(C8H3NO6)]·3H2O, the FeIII atom is O,N,O′-chelated by dianionic and trianionic ligands in a slightly distorted octa­hedral coordination geometry. The cations and ferrate anions are linked into a layered structure; the layers are connected through the uncoordinated water mol­ecules into a hydrogen-bonded three-dimensional supra­molecular structure. One of the uncoordinated water molecules is disordered around an inversion centre and was refined with half-occupancy for each position.

Related literature

For the design and synthesis of coordination polymer complexes and their potential applications, see: Kaneko et al. (2007[Kaneko, W., Ohba, M. & Kitagawa, S. (2007). J. Am. Chem. Soc. 129, 13706-13712.]); Li et al. (2008[Li, M. X., Miao, Z. X., Shao, M., Liang, S. W. & Zhu, S. R. (2008). Inorg. Chem. 47, 4481-4489.]); Lin et al. (2009[Lin, W. B., Rieter, W. J. & Taylor, K. M. L. (2009). Angew. Chem. Int. Ed. 48, 650-658.]). For the H3ptc ligand, see: Ghosh & Bharadwaj (2006[Ghosh, S. K. & Bharadwaj, P. K. (2006). Inorg. Chim. Acta, 359, 1685-1689.]); Lin et al. (2007[Lin, J. G., Wen, L. L., Zang, S. Q., Su, Y., Lu, Z. D., Zhu, H. Z. & Meng, Q. J. (2007). Inorg. Chem. Commun. 10, 74-76.]); Syper et al. (1980[Syper, L., Kloc, K. & Mochowski, J. (1980). Tetrahedron, 36, 123-129.]).

[Scheme 1]

Experimental

Crystal data
  • (C10H9N2)2[Fe(C8H2NO6)(C8H3NO6)]·3H2O

  • Mr = 841.50

  • Triclinic, [P \overline 1]

  • a = 10.568 (2) Å

  • b = 12.386 (3) Å

  • c = 14.344 (3) Å

  • α = 77.13 (3)°

  • β = 79.82 (3)°

  • γ = 76.15 (3)°

  • V = 1761.9 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.51 mm−1

  • T = 293 K

  • 0.35 × 0.24 × 0.17 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.860, Tmax = 0.913

  • 17019 measured reflections

  • 7934 independent reflections

  • 5458 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.138

  • S = 1.06

  • 7934 reflections

  • 526 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Selected geometric parameters (Å, °)

Fe—O6 2.008 (2)
Fe—O7 2.012 (2)
Fe—O1 2.018 (2)
Fe—O12 2.026 (2)
Fe—N2 2.056 (2)
Fe—N1 2.058 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O9i 0.82 1.64 2.454 (3) 172
N3—H3A⋯N5ii 0.86 1.93 2.741 (4) 158
N6—H6A⋯N4iii 0.86 1.84 2.694 (4) 170
O13A—H13A⋯O7iv 0.90 1.90 2.766 (4) 161
O13B—H13B⋯O4 0.78 2.17 2.821 (4) 142
O14—H14A⋯O11 0.85 2.16 2.973 (4) 160
O14—H14B⋯O5v 0.85 1.95 2.788 (4) 169
O15—H15A⋯O10 0.85 1.97 2.801 (3) 166
O15—H15B⋯O1vi 0.85 2.10 2.877 (3) 152
Symmetry codes: (i) x-1, y, z+1; (ii) -x+2, -y+1, -z+2; (iii) -x+1, -y+1, -z+1; (iv) -x, -y+1, -z+2; (v) x+1, y, z; (vi) -x+2, -y+1, -z+1.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Great interest has been focused on the rapidly expanding field of supramolecular chemistry and crystal engineering of the coordination polymers in reacent years because of their intriguing network topoloies as well as their potential application as functional materials in many areas such as separations and catalysis, gas storage, and magnetism (Kaneko et al., 2007; Li et al., 2008; Lin et al., 2009). Pyridine-2,4,6-tricarboxylic acid (H3ptc) is a good building block for constructing supramolecular complex, which can link 3 d, 4f and 3 d-4f metal ions. However, plenty of researches have focused on the supramolecular chemistry and coordination polymers which only include single carboxylic acid ligands, whereas the studies and syntheses about the mixed-ligand compounds which contain two or two more ligands seem comparatively limited (Ghosh & Bharadwaj, 2006; Lin et al., 2007). In this paper, we report the crystal structure of the title compound prepared from FeCl2.6H2O, H3ptc and 4,4'-bipyridine (4,4'-bpy).

The structure of title compound consists of [Fe(Hptc)(ptc)]2- anions, Hbpy+ cations and lattice water molecules. In the anion, Hptc2- and ptc3- ligands are bound to one Fe(III) ion through pyridine N and deprotonated carboxylate O atoms at 2- and 6-positions, leading to a distorted octahedral geometry around the metal. The carboxylic groups at the 4-position of ptc ligands are uncoordinated. [Fe(Hptc)(ptc)]2- anion is connected into two-dimensional layers through H-bonding interactions (Talbe 2). In the cationic part, the Hbpy+ ligands are not coordinated to metal ions. They are connected by N—H···N hydrogen-bonding and π-π stacking interactions to form another two-dimensional layers. The layers are futher linked into three-dimensional supramolecular structure by the intermolecular hydrogen bond interaction.

Related literature top

For the design and synthesis of coordination polymer complexes and their potential applications, see: Kaneko et al. (2007); Li et al. (2008); Lin et al. (2009). For the H3ptc ligand, see: Ghosh & Bharadwaj (2006); Lin et al. (2007); Syper et al. (1980).

Experimental top

Pyridine-2,4,6-tricarboxylic acid (H3ptc) was synthesized by oxidization of pyridine-2,4,6-trimethyl with potassium permanganate according to a literature (Syper et al., 1980).A mixture of H3ptc (0.110 g, 0.05 mmol), FeCl2.6H2O (0.126 g, 0.10 mmol), 4,4'-bpy (0.156 g, 0.10 mmol), 16 ml H2O and seven drops of triethylamine were loaded into a 23 ml Teflon-lined stainless autoclave, which was heated up to 120 °C, at which temperature the reactor was held for 3 days, and then cooled to room temperature. The reaction yielded brown block crystals of (I) in a yield of 10.32% based on FeCl2.6H2O. IR spectroscopic analysis (KBr, υ/cm-1): 3535(m), 3436(m), 1674(s), 1612(m), 1573(w), 1492(m), 1330(s), 1195(s), 1076(w), 1043(m), 1006(m), 931(w), 813(s), 779(w), 748(m), 771(w), 678(w).

Refinement top

H atoms bonded to C atoms were placed in geometrically calculated position and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C). H atoms bonded to N and carboxyl O atoms were palced in geometrically calculated position and were refined using a riding model, with Uiso(H) = 1.5 Ueq(C). The water H atoms were found in a difference Fourier synthesis and were refined using a riding model, with the O—H distances fixed as 0.85±0.01 Å and with Uiso(H) values set at 1.5 Ueq(O). The O13 was disordered into two positions and treated as each occupation of 50%.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Aview of the complex molecule of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 45% probability level. (Lattice water molecules and hydrogen atoms are all delected)
[Figure 2] Fig. 2. The two-dimensional layers constructed with [Fe(Hptc)(ptc)]2- by hydrogen bonds.
[Figure 3] Fig. 3. The two-dimensional layers constructed with Hbpy+ by hydrogen bonds and π-π stacking.
Bis[4-(4-pyridyl)pyridinium] (4-carboxypyridine-2,6-dicarboxylato- κ3O2,N,O6)(pyridine-2,4,6-tricarboxylato- κ3O2,N,O6)ferrate(III) trihydrate top
Crystal data top
(C10H9N2)2[Fe(C8H2NO6)(C8H3NO6)]·3H2OZ = 2
Mr = 841.50F(000) = 866
Triclinic, P1Dx = 1.586 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.568 (2) ÅCell parameters from 17019 reflections
b = 12.386 (3) Åθ = 3.2–27.5°
c = 14.344 (3) ŵ = 0.51 mm1
α = 77.13 (3)°T = 293 K
β = 79.82 (3)°Block, brown
γ = 76.15 (3)°0.35 × 0.24 × 0.17 mm
V = 1761.9 (6) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
7934 independent reflections
Radiation source: fine-focus sealed tube5458 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 0 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 1313
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1516
Tmin = 0.860, Tmax = 0.913l = 1718
17019 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0677P)2 + 0.2949P]
where P = (Fo2 + 2Fc2)/3
7934 reflections(Δ/σ)max = 0.018
526 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
(C10H9N2)2[Fe(C8H2NO6)(C8H3NO6)]·3H2Oγ = 76.15 (3)°
Mr = 841.50V = 1761.9 (6) Å3
Triclinic, P1Z = 2
a = 10.568 (2) ÅMo Kα radiation
b = 12.386 (3) ŵ = 0.51 mm1
c = 14.344 (3) ÅT = 293 K
α = 77.13 (3)°0.35 × 0.24 × 0.17 mm
β = 79.82 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
7934 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
5458 reflections with I > 2σ(I)
Tmin = 0.860, Tmax = 0.913Rint = 0.040
17019 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.06Δρmax = 0.41 e Å3
7934 reflectionsΔρmin = 0.41 e Å3
526 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe0.48489 (4)0.50845 (4)0.74947 (3)0.02949 (13)
N10.3459 (2)0.51476 (19)0.86945 (15)0.0271 (5)
N20.6260 (2)0.52164 (19)0.63117 (14)0.0253 (5)
C10.3767 (3)0.4481 (2)0.95274 (18)0.0272 (6)
C20.2896 (3)0.4545 (2)1.03624 (18)0.0299 (6)
H20.30960.40811.09450.036*
C30.1708 (3)0.5328 (2)1.03055 (18)0.0300 (6)
C40.1416 (3)0.6013 (2)0.94256 (19)0.0310 (6)
H40.06240.65350.93810.037*
C50.2338 (3)0.5894 (2)0.86208 (18)0.0286 (6)
C60.5121 (3)0.3728 (2)0.94093 (19)0.0308 (6)
O10.57272 (18)0.39221 (17)0.85399 (13)0.0358 (5)
O20.5550 (2)0.30376 (19)1.00811 (15)0.0450 (5)
C70.0695 (3)0.5450 (3)1.1186 (2)0.0335 (6)
O30.1080 (2)0.4852 (2)1.19749 (14)0.0525 (6)
H30.04570.48731.24070.079*
O40.0370 (2)0.6083 (2)1.10993 (15)0.0529 (6)
C80.2268 (3)0.6545 (2)0.75967 (19)0.0311 (6)
O50.1333 (2)0.73086 (19)0.73936 (14)0.0436 (5)
O60.32849 (19)0.62091 (18)0.70084 (12)0.0352 (5)
C90.6408 (2)0.4532 (2)0.56858 (18)0.0266 (6)
C100.7329 (3)0.4614 (2)0.48723 (18)0.0294 (6)
H100.74290.41490.44260.035*
C110.8105 (3)0.5417 (2)0.47426 (18)0.0299 (6)
C120.7941 (3)0.6101 (2)0.54191 (18)0.0301 (6)
H120.84640.66290.53450.036*
C130.6987 (2)0.5981 (2)0.62030 (18)0.0271 (6)
C140.5477 (3)0.3726 (2)0.60007 (19)0.0317 (6)
O70.47146 (19)0.38846 (18)0.67958 (14)0.0379 (5)
O80.5477 (2)0.3013 (2)0.55424 (17)0.0524 (6)
C150.9150 (3)0.5546 (3)0.38788 (19)0.0356 (7)
O90.9347 (2)0.4803 (2)0.33614 (16)0.0558 (7)
O100.9727 (2)0.6326 (2)0.37478 (17)0.0595 (7)
C160.6609 (3)0.6649 (2)0.70080 (19)0.0305 (6)
O110.7138 (2)0.74272 (19)0.69996 (15)0.0441 (5)
O120.56886 (19)0.63358 (17)0.76424 (13)0.0360 (5)
N30.9300 (3)0.0772 (3)0.6608 (2)0.0529 (8)
H3A0.97400.08650.70250.079*
C170.8781 (4)0.0123 (4)0.6781 (2)0.0579 (10)
H170.88870.06440.73540.069*
C180.8083 (4)0.0307 (3)0.6131 (2)0.0556 (10)
H180.77170.09450.62630.067*
C190.7928 (3)0.0467 (3)0.5278 (2)0.0373 (7)
C200.8491 (3)0.1404 (3)0.5113 (2)0.0422 (7)
H200.84150.19320.45420.051*
C210.9160 (3)0.1548 (3)0.5797 (3)0.0512 (9)
H210.95190.21870.56970.061*
N40.5820 (3)0.0089 (3)0.3213 (2)0.0502 (7)
C220.7179 (3)0.0271 (3)0.4566 (2)0.0380 (7)
C230.6505 (3)0.1171 (3)0.3962 (2)0.0430 (7)
H230.64900.19130.40030.052*
C240.5854 (3)0.0946 (3)0.3297 (2)0.0476 (8)
H240.54140.15550.28860.057*
C250.6459 (5)0.0947 (4)0.3793 (3)0.0829 (15)
H250.64580.16800.37350.100*
C260.7133 (5)0.0797 (3)0.4485 (3)0.0783 (15)
H260.75520.14230.48930.094*
N50.9437 (3)0.9490 (3)1.1818 (2)0.0495 (7)
C270.8663 (3)1.0491 (3)1.1540 (2)0.0491 (9)
H270.86311.10761.18580.059*
C280.7908 (3)1.0700 (3)1.0802 (2)0.0443 (8)
H280.73901.14141.06190.053*
C290.7940 (3)0.9821 (2)1.0337 (2)0.0320 (6)
C300.8776 (3)0.8807 (3)1.0597 (2)0.0418 (7)
H300.88540.82171.02730.050*
C310.9503 (3)0.8665 (3)1.1342 (3)0.0509 (9)
H311.00590.79691.15180.061*
N60.5522 (3)1.0162 (2)0.81949 (19)0.0445 (7)
H6A0.50441.02190.77530.067*
C320.7079 (3)0.9959 (3)0.9582 (2)0.0324 (6)
C330.6801 (3)1.0959 (3)0.8931 (2)0.0403 (7)
H330.71441.15740.89580.048*
C340.6010 (3)1.1043 (3)0.8238 (2)0.0452 (8)
H340.58171.17180.77990.054*
C350.5763 (3)0.9191 (3)0.8826 (2)0.0433 (8)
H350.54000.85920.87860.052*
C360.6533 (3)0.9062 (3)0.9529 (2)0.0394 (7)
H360.66900.83830.99670.047*
O140.8797 (3)0.7658 (3)0.8387 (2)0.0770 (9)
H14A0.82150.75210.81160.116*
H14B0.95240.75310.80240.116*
O151.1872 (2)0.7054 (2)0.25415 (18)0.0571 (7)
H15A1.12250.67650.28410.086*
H15B1.24050.66260.21910.086*
O13A0.299 (4)0.735 (3)1.201 (2)0.087 (5)0.50
O13B0.293 (4)0.719 (3)1.174 (2)0.087 (5)0.50
H13A0.34800.69821.25020.131*
H13B0.24320.66541.16090.131*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe0.0310 (2)0.0340 (2)0.0201 (2)0.00864 (17)0.00912 (14)0.00606 (16)
N10.0288 (12)0.0288 (12)0.0202 (10)0.0050 (10)0.0050 (8)0.0047 (9)
N20.0270 (11)0.0293 (12)0.0175 (10)0.0071 (9)0.0045 (8)0.0043 (9)
C10.0317 (14)0.0284 (15)0.0196 (12)0.0071 (11)0.0038 (10)0.0052 (11)
C20.0357 (15)0.0335 (16)0.0178 (12)0.0097 (12)0.0040 (10)0.0026 (11)
C30.0340 (15)0.0350 (16)0.0213 (13)0.0107 (12)0.0070 (10)0.0106 (12)
C40.0275 (14)0.0339 (16)0.0296 (14)0.0021 (12)0.0021 (11)0.0111 (12)
C50.0312 (14)0.0297 (15)0.0228 (13)0.0055 (12)0.0025 (10)0.0061 (11)
C60.0355 (15)0.0304 (16)0.0254 (13)0.0082 (12)0.0027 (11)0.0066 (12)
O10.0309 (10)0.0404 (12)0.0280 (10)0.0012 (9)0.0100 (8)0.0074 (9)
O20.0454 (13)0.0424 (13)0.0325 (11)0.0073 (10)0.0005 (9)0.0016 (10)
C70.0355 (16)0.0363 (17)0.0270 (14)0.0091 (13)0.0094 (11)0.0113 (12)
O30.0432 (13)0.0707 (17)0.0273 (11)0.0002 (12)0.0159 (9)0.0045 (11)
O40.0406 (13)0.0621 (16)0.0411 (12)0.0063 (12)0.0118 (10)0.0107 (12)
C80.0367 (16)0.0336 (16)0.0223 (13)0.0077 (13)0.0017 (11)0.0050 (12)
O50.0447 (13)0.0442 (14)0.0337 (11)0.0016 (11)0.0047 (9)0.0022 (10)
O60.0388 (11)0.0427 (12)0.0196 (9)0.0065 (9)0.0032 (8)0.0046 (8)
C90.0289 (14)0.0282 (15)0.0208 (12)0.0066 (11)0.0033 (10)0.0054 (11)
C100.0287 (14)0.0369 (16)0.0207 (12)0.0055 (12)0.0031 (10)0.0078 (11)
C110.0278 (14)0.0339 (16)0.0225 (13)0.0061 (12)0.0054 (10)0.0013 (11)
C120.0326 (15)0.0305 (15)0.0251 (13)0.0118 (12)0.0032 (11)0.0009 (11)
C130.0278 (14)0.0290 (15)0.0219 (13)0.0071 (11)0.0015 (10)0.0016 (11)
C140.0342 (15)0.0342 (16)0.0267 (14)0.0121 (13)0.0047 (11)0.0070 (12)
O70.0385 (11)0.0427 (13)0.0330 (10)0.0194 (10)0.0127 (8)0.0104 (9)
O80.0595 (15)0.0541 (15)0.0543 (14)0.0294 (12)0.0149 (11)0.0308 (12)
C150.0340 (15)0.0437 (18)0.0253 (14)0.0104 (14)0.0064 (11)0.0043 (13)
O90.0602 (15)0.0702 (17)0.0390 (13)0.0285 (13)0.0272 (11)0.0246 (12)
O100.0616 (15)0.0712 (18)0.0495 (14)0.0384 (14)0.0268 (12)0.0193 (13)
C160.0352 (15)0.0272 (15)0.0279 (14)0.0060 (12)0.0013 (11)0.0056 (12)
O110.0546 (14)0.0407 (13)0.0431 (12)0.0207 (11)0.0018 (10)0.0153 (10)
O120.0451 (12)0.0380 (12)0.0260 (10)0.0130 (10)0.0076 (8)0.0131 (9)
N30.0578 (18)0.066 (2)0.0462 (17)0.0192 (16)0.0176 (14)0.0182 (16)
C170.072 (3)0.068 (3)0.0364 (18)0.023 (2)0.0220 (17)0.0058 (17)
C180.074 (3)0.053 (2)0.0473 (19)0.034 (2)0.0233 (17)0.0104 (17)
C190.0395 (17)0.0368 (18)0.0388 (16)0.0089 (14)0.0146 (13)0.0047 (13)
C200.054 (2)0.0351 (18)0.0424 (17)0.0150 (15)0.0144 (14)0.0053 (14)
C210.055 (2)0.053 (2)0.056 (2)0.0212 (18)0.0125 (16)0.0168 (18)
N40.0571 (18)0.0484 (18)0.0533 (17)0.0110 (14)0.0291 (14)0.0092 (14)
C220.0448 (17)0.0364 (18)0.0375 (16)0.0154 (14)0.0135 (13)0.0028 (13)
C230.055 (2)0.0358 (18)0.0409 (17)0.0031 (15)0.0181 (14)0.0100 (14)
C240.049 (2)0.044 (2)0.0485 (19)0.0038 (16)0.0258 (15)0.0067 (16)
C250.127 (4)0.038 (2)0.106 (4)0.024 (2)0.078 (3)0.004 (2)
C260.121 (4)0.032 (2)0.100 (3)0.018 (2)0.085 (3)0.007 (2)
N50.0512 (17)0.056 (2)0.0476 (16)0.0099 (15)0.0234 (13)0.0100 (14)
C270.053 (2)0.052 (2)0.050 (2)0.0059 (17)0.0173 (16)0.0223 (17)
C280.0459 (18)0.0380 (19)0.053 (2)0.0032 (15)0.0188 (15)0.0139 (16)
C290.0312 (15)0.0330 (16)0.0317 (14)0.0065 (12)0.0058 (11)0.0047 (12)
C300.0453 (18)0.0384 (18)0.0449 (18)0.0040 (14)0.0157 (14)0.0119 (15)
C310.054 (2)0.041 (2)0.061 (2)0.0005 (16)0.0284 (17)0.0111 (17)
N60.0439 (15)0.0547 (18)0.0402 (14)0.0101 (13)0.0208 (12)0.0078 (13)
C320.0330 (15)0.0345 (17)0.0311 (14)0.0061 (12)0.0064 (11)0.0082 (12)
C330.0451 (18)0.0387 (18)0.0398 (17)0.0109 (14)0.0113 (13)0.0063 (14)
C340.051 (2)0.044 (2)0.0418 (18)0.0082 (16)0.0191 (14)0.0015 (15)
C350.0421 (18)0.046 (2)0.0494 (19)0.0134 (15)0.0148 (14)0.0123 (16)
C360.0435 (18)0.0368 (18)0.0397 (16)0.0118 (14)0.0124 (13)0.0018 (14)
O140.0659 (18)0.091 (2)0.0760 (19)0.0138 (17)0.0019 (15)0.0274 (18)
O150.0461 (14)0.0489 (15)0.0652 (15)0.0081 (12)0.0163 (11)0.0084 (12)
O13A0.075 (4)0.063 (8)0.101 (15)0.016 (5)0.050 (8)0.016 (6)
O13B0.075 (4)0.063 (8)0.101 (15)0.016 (5)0.050 (8)0.016 (6)
Geometric parameters (Å, º) top
Fe—O62.008 (2)C18—H180.9300
Fe—O72.012 (2)C19—C201.384 (4)
Fe—O12.018 (2)C19—C221.488 (4)
Fe—O122.026 (2)C20—C211.371 (4)
Fe—N22.056 (2)C20—H200.9300
Fe—N12.058 (2)C21—H210.9300
N1—C51.321 (3)N4—C251.318 (5)
N1—C11.336 (3)N4—C241.323 (4)
N2—C131.324 (3)C22—C261.367 (5)
N2—C91.332 (3)C22—C231.381 (4)
C1—C21.380 (3)C23—C241.380 (4)
C1—C61.514 (4)C23—H230.9300
C2—C31.393 (4)C24—H240.9300
C2—H20.9300C25—C261.386 (5)
C3—C41.394 (4)C25—H250.9300
C3—C71.515 (3)C26—H260.9300
C4—C51.383 (3)N5—C271.332 (4)
C4—H40.9300N5—C311.332 (4)
C5—C81.515 (4)C27—C281.379 (4)
C6—O21.212 (3)C27—H270.9300
C6—O11.296 (3)C28—C291.389 (4)
C7—O41.216 (4)C28—H280.9300
C7—O31.281 (4)C29—C301.369 (4)
O3—H30.8200C29—C321.491 (4)
C8—O51.220 (3)C30—C311.380 (4)
C8—O61.289 (3)C30—H300.9300
C9—C101.383 (3)C31—H310.9300
C9—C141.510 (4)N6—C341.331 (4)
C10—C111.397 (4)N6—C351.334 (4)
C10—H100.9300N6—H6A0.8600
C11—C121.388 (4)C32—C331.379 (4)
C11—C151.514 (3)C32—C361.390 (4)
C12—C131.378 (3)C33—C341.379 (4)
C12—H120.9300C33—H330.9300
C13—C161.510 (4)C34—H340.9300
C14—O81.213 (3)C35—C361.364 (4)
C14—O71.299 (3)C35—H350.9300
C15—O101.225 (4)C36—H360.9300
C15—O91.265 (4)O14—H14A0.8499
C16—O111.221 (3)O14—H14B0.8508
C16—O121.279 (3)O15—H15A0.8517
N3—C171.309 (5)O15—H15B0.8520
N3—C211.339 (5)O13A—H13A0.9035
N3—H3A0.8600O13A—H13B1.1256
C17—C181.372 (5)O13B—H13A1.1455
C17—H170.9300O13B—H13B0.7764
C18—C191.383 (4)
O6—Fe—O795.18 (9)C16—O12—Fe120.48 (17)
O6—Fe—O1151.77 (7)C17—N3—C21121.4 (3)
O7—Fe—O192.17 (9)C17—N3—H3A119.3
O6—Fe—O1291.68 (9)C21—N3—H3A119.3
O7—Fe—O12151.67 (8)N3—C17—C18121.1 (3)
O1—Fe—O1294.66 (9)N3—C17—H17119.5
O6—Fe—N2102.03 (9)C18—C17—H17119.5
O7—Fe—N275.81 (8)C17—C18—C19119.5 (3)
O1—Fe—N2106.20 (8)C17—C18—H18120.3
O12—Fe—N275.88 (8)C19—C18—H18120.3
O6—Fe—N175.78 (9)C18—C19—C20118.3 (3)
O7—Fe—N1110.98 (8)C18—C19—C22119.9 (3)
O1—Fe—N176.14 (8)C20—C19—C22121.9 (3)
O12—Fe—N197.35 (8)C21—C20—C19119.5 (3)
N2—Fe—N1172.91 (9)C21—C20—H20120.2
C5—N1—C1122.9 (2)C19—C20—H20120.2
C5—N1—Fe118.62 (18)N3—C21—C20120.3 (3)
C1—N1—Fe118.31 (18)N3—C21—H21119.9
C13—N2—C9122.6 (2)C20—C21—H21119.9
C13—N2—Fe118.47 (16)C25—N4—C24117.7 (3)
C9—N2—Fe118.94 (17)C26—C22—C23117.7 (3)
N1—C1—C2120.3 (2)C26—C22—C19121.5 (3)
N1—C1—C6111.8 (2)C23—C22—C19120.8 (3)
C2—C1—C6127.9 (3)C24—C23—C22118.6 (3)
C1—C2—C3118.0 (2)C24—C23—H23120.7
C1—C2—H2121.0C22—C23—H23120.7
C3—C2—H2121.0N4—C24—C23123.6 (3)
C2—C3—C4120.4 (2)N4—C24—H24118.2
C2—C3—C7121.4 (3)C23—C24—H24118.2
C4—C3—C7118.2 (3)N4—C25—C26122.5 (4)
C5—C4—C3118.1 (3)N4—C25—H25118.8
C5—C4—H4120.9C26—C25—H25118.8
C3—C4—H4120.9C22—C26—C25119.9 (4)
N1—C5—C4120.3 (2)C22—C26—H26120.1
N1—C5—C8111.4 (2)C25—C26—H26120.1
C4—C5—C8128.3 (3)C27—N5—C31118.0 (3)
O2—C6—O1126.0 (3)N5—C27—C28123.1 (3)
O2—C6—C1121.2 (2)N5—C27—H27118.4
O1—C6—C1112.7 (2)C28—C27—H27118.4
C6—O1—Fe120.88 (18)C27—C28—C29118.4 (3)
O4—C7—O3126.2 (2)C27—C28—H28120.8
O4—C7—C3119.8 (3)C29—C28—H28120.8
O3—C7—C3114.1 (3)C30—C29—C28118.4 (3)
C7—O3—H3109.5C30—C29—C32120.1 (3)
O5—C8—O6126.1 (3)C28—C29—C32121.5 (3)
O5—C8—C5121.1 (2)C29—C30—C31119.6 (3)
O6—C8—C5112.8 (2)C29—C30—H30120.2
C8—O6—Fe120.84 (18)C31—C30—H30120.2
N2—C9—C10120.4 (2)N5—C31—C30122.4 (3)
N2—C9—C14111.4 (2)N5—C31—H31118.8
C10—C9—C14128.2 (2)C30—C31—H31118.8
C9—C10—C11117.9 (2)C34—N6—C35121.2 (3)
C9—C10—H10121.0C34—N6—H6A119.4
C11—C10—H10121.0C35—N6—H6A119.4
C12—C11—C10120.1 (2)C33—C32—C36118.6 (3)
C12—C11—C15118.8 (2)C33—C32—C29121.7 (3)
C10—C11—C15121.1 (2)C36—C32—C29119.7 (3)
C13—C12—C11118.6 (2)C34—C33—C32119.7 (3)
C13—C12—H12120.7C34—C33—H33120.2
C11—C12—H12120.7C32—C33—H33120.2
N2—C13—C12120.4 (2)N6—C34—C33120.2 (3)
N2—C13—C16111.8 (2)N6—C34—H34119.9
C12—C13—C16127.8 (2)C33—C34—H34119.9
O8—C14—O7125.4 (3)N6—C35—C36121.1 (3)
O8—C14—C9121.8 (2)N6—C35—H35119.4
O7—C14—C9112.8 (2)C36—C35—H35119.4
C14—O7—Fe121.07 (17)C35—C36—C32119.2 (3)
O10—C15—O9126.3 (3)C35—C36—H36120.4
O10—C15—C11118.9 (3)C32—C36—H36120.4
O9—C15—C11114.8 (3)H14A—O14—H14B107.2
O11—C16—O12126.0 (2)H15A—O15—H15B112.8
O11—C16—C13120.6 (2)H13A—O13A—H13B103.2
O12—C16—C13113.4 (2)H13A—O13B—H13B110.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O9i0.821.642.454 (3)172
N3—H3A···N5ii0.861.932.741 (4)158
N6—H6A···N4iii0.861.842.694 (4)170
O13A—H13A···O7iv0.901.902.766 (4)161
O13B—H13B···O40.782.172.821 (4)142
O14—H14A···O110.852.162.973 (4)160
O14—H14B···O5v0.851.952.788 (4)169
O15—H15A···O100.851.972.801 (3)166
O15—H15B···O1vi0.852.102.877 (3)152
Symmetry codes: (i) x1, y, z+1; (ii) x+2, y+1, z+2; (iii) x+1, y+1, z+1; (iv) x, y+1, z+2; (v) x+1, y, z; (vi) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula(C10H9N2)2[Fe(C8H2NO6)(C8H3NO6)]·3H2O
Mr841.50
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.568 (2), 12.386 (3), 14.344 (3)
α, β, γ (°)77.13 (3), 79.82 (3), 76.15 (3)
V3)1761.9 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.51
Crystal size (mm)0.35 × 0.24 × 0.17
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.860, 0.913
No. of measured, independent and
observed [I > 2σ(I)] reflections
17019, 7934, 5458
Rint0.040
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.138, 1.06
No. of reflections7934
No. of parameters526
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.41

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Fe—O62.008 (2)Fe—O122.026 (2)
Fe—O72.012 (2)Fe—N22.056 (2)
Fe—O12.018 (2)Fe—N12.058 (2)
O6—Fe—O795.18 (9)O1—Fe—N2106.20 (8)
O6—Fe—O1151.77 (7)O12—Fe—N275.88 (8)
O7—Fe—O192.17 (9)O6—Fe—N175.78 (9)
O6—Fe—O1291.68 (9)O7—Fe—N1110.98 (8)
O7—Fe—O12151.67 (8)O1—Fe—N176.14 (8)
O1—Fe—O1294.66 (9)O12—Fe—N197.35 (8)
O6—Fe—N2102.03 (9)N2—Fe—N1172.91 (9)
O7—Fe—N275.81 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O9i0.821.642.454 (3)172
N3—H3A···N5ii0.861.932.741 (4)158
N6—H6A···N4iii0.861.842.694 (4)170
O13A—H13A···O7iv0.901.902.766 (4)161
O13B—H13B···O40.782.172.821 (4)142
O14—H14A···O110.852.162.973 (4)160
O14—H14B···O5v0.851.952.788 (4)169
O15—H15A···O100.851.972.801 (3)166
O15—H15B···O1vi0.852.102.877 (3)152
Symmetry codes: (i) x1, y, z+1; (ii) x+2, y+1, z+2; (iii) x+1, y+1, z+1; (iv) x, y+1, z+2; (v) x+1, y, z; (vi) x+2, y+1, z+1.
 

Acknowledgements

This project was sponsored by the K. C. Wong Magna Fund of Ningbo University and supported by the Expert Project of Key Basic Research of the Ministry of Science and Technology of China (grant No. 2003CCA00800), the Zhejiang Provincial Natural Science Foundation (grant No. Z203067) and the Ningbo Municipal Natural Science Foundation (grant No. 2006 A610061).

References

First citationGhosh, S. K. & Bharadwaj, P. K. (2006). Inorg. Chim. Acta, 359, 1685–1689.  Web of Science CSD CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKaneko, W., Ohba, M. & Kitagawa, S. (2007). J. Am. Chem. Soc. 129, 13706–13712.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLi, M. X., Miao, Z. X., Shao, M., Liang, S. W. & Zhu, S. R. (2008). Inorg. Chem. 47, 4481–4489.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLin, W. B., Rieter, W. J. & Taylor, K. M. L. (2009). Angew. Chem. Int. Ed. 48, 650-658.  Web of Science CrossRef CAS Google Scholar
First citationLin, J. G., Wen, L. L., Zang, S. Q., Su, Y., Lu, Z. D., Zhu, H. Z. & Meng, Q. J. (2007). Inorg. Chem. Commun. 10, 74–76.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSyper, L., Kloc, K. & Mochowski, J. (1980). Tetrahedron, 36, 123–129.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages m450-m451
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds