organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hydroxonium 1-ammonio­ethane-1,1-diyl­di­phospho­nate

aDepartment of Chemical Engineering, Wuhan University of Science and Engineering, Wuhan 430073, People's Republic of China
*Correspondence e-mail: lim@wuse.edu.cn

(Received 9 October 2008; accepted 10 March 2009; online 19 March 2009)

The title complex, H3O+·NH3C(CH3)(PO3H)2, contains a hydroxonium ion and an NH3C(CH3)(PO3H)2 anion. The three H atoms of H3O+ form a pseudo-tetra­hedron by being distributed over four positions with occupation factors of 0.75. Multiple N—H⋯O and O—H⋯O hydrogen bonds in the crystal structure form an intricate three-dimensional supra­molecular network.

Related literature

For the structures of organophospho­nates, see: Clearfield (2002[Clearfield, A. (2002). Recent Opin. Solid Mater. Sci. 6, 495-506.]); Finn et al. (2003[Finn, R. C., Zubieta, J. & Haushalter, R. C. (2003). Prog. Inorg. Chem. 51, 421-601.]). For similar bis­phospho­nates, see: Fernández et al. (2003[Fernández, D., Vega, D. & Ellena, J. A. (2003). Acta Cryst. C59, o289-o292.]); For complexes with 1-amino­ethyl­idene-1,1-diphospho­nic acid, see: Yin et al. (2005[Yin, P., Wang, X. C., Gao, S. & Zheng, L. M. (2005). J. Solid State Chem. 178, 1049-1053.]); Ding et al. (2006[Ding, D., Yin, M., Lu, H., Fan, Y., Hou, H. & Wang, Y. (2006). J. Solid State Chem. 179, 747-752.]); Li et al. (2008[Li, M., Xiang, J. F., Chen, S. P., Wu, S. M., Yuan, L. J., Li, H., He, H. J. & Sun, J. T. (2008). J. Coord. Chem. 61(3), 372-383.]). For the synthesis, see: Chai et al. (1980[Chai, B. J., Covina, W. & Muggee, F. D. (1980). US Patent No. 4 239 695.]).

[Scheme 1]

Experimental

Crystal data
  • H3O+·C2H8N2O6P2

  • Mr = 223.06

  • Monoclinic, P 21 /c

  • a = 7.3372 (6) Å

  • b = 10.6553 (8) Å

  • c = 10.6128 (8) Å

  • β = 97.705 (1)°

  • V = 822.22 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.53 mm−1

  • T = 293 K

  • 0.36 × 0.27 × 0.18 mm

Data collection
  • Bruker SMART 4K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.]) Tmin = 0.831, Tmax = 0.910

  • 5340 measured reflections

  • 1972 independent reflections

  • 1837 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.097

  • S = 1.10

  • 1972 reflections

  • 136 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.61 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯O2i 0.89 1.98 2.809 (2) 155
N1—H1A⋯O5i 0.89 1.90 2.713 (2) 151
N1—H1B⋯O3ii 0.89 2.01 2.824 (2) 152
O4—H3⋯O3ii 0.73 (4) 1.86 (4) 2.591 (2) 176 (4)
O1—H4⋯O6iii 0.71 (3) 1.84 (3) 2.550 (2) 172 (4)
O1W—H5⋯O5iv 0.893 (10) 1.954 (15) 2.804 (2) 159 (3)
O1W—H8⋯O1v 0.888 (10) 2.64 (4) 3.061 (2) 110 (3)
O1W—H8⋯O3vi 0.888 (10) 2.27 (2) 3.041 (2) 145 (3)
O1W—H6⋯O2vii 0.896 (10) 1.935 (11) 2.828 (2) 175 (3)
O1W—H7⋯O6iii 0.900 (10) 1.920 (11) 2.815 (2) 173 (3)
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+2, -y+1, -z; (iii) x-1, y, z; (iv) -x+2, -y+1, -z+1; (v) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (vi) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vii) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Organophosphonic acids and their compounds have attracted tremendous interest. A series of phosphonate hybrid materials have been prepared and show potential applications in catalysts, sensors, sorbents, magnetic and luminescent materials. Such materials also illustrate a variety of structures from one-dimensional chains, two-dimensional layers to three-dimensional porous frameworks. (Finn et al., 2003). Introduction of some functional groups to phosphonic acids, such as crown ether, –COOH, –OH, –NR2 or mixed groups will modify their complexing ability and construct a great number of novel phosphonates (Clearfield, 2002). Compared with other phosphonic acids, 1-aminoethylidene-1,1-diphosphonic acid (AEDPH4) is easier to synthesize. However, little attention has been paid to the structural study of metal-AEDP compounds (Yin et al., 2005; Ding et al., 2006). In our recent paper, it is found that AEDPH4 is inclined to transfer one proton to the amino group, which is in agreement with Fernández's results on similar bisphosphonates. (Li et al., 2008; Fernández et al., 2003). Deprotonation of it will result in predictable hydrogen aggregates from stronger P—O—H···O—P to weaker C—H···O hydrogen bonds. Herein, we report its structure, (I).

The asymmetric unit of (I)is built up from one deprotonated AEDPH3 anion and a disordered H3O+ cation, which are linked through four types of Ow-H···O hydrogen bonds (Fig. 1, Table 1). Two of the four protons of phosphonates are used in protonation, one for the amino group, the other for the H3O+ cation. The combination of different hydrogen bond interactions, N-H···O and O-H···O results in the formation of an intricate three dimensional supramolecular network (Fig.2, Table 1).

Related literature top

For the structures of organophosphonates, see: Clearfield (2002); Finn (2003). For similar bisphosphonates, see: Fernández et al. (2003); For complexes with 1-aminoethylidene-1,1-diphosphonic acid, see: Yin et al. (2005); Ding et al. (2006); Li et al. (2008). For the synthesis, see: Chai et al. (1980).

Experimental top

The AEDPH4 was synthesized according to the US Patent 4239695 (Chai et al., 1980). It was crystallized directly from the AEDPH4 aqueous solution. When the mixture was heated for 24h, colorless crystals were obtained.

Refinement top

All H atoms attached to C and N atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (C), N—H = 0.89Å with Uiso(H) = 1.5Ueq(C,N). The H atoms of hydroxyl were located in difference Fourier maps and included in the subsequent refinement.

The three hydrogen atoms of the H3O+ cation are statistically distributed over four positions with occupation factor of 0.75, building a pseudo tetrahedron.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008b).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Partial packing view of compound ( I ), showing the formation of the three dimensional network built from hydrogen bonds. For the sake of clarity, H atoms not involved in hydrogen bonding have been omitted.
Hydroxonium 1-ammonioethane-1,1-diyldiphosphonate top
Crystal data top
H3O+·C2H8N2O6P2F(000) = 464
Mr = 223.06Dx = 1.802 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3640 reflections
a = 7.3372 (6) Åθ = 2.7–29.8°
b = 10.6553 (8) ŵ = 0.53 mm1
c = 10.6128 (8) ÅT = 293 K
β = 97.705 (1)°Plate, colorless
V = 822.22 (11) Å30.36 × 0.27 × 0.18 mm
Z = 4
Data collection top
Bruker SMART 4K CCD area-detector
diffractometer
1837 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ϕ and ω scansθmax = 28.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 99
Tmin = 0.831, Tmax = 0.910k = 914
5340 measured reflectionsl = 1311
1972 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0481P)2 + 0.8715P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
1972 reflectionsΔρmax = 0.40 e Å3
136 parametersΔρmin = 0.61 e Å3
4 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.023 (2)
Crystal data top
H3O+·C2H8N2O6P2V = 822.22 (11) Å3
Mr = 223.06Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.3372 (6) ŵ = 0.53 mm1
b = 10.6553 (8) ÅT = 293 K
c = 10.6128 (8) Å0.36 × 0.27 × 0.18 mm
β = 97.705 (1)°
Data collection top
Bruker SMART 4K CCD area-detector
diffractometer
1972 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
1837 reflections with I > 2σ(I)
Tmin = 0.831, Tmax = 0.910Rint = 0.015
5340 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0324 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.40 e Å3
1972 reflectionsΔρmin = 0.61 e Å3
136 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.9948 (2)0.56114 (16)0.24265 (16)0.0131 (3)
C20.9672 (3)0.62357 (19)0.36861 (18)0.0209 (4)
H2A1.07410.67220.39930.031*
H2B0.94880.56020.42990.031*
H2C0.86150.67740.35560.031*
N11.0165 (2)0.66564 (14)0.14939 (14)0.0152 (3)
H1A0.91510.71240.13910.023*
H1B1.03470.63290.07500.023*
H1C1.11240.71310.17920.023*
O1W0.4462 (2)0.70203 (18)0.52441 (17)0.0363 (4)
O10.63612 (19)0.57626 (13)0.17124 (14)0.0209 (3)
O20.75556 (18)0.37252 (13)0.27913 (13)0.0208 (3)
O30.80235 (18)0.42568 (13)0.05066 (12)0.0208 (3)
O41.23166 (19)0.41015 (14)0.13108 (14)0.0209 (3)
O51.20389 (18)0.37077 (13)0.35944 (13)0.0204 (3)
O61.36080 (17)0.56986 (13)0.29441 (13)0.0199 (3)
P10.78594 (6)0.47061 (4)0.18354 (4)0.01339 (15)
P21.21301 (6)0.47175 (4)0.26319 (4)0.01358 (15)
H31.227 (5)0.456 (3)0.079 (3)0.051 (10)*
H40.562 (5)0.568 (3)0.208 (3)0.049 (10)*
H50.5658 (17)0.698 (3)0.554 (3)0.018 (7)*0.75
H60.386 (4)0.673 (3)0.587 (2)0.018 (7)*0.75
H70.426 (4)0.663 (2)0.4485 (15)0.013 (7)*0.75
H80.422 (5)0.7827 (13)0.509 (4)0.038 (10)*0.75
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0145 (7)0.0114 (7)0.0138 (7)0.0006 (6)0.0032 (6)0.0007 (6)
C20.0254 (9)0.0214 (9)0.0164 (8)0.0030 (7)0.0042 (7)0.0040 (7)
N10.0165 (7)0.0123 (7)0.0173 (7)0.0002 (5)0.0040 (5)0.0017 (5)
O1W0.0356 (9)0.0393 (10)0.0331 (9)0.0008 (8)0.0010 (7)0.0001 (7)
O10.0155 (6)0.0200 (7)0.0283 (7)0.0043 (5)0.0073 (5)0.0065 (5)
O20.0210 (6)0.0164 (6)0.0261 (7)0.0001 (5)0.0068 (5)0.0073 (5)
O30.0217 (6)0.0236 (7)0.0169 (6)0.0005 (5)0.0022 (5)0.0037 (5)
O40.0248 (7)0.0184 (7)0.0201 (7)0.0019 (5)0.0051 (5)0.0036 (5)
O50.0191 (6)0.0189 (6)0.0227 (7)0.0010 (5)0.0005 (5)0.0066 (5)
O60.0148 (6)0.0193 (6)0.0259 (7)0.0038 (5)0.0037 (5)0.0049 (5)
P10.0127 (2)0.0124 (2)0.0152 (2)0.00029 (15)0.00251 (16)0.00126 (15)
P20.0123 (2)0.0125 (2)0.0158 (2)0.00017 (15)0.00167 (16)0.00006 (15)
Geometric parameters (Å, º) top
C1—N11.512 (2)O1W—H60.896 (10)
C1—C21.531 (2)O1W—H70.900 (10)
C1—P11.8479 (17)O1W—H80.888 (10)
C1—P21.8505 (17)O1—P11.5666 (14)
C2—H2A0.9600O1—H40.71 (3)
C2—H2B0.9600O2—P11.4940 (13)
C2—H2C0.9600O3—P11.5093 (13)
N1—H1A0.8900O4—P21.5706 (14)
N1—H1B0.8900O4—H30.73 (4)
N1—H1C0.8900O5—P21.4914 (13)
O1W—H50.893 (10)O6—P21.5106 (13)
N1—C1—C2106.82 (14)H5—O1W—H7109 (3)
N1—C1—P1108.51 (11)H6—O1W—H7118 (3)
C2—C1—P1108.82 (12)H5—O1W—H8106 (3)
N1—C1—P2106.91 (11)H6—O1W—H8111 (3)
C2—C1—P2109.54 (12)H7—O1W—H8106 (3)
P1—C1—P2115.87 (9)P1—O1—H4116 (3)
C1—C2—H2A109.5P2—O4—H3113 (3)
C1—C2—H2B109.5O2—P1—O3116.77 (8)
H2A—C2—H2B109.5O2—P1—O1113.10 (8)
C1—C2—H2C109.5O3—P1—O1107.04 (8)
H2A—C2—H2C109.5O2—P1—C1109.10 (8)
H2B—C2—H2C109.5O3—P1—C1108.44 (8)
C1—N1—H1A109.5O1—P1—C1101.18 (8)
C1—N1—H1B109.5O5—P2—O6116.47 (8)
H1A—N1—H1B109.5O5—P2—O4109.10 (8)
C1—N1—H1C109.5O6—P2—O4109.82 (8)
H1A—N1—H1C109.5O5—P2—C1109.54 (8)
H1B—N1—H1C109.5O6—P2—C1104.71 (8)
H5—O1W—H6107 (3)O4—P2—C1106.71 (8)
N1—C1—P1—O2176.13 (11)N1—C1—P2—O5177.18 (11)
C2—C1—P1—O260.25 (14)C2—C1—P2—O561.79 (14)
P2—C1—P1—O263.66 (11)P1—C1—P2—O561.75 (11)
N1—C1—P1—O355.70 (13)N1—C1—P2—O651.57 (12)
C2—C1—P1—O3171.58 (12)C2—C1—P2—O663.82 (13)
P2—C1—P1—O364.51 (11)P1—C1—P2—O6172.64 (9)
N1—C1—P1—O156.68 (12)N1—C1—P2—O464.85 (12)
C2—C1—P1—O159.20 (13)C2—C1—P2—O4179.76 (12)
P2—C1—P1—O1176.89 (9)P1—C1—P2—O456.22 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O2i0.891.982.809 (2)155
N1—H1A···O5i0.891.902.713 (2)151
N1—H1B···O3ii0.892.012.824 (2)152
O4—H3···O3ii0.73 (4)1.86 (4)2.591 (2)176 (4)
O1—H4···O6iii0.71 (3)1.84 (3)2.550 (2)172 (4)
O1W—H5···O5iv0.89 (1)1.95 (2)2.804 (2)159 (3)
O1W—H8···O1v0.89 (1)2.64 (4)3.061 (2)110 (3)
O1W—H8···O3vi0.89 (1)2.27 (2)3.041 (2)145 (3)
O1W—H6···O2vii0.90 (1)1.94 (1)2.828 (2)175 (3)
O1W—H7···O6iii0.90 (1)1.92 (1)2.815 (2)173 (3)
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x+2, y+1, z; (iii) x1, y, z; (iv) x+2, y+1, z+1; (v) x, y+3/2, z+1/2; (vi) x+1, y+1/2, z+1/2; (vii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaH3O+·C2H8N2O6P2
Mr223.06
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.3372 (6), 10.6553 (8), 10.6128 (8)
β (°) 97.705 (1)
V3)822.22 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.53
Crystal size (mm)0.36 × 0.27 × 0.18
Data collection
DiffractometerBruker SMART 4K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008a)
Tmin, Tmax0.831, 0.910
No. of measured, independent and
observed [I > 2σ(I)] reflections
5340, 1972, 1837
Rint0.015
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.097, 1.10
No. of reflections1972
No. of parameters136
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.61

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008b), SHELXL97 (Sheldrick, 2008b), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O2i0.891.982.809 (2)155.4
N1—H1A···O5i0.891.902.713 (2)150.9
N1—H1B···O3ii0.892.012.824 (2)152.4
O4—H3···O3ii0.73 (4)1.86 (4)2.591 (2)176 (4)
O1—H4···O6iii0.71 (3)1.84 (3)2.550 (2)172 (4)
O1W—H5···O5iv0.893 (10)1.954 (15)2.804 (2)159 (3)
O1W—H8···O1v0.888 (10)2.64 (4)3.061 (2)110 (3)
O1W—H8···O3vi0.888 (10)2.27 (2)3.041 (2)145 (3)
O1W—H6···O2vii0.896 (10)1.935 (11)2.828 (2)175 (3)
O1W—H7···O6iii0.900 (10)1.920 (11)2.815 (2)173 (3)
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x+2, y+1, z; (iii) x1, y, z; (iv) x+2, y+1, z+1; (v) x, y+3/2, z+1/2; (vi) x+1, y+1/2, z+1/2; (vii) x+1, y+1, z+1.
 

Acknowledgements

This work was supported financially by the Foundation of Education Department of Hubei Province (No. Q20081705).

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChai, B. J., Covina, W. & Muggee, F. D. (1980). US Patent No. 4 239 695.  Google Scholar
First citationClearfield, A. (2002). Recent Opin. Solid Mater. Sci. 6, 495–506.  Web of Science CrossRef CAS Google Scholar
First citationDing, D., Yin, M., Lu, H., Fan, Y., Hou, H. & Wang, Y. (2006). J. Solid State Chem. 179, 747–752.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFernández, D., Vega, D. & Ellena, J. A. (2003). Acta Cryst. C59, o289–o292.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFinn, R. C., Zubieta, J. & Haushalter, R. C. (2003). Prog. Inorg. Chem. 51, 421–601.  CAS Google Scholar
First citationLi, M., Xiang, J. F., Chen, S. P., Wu, S. M., Yuan, L. J., Li, H., He, H. J. & Sun, J. T. (2008). J. Coord. Chem. 61(3), 372–383.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYin, P., Wang, X. C., Gao, S. & Zheng, L. M. (2005). J. Solid State Chem. 178, 1049–1053.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds