metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages m392-m393

Di-μ-chromato-κ4O:O′-bis­­[bis­­(phenan­throline-κ2N,N′)cadmium(II)] dihydrate

aMicroscale Science Institute, Weifang University, Weifang 261061, People's Republic of China, and bNew Materials and Function Coordination Chemistry Laboratory, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
*Correspondence e-mail: ffj2003@163169.net

(Received 12 February 2009; accepted 6 March 2009; online 14 March 2009)

In the title compound, [Cd2Cr2O8(C12H8N2)4]·2H2O, which was obtained by hydro­thermal reaction of CdCO3 and phenanthroline with K2CrO4 at 393 K, two distorted Cd(N4O2) octa­hedra are linked through μ2-bridging chromate anions, forming a centrosymmetric tetra­nuclear eight-membered ring complex. The water mol­ecules link the chromate O atoms via inter­molecular O—H⋯O hydrogen bonds. These aggregates pack to a three-dimensional network through weak inter­molecular C—H⋯O and C—H⋯π hydrogen-bonding contacts.

Related literature

For the properties of multimetallic complexes, see: Costisor et al. (2001[Costisor, O., Mereiter, K., Julve, M., Lloret, F., Journaux, Y., Linert, W. & Andruh, M. (2001). Inorg. Chim. Acta, 324, 352-358.]). For the structures of heterometallic macrocyclic rings, see: Larsen et al. (2003[Larsen, F. K., McInnes, E. J., Mlkami, H. E., Overgaard, J., Piligkos, S., Rajaraman, G., Rentschler, E., Smith, A. A., Smith, G. M., Boote, V., Jennings, M., Timco, G. A. & Winpenny, R. E. P. (2003). Angew. Chem. Int. Ed. 42, 101-105.]); Timco et al. (2005[Timco, G. A., Batsanov, A. S., Larsen, F. K., Muryn, C. A., Overgaard, J., Teat, S. J. & Winpenny, R. E. P. (2005). Chem. Commun. pp. 3649-3651.]). For related structures, see: Dai et al. (2002[Dai, J. C., Wu, X. T., Fu, Z. Y., Cui, C. P., Hu, S. M., Du, W. X., Wu, L. M., Zhang, H. H. & Sun, R. Q. (2002). Inorg. Chem. 41, 1391-1396.]); Chaudhuri et al. (1988[Chaudhuri, P., Winter, M., Wieghardt, K., Gehring, S., Haase, W., Nuber, B. & Weiss, J. (1988). Inorg. Chem. 27, 1564-1569.]); Yoshikawa et al. (2002[Yoshikawa, H., Nishikiori, S., Watanabe, T., Ishida, T., Watanabe, G., Murakami, M., Suwinska, K., Luboradzki, R. & Lipkowski, J. (2002). J. Chem. Soc. Dalton Trans. pp. 1907-1917.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd2Cr2O8(C12H8N2)4]·2H2O

  • Mr = 1213.65

  • Monoclinic, P 21 /n

  • a = 11.2303 (13) Å

  • b = 13.6892 (16) Å

  • c = 14.5352 (19) Å

  • β = 91.928 (1)°

  • V = 2233.3 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.48 mm−1

  • T = 298 K

  • 0.13 × 0.08 × 0.05 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.830, Tmax = 0.930

  • 11590 measured reflections

  • 3922 independent reflections

  • 2145 reflections with I > 2σ(I)

  • Rint = 0.096

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.065

  • S = 0.86

  • 3922 reflections

  • 316 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cd1—O2 2.215 (4)
Cd1—O1 2.226 (4)
Cd1—N2 2.370 (5)
Cd1—N1 2.376 (5)
Cd1—N4 2.394 (5)
Cd1—N3 2.397 (5)
O1—Cr1 1.660 (4)
O2—Cr1i 1.683 (4)
O3—Cr1 1.638 (4)
O4—Cr1 1.619 (4)
Symmetry code: (i) -x+1, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O2ii 0.85 2.13 2.849 (6) 142
O5—H5B⋯O4iii 0.85 2.40 3.122 (6) 144
C2—H2⋯O3iv 0.93 2.49 3.274 (7) 142
C3—H3⋯O3iii 0.93 2.50 3.352 (8) 153
C9—H9⋯O3v 0.93 2.48 3.391 (7) 168
C10—H10⋯O3 0.93 2.55 3.478 (7) 175
C12—H12⋯O4ii 0.93 2.58 3.423 (7) 151
C20—H20⋯O5vi 0.93 2.49 3.344 (8) 152
C23—H23⋯Cg1vii 0.93 2.61 3.509 (7) 164
Symmetry codes: (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (v) -x+2, -y+1, -z+1; (vi) x-1, y, z-1; (vii) -x+1, -y+2, -z+1. Cg1 is the centroid of atoms N1,C1–C5.

Data collection: SMART (Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent decades, research on multimetallic complexes has grown in modern inorganic chemistry, because of searching for new materials, exhibiting exciting magnetic properties, electrical and optical properties (Costisor et al., 2001). But the heterometallic systems are rare because of the difficult synthesis. In contrast to the heterometallic macrocylic ring structures reported (Larsen et al., 2003 & Timco et al., 2005), we describe the synthesis and structure of the title compound, which represents a centrosymmetric heterobinuclear eight-membered ring system.

The title structure (Fig. 1) has a centrosymmetric eight-membered ring, build up of [Cd(phenanthroline)2]2+, [CrO4]2- units and two free water molecules. Each Cd atom is coordinated with four N atoms from phenanthroline ligands and two O atoms, presenting a distorted octahedral geometry. The Cr atoms are tetrahedrally coordinated. Two distorted Cd(N4O2) octahedra are linked through bridging chromate anions to form the centrosymmetric tetranuclear eight-membered ring complex. The mean Cd—O, Cr—O and Cd—N bond lengths are similar to the values reported (Dai et al., 2002, Chaudhuri et al., 1988, Yoshikawa et al., 2002). The Cr1i—O2—Cd1, O1—Cr1—O2, O2—Cd1—O1 angles are 133.1 (2)°, 109.40 (18)°, and 97.47 (13)°, respectively. Other selected geometrical parameters are given in Table 1. The dihedral angle between the phenanthroline ligands is 89.00 (1)°. The free water molecules link the chromate oxygen atoms via intermolecular O—H···O hydrogen bonds. The intermolecular C—H···O hydrogen bonds and the C—H···π interactions (Table 2) cause the crystal packing to be energetically preferable and generate a three-dimensional network as shown in Fig. 2.

Related literature top

For the properties of multimetallic complexes, see: Costisor et al. (2001). For the structures of heterometallic macrocyclic rings, see: Larsen et al. (2003); Timco et al. (2005). For related structures, see: Dai et al. (2002); Chaudhuri et al. (1988); Yoshikawa et al. (2002). Cg1 is the centroid of atoms N1,C1–C5.

Experimental top

All commercially obtained reagent-grade chemicals were used without further purication. CdCO3 (3.40 g, 2.00 mmol) was dissolved in water and methanol (2:1 v/v, 30 ml), mixed with phenanthroline (6.00 g, 3.00 mmol). After stirring for 0.5 h, K2CrO4 (1.94 g, 1.00 mmol) was added to the mixture. The hydrothermal reaction was conducted at 393 K for 4 h. The yellow prism crystals were collected, after cooling and filtering (yield 1.20 g). Analysis calculated for C48H36Cd2Cr2N8O10: C 47.46, H 2.97, N 9.22%; found: C 47.44, H 3.03, N 9.20%.

Refinement top

H atoms were positioned geometrically and allowed to ride on their parent atoms, with N—H and C—H distances of 0.86 and 0.93–0.96 Å, respectively, and with Uiso(H) = 1.2Ueq of the parent atoms.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The packing view of the molecules of (I) along the crystallographic a direction.
Di-µ-chromato-κ4O:O'-bis[bis(phenanthroline- κ2N,N')cadmium(II)] dihydrate top
Crystal data top
[Cd2Cr2O8(C12H8N2)4]·2H2OF(000) = 1208
Mr = 1213.65Dx = 1.805 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.2303 (13) ÅCell parameters from 1518 reflections
b = 13.6892 (16) Åθ = 2.3–25.0°
c = 14.5352 (19) ŵ = 1.48 mm1
β = 91.928 (1)°T = 298 K
V = 2233.3 (5) Å3Prism, yellow
Z = 20.13 × 0.08 × 0.05 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3922 independent reflections
Radiation source: fine-focus sealed tube2145 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.096
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 139
Tmin = 0.830, Tmax = 0.930k = 1614
11590 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H-atom parameters constrained
S = 0.86 w = 1/[σ2(Fo2) + (0.0001P)2]
where P = (Fo2 + 2Fc2)/3
3922 reflections(Δ/σ)max = 0.001
316 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
[Cd2Cr2O8(C12H8N2)4]·2H2OV = 2233.3 (5) Å3
Mr = 1213.65Z = 2
Monoclinic, P21/nMo Kα radiation
a = 11.2303 (13) ŵ = 1.48 mm1
b = 13.6892 (16) ÅT = 298 K
c = 14.5352 (19) Å0.13 × 0.08 × 0.05 mm
β = 91.928 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3922 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
2145 reflections with I > 2σ(I)
Tmin = 0.830, Tmax = 0.930Rint = 0.096
11590 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.065H-atom parameters constrained
S = 0.86Δρmax = 0.50 e Å3
3922 reflectionsΔρmin = 0.52 e Å3
316 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.54305 (4)0.67292 (3)0.58619 (3)0.03350 (14)
N10.5517 (4)0.7535 (3)0.7310 (3)0.0336 (13)
N20.7407 (4)0.6723 (3)0.6487 (3)0.0345 (12)
N30.6012 (5)0.8015 (3)0.4851 (4)0.0439 (15)
N40.3768 (4)0.7747 (3)0.5434 (3)0.0359 (13)
O10.6078 (4)0.5715 (3)0.4790 (3)0.0484 (13)
O20.4197 (3)0.5701 (3)0.6521 (3)0.0407 (12)
O30.7995 (3)0.4755 (3)0.4225 (3)0.0453 (12)
O40.6869 (3)0.5992 (3)0.3082 (3)0.0482 (12)
O50.9994 (4)1.0021 (3)1.3274 (3)0.0759 (16)
H5A0.99900.96051.28400.091*
H5B0.95051.04711.31170.091*
Cr10.66961 (8)0.51967 (7)0.38910 (7)0.0325 (3)
C10.4611 (5)0.7872 (4)0.7770 (4)0.0391 (17)
H10.38480.76890.75700.047*
C20.4718 (6)0.8482 (4)0.8532 (4)0.0436 (18)
H20.40430.87060.88190.052*
C30.5821 (6)0.8746 (4)0.8852 (4)0.0431 (18)
H30.59070.91430.93680.052*
C40.6834 (5)0.8415 (4)0.8399 (4)0.0341 (15)
C50.6630 (5)0.7787 (4)0.7641 (4)0.0276 (15)
C60.7639 (5)0.7354 (4)0.7186 (4)0.0276 (15)
C70.8814 (6)0.7601 (4)0.7509 (4)0.0346 (16)
C80.9753 (6)0.7126 (4)0.7098 (4)0.0429 (18)
H81.05330.72640.72890.051*
C90.9533 (6)0.6458 (4)0.6413 (5)0.049 (2)
H91.01540.61190.61520.059*
C100.8346 (6)0.6298 (4)0.6116 (4)0.0391 (17)
H100.82060.58690.56290.047*
C110.8043 (6)0.8687 (4)0.8675 (4)0.0435 (18)
H110.81770.91340.91490.052*
C120.8964 (5)0.8294 (5)0.8249 (4)0.0423 (16)
H120.97320.84750.84370.051*
C130.7115 (6)0.8143 (5)0.4542 (4)0.053 (2)
H130.77230.77380.47660.063*
C140.7391 (7)0.8865 (5)0.3892 (5)0.060 (2)
H140.81680.89320.37000.072*
C150.6527 (6)0.9458 (5)0.3549 (5)0.052 (2)
H150.67050.99340.31190.063*
C160.5359 (6)0.9354 (5)0.3845 (4)0.0423 (18)
C170.5154 (6)0.8613 (4)0.4499 (4)0.0380 (17)
C180.3954 (5)0.8468 (4)0.4803 (4)0.0306 (15)
C190.3029 (6)0.9051 (4)0.4452 (4)0.0396 (18)
C200.1869 (6)0.8889 (5)0.4757 (4)0.050 (2)
H200.12340.92700.45400.060*
C210.1692 (5)0.8152 (5)0.5387 (5)0.0480 (18)
H210.09350.80250.55980.058*
C220.2666 (6)0.7604 (5)0.5700 (4)0.0460 (19)
H220.25350.71070.61220.055*
C230.4397 (7)0.9928 (5)0.3503 (5)0.054 (2)
H230.45401.04120.30710.065*
C240.3285 (6)0.9795 (5)0.3783 (4)0.053 (2)
H240.26711.01850.35440.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0289 (2)0.0347 (3)0.0369 (3)0.0001 (3)0.0019 (2)0.0027 (3)
N10.021 (3)0.046 (3)0.034 (3)0.003 (3)0.003 (3)0.002 (3)
N20.037 (3)0.032 (3)0.034 (3)0.011 (3)0.002 (3)0.008 (3)
N30.039 (3)0.041 (4)0.053 (4)0.005 (3)0.011 (3)0.003 (3)
N40.035 (3)0.034 (3)0.039 (4)0.002 (3)0.000 (3)0.008 (3)
O10.044 (3)0.051 (3)0.050 (3)0.002 (2)0.007 (2)0.018 (2)
O20.043 (3)0.037 (3)0.043 (3)0.015 (2)0.003 (2)0.005 (2)
O30.027 (3)0.052 (3)0.057 (3)0.010 (2)0.003 (2)0.004 (2)
O40.042 (3)0.049 (3)0.054 (3)0.004 (2)0.003 (2)0.019 (2)
O50.079 (4)0.088 (4)0.059 (4)0.000 (3)0.019 (3)0.011 (3)
Cr10.0274 (6)0.0340 (6)0.0361 (7)0.0011 (5)0.0021 (5)0.0003 (5)
C10.030 (4)0.039 (4)0.048 (5)0.000 (3)0.005 (4)0.005 (3)
C20.044 (4)0.042 (5)0.046 (5)0.009 (4)0.006 (4)0.008 (3)
C30.059 (5)0.037 (4)0.033 (4)0.008 (4)0.001 (4)0.012 (3)
C40.044 (4)0.025 (4)0.033 (4)0.002 (3)0.001 (3)0.002 (3)
C50.034 (4)0.021 (3)0.028 (4)0.002 (3)0.002 (3)0.002 (3)
C60.026 (4)0.030 (4)0.027 (4)0.008 (3)0.002 (3)0.004 (3)
C70.032 (4)0.039 (4)0.033 (4)0.001 (3)0.002 (3)0.002 (3)
C80.029 (4)0.053 (5)0.047 (5)0.005 (4)0.001 (4)0.012 (4)
C90.035 (4)0.052 (5)0.061 (5)0.007 (4)0.017 (4)0.009 (4)
C100.041 (4)0.044 (4)0.033 (4)0.001 (4)0.009 (4)0.001 (3)
C110.050 (5)0.043 (4)0.037 (4)0.017 (4)0.009 (4)0.008 (3)
C120.033 (4)0.051 (4)0.042 (4)0.008 (4)0.010 (3)0.011 (4)
C130.048 (5)0.045 (5)0.067 (5)0.003 (4)0.017 (4)0.004 (4)
C140.051 (5)0.064 (6)0.067 (6)0.017 (5)0.023 (5)0.009 (4)
C150.063 (5)0.039 (5)0.055 (5)0.003 (4)0.014 (5)0.004 (4)
C160.057 (5)0.038 (4)0.033 (4)0.008 (4)0.009 (4)0.001 (3)
C170.038 (4)0.036 (4)0.039 (4)0.003 (4)0.005 (4)0.006 (3)
C180.037 (4)0.022 (4)0.033 (4)0.004 (3)0.001 (3)0.003 (3)
C190.048 (5)0.032 (4)0.039 (5)0.003 (4)0.000 (4)0.001 (3)
C200.048 (5)0.049 (5)0.053 (5)0.018 (4)0.004 (4)0.005 (4)
C210.032 (4)0.049 (5)0.063 (5)0.002 (4)0.005 (4)0.007 (4)
C220.046 (5)0.052 (5)0.040 (5)0.004 (4)0.008 (4)0.003 (4)
C230.075 (6)0.040 (5)0.049 (5)0.005 (5)0.008 (5)0.015 (4)
C240.060 (5)0.050 (5)0.048 (5)0.004 (4)0.006 (4)0.009 (4)
Geometric parameters (Å, º) top
Cd1—O22.215 (4)C7—C81.390 (7)
Cd1—O12.226 (4)C7—C121.440 (8)
Cd1—N22.370 (5)C8—C91.367 (8)
Cd1—N12.376 (5)C8—H80.9300
Cd1—N42.394 (5)C9—C101.405 (8)
Cd1—N32.397 (5)C9—H90.9300
N1—C11.319 (6)C10—H100.9300
N1—C51.369 (7)C11—C121.336 (7)
N2—C101.334 (6)C11—H110.9300
N2—C61.353 (6)C12—H120.9300
N3—C131.344 (7)C13—C141.408 (8)
N3—C171.352 (7)C13—H130.9300
N4—C221.324 (7)C14—C151.348 (8)
N4—C181.369 (6)C14—H140.9300
O1—Cr11.660 (4)C15—C161.401 (8)
O2—Cr1i1.683 (4)C15—H150.9300
O3—Cr11.638 (4)C16—C231.412 (9)
O4—Cr11.619 (4)C16—C171.415 (8)
O5—H5A0.8501C17—C181.445 (7)
O5—H5B0.8500C18—C191.394 (8)
Cr1—O2i1.683 (4)C19—C201.408 (8)
C1—C21.388 (7)C19—C241.442 (8)
C1—H10.9300C20—C211.381 (7)
C2—C31.357 (8)C20—H200.9300
C2—H20.9300C21—C221.390 (8)
C3—C41.408 (7)C21—H210.9300
C3—H30.9300C22—H220.9300
C4—C51.410 (7)C23—C241.339 (8)
C4—C111.452 (8)C23—H230.9300
C5—C61.456 (7)C24—H240.9300
C6—C71.426 (8)
O2—Cd1—O197.47 (13)C8—C7—C6117.1 (6)
O2—Cd1—N2115.01 (15)C8—C7—C12123.9 (6)
O1—Cd1—N286.70 (15)C6—C7—C12119.0 (5)
O2—Cd1—N185.37 (15)C9—C8—C7120.3 (6)
O1—Cd1—N1154.79 (16)C9—C8—H8119.9
N2—Cd1—N169.64 (15)C7—C8—H8119.9
O2—Cd1—N489.34 (15)C8—C9—C10118.3 (6)
O1—Cd1—N4116.81 (16)C8—C9—H9120.9
N2—Cd1—N4144.46 (17)C10—C9—H9120.9
N1—Cd1—N488.19 (16)N2—C10—C9124.3 (6)
O2—Cd1—N3156.75 (17)N2—C10—H10117.9
O1—Cd1—N385.81 (15)C9—C10—H10117.9
N2—Cd1—N388.10 (17)C12—C11—C4120.0 (6)
N1—Cd1—N3101.44 (17)C12—C11—H11120.0
N4—Cd1—N368.90 (17)C4—C11—H11120.0
C1—N1—C5116.4 (5)C11—C12—C7122.6 (6)
C1—N1—Cd1127.0 (4)C11—C12—H12118.7
C5—N1—Cd1116.0 (4)C7—C12—H12118.7
C10—N2—C6116.6 (5)N3—C13—C14122.8 (6)
C10—N2—Cd1126.1 (4)N3—C13—H13118.6
C6—N2—Cd1116.1 (4)C14—C13—H13118.6
C13—N3—C17116.6 (5)C15—C14—C13119.9 (7)
C13—N3—Cd1125.1 (5)C15—C14—H14120.0
C17—N3—Cd1118.1 (4)C13—C14—H14120.0
C22—N4—C18117.9 (5)C14—C15—C16119.7 (7)
C22—N4—Cd1124.5 (4)C14—C15—H15120.2
C18—N4—Cd1117.3 (4)C16—C15—H15120.2
Cr1—O1—Cd1166.5 (2)C15—C16—C23123.3 (6)
Cr1i—O2—Cd1133.1 (2)C15—C16—C17117.0 (7)
H5A—O5—H5B107.4C23—C16—C17119.7 (6)
O4—Cr1—O3109.6 (2)N3—C17—C16124.0 (6)
O4—Cr1—O1110.4 (2)N3—C17—C18117.5 (6)
O3—Cr1—O1108.4 (2)C16—C17—C18118.5 (6)
O4—Cr1—O2i108.5 (2)N4—C18—C19122.0 (5)
O3—Cr1—O2i110.5 (2)N4—C18—C17117.9 (6)
O1—Cr1—O2i109.40 (18)C19—C18—C17120.1 (6)
N1—C1—C2124.5 (6)C18—C19—C20118.7 (6)
N1—C1—H1117.7C18—C19—C24119.2 (6)
C2—C1—H1117.7C20—C19—C24122.1 (7)
C3—C2—C1119.1 (6)C21—C20—C19118.6 (6)
C3—C2—H2120.4C21—C20—H20120.7
C1—C2—H2120.4C19—C20—H20120.7
C2—C3—C4119.7 (6)C20—C21—C22118.9 (6)
C2—C3—H3120.1C20—C21—H21120.6
C4—C3—H3120.1C22—C21—H21120.6
C3—C4—C5116.7 (6)N4—C22—C21123.9 (6)
C3—C4—C11123.4 (6)N4—C22—H22118.1
C5—C4—C11119.9 (5)C21—C22—H22118.1
N1—C5—C4123.4 (5)C24—C23—C16121.8 (6)
N1—C5—C6117.0 (5)C24—C23—H23119.1
C4—C5—C6119.6 (6)C16—C23—H23119.1
N2—C6—C7123.4 (5)C23—C24—C19120.7 (7)
N2—C6—C5117.9 (5)C23—C24—H24119.7
C7—C6—C5118.7 (5)C19—C24—H24119.7
O2—Cd1—N1—C155.4 (5)C11—C4—C5—N1176.7 (5)
O1—Cd1—N1—C1153.1 (4)C3—C4—C5—C6175.1 (5)
N2—Cd1—N1—C1174.2 (5)C11—C4—C5—C64.8 (9)
N4—Cd1—N1—C134.1 (5)C10—N2—C6—C72.1 (8)
N3—Cd1—N1—C1102.1 (5)Cd1—N2—C6—C7166.0 (5)
O2—Cd1—N1—C5133.8 (4)C10—N2—C6—C5176.5 (5)
O1—Cd1—N1—C536.1 (6)Cd1—N2—C6—C515.3 (6)
N2—Cd1—N1—C515.0 (4)N1—C5—C6—N21.5 (8)
N4—Cd1—N1—C5136.7 (4)C4—C5—C6—N2177.2 (5)
N3—Cd1—N1—C568.6 (4)N1—C5—C6—C7179.8 (5)
O2—Cd1—N2—C10102.9 (4)C4—C5—C6—C71.5 (8)
O1—Cd1—N2—C106.2 (5)N2—C6—C7—C82.7 (9)
N1—Cd1—N2—C10177.3 (5)C5—C6—C7—C8175.9 (5)
N4—Cd1—N2—C10127.9 (4)N2—C6—C7—C12179.1 (5)
N3—Cd1—N2—C1079.7 (5)C5—C6—C7—C122.3 (9)
O2—Cd1—N2—C690.2 (4)C6—C7—C8—C90.2 (9)
O1—Cd1—N2—C6173.1 (4)C12—C7—C8—C9178.3 (6)
N1—Cd1—N2—C615.8 (4)C7—C8—C9—C102.6 (9)
N4—Cd1—N2—C638.9 (5)C6—N2—C10—C90.9 (9)
N3—Cd1—N2—C687.2 (4)Cd1—N2—C10—C9167.7 (5)
O2—Cd1—N3—C13156.8 (4)C8—C9—C10—N23.3 (10)
O1—Cd1—N3—C1357.6 (5)C3—C4—C11—C12175.7 (6)
N2—Cd1—N3—C1329.2 (5)C5—C4—C11—C124.2 (9)
N1—Cd1—N3—C1398.0 (5)C4—C11—C12—C70.3 (10)
N4—Cd1—N3—C13178.5 (5)C8—C7—C12—C11175.1 (6)
O2—Cd1—N3—C1717.3 (7)C6—C7—C12—C113.0 (10)
O1—Cd1—N3—C17116.5 (5)C17—N3—C13—C140.7 (10)
N2—Cd1—N3—C17156.7 (5)Cd1—N3—C13—C14174.9 (5)
N1—Cd1—N3—C1787.9 (5)N3—C13—C14—C150.5 (11)
N4—Cd1—N3—C174.4 (4)C13—C14—C15—C160.2 (11)
O2—Cd1—N4—C226.7 (5)C14—C15—C16—C23178.3 (7)
O1—Cd1—N4—C22104.8 (5)C14—C15—C16—C170.2 (10)
N2—Cd1—N4—C22128.6 (5)C13—N3—C17—C160.7 (9)
N1—Cd1—N4—C2278.7 (5)Cd1—N3—C17—C16175.3 (5)
N3—Cd1—N4—C22178.3 (5)C13—N3—C17—C18178.2 (5)
O2—Cd1—N4—C18166.9 (4)Cd1—N3—C17—C183.6 (7)
O1—Cd1—N4—C1868.8 (4)C15—C16—C17—N30.4 (10)
N2—Cd1—N4—C1857.8 (5)C23—C16—C17—N3178.6 (6)
N1—Cd1—N4—C18107.8 (4)C15—C16—C17—C18178.5 (6)
N3—Cd1—N4—C184.8 (4)C23—C16—C17—C180.3 (9)
O2—Cd1—O1—Cr1168.8 (11)C22—N4—C18—C190.9 (9)
N2—Cd1—O1—Cr176.4 (11)Cd1—N4—C18—C19174.9 (4)
N1—Cd1—O1—Cr196.2 (12)C22—N4—C18—C17178.9 (5)
N4—Cd1—O1—Cr175.7 (11)Cd1—N4—C18—C174.9 (7)
N3—Cd1—O1—Cr111.9 (11)N3—C17—C18—N40.8 (8)
O1—Cd1—O2—Cr1i35.6 (3)C16—C17—C18—N4179.8 (5)
N2—Cd1—O2—Cr1i125.5 (3)N3—C17—C18—C19178.9 (6)
N1—Cd1—O2—Cr1i169.6 (3)C16—C17—C18—C190.1 (9)
N4—Cd1—O2—Cr1i81.3 (3)N4—C18—C19—C200.1 (9)
N3—Cd1—O2—Cr1i61.2 (5)C17—C18—C19—C20179.7 (5)
Cd1—O1—Cr1—O424.0 (12)N4—C18—C19—C24179.6 (5)
Cd1—O1—Cr1—O396.1 (11)C17—C18—C19—C240.2 (9)
Cd1—O1—Cr1—O2i143.3 (11)C18—C19—C20—C210.6 (9)
C5—N1—C1—C22.4 (9)C24—C19—C20—C21178.9 (6)
Cd1—N1—C1—C2168.3 (4)C19—C20—C21—C220.4 (10)
N1—C1—C2—C31.4 (10)C18—N4—C22—C211.0 (10)
C1—C2—C3—C41.2 (10)Cd1—N4—C22—C21174.6 (5)
C2—C3—C4—C52.2 (9)C20—C21—C22—N40.4 (11)
C2—C3—C4—C11177.9 (6)C15—C16—C23—C24178.3 (7)
C1—N1—C5—C43.5 (8)C17—C16—C23—C240.2 (11)
Cd1—N1—C5—C4168.3 (4)C16—C23—C24—C190.0 (11)
C1—N1—C5—C6175.1 (5)C18—C19—C24—C230.2 (10)
Cd1—N1—C5—C613.1 (6)C20—C19—C24—C23179.7 (6)
C3—C4—C5—N13.4 (9)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O2ii0.852.132.849 (6)142
O5—H5B···O4iii0.852.403.122 (6)144
C2—H2···O3iv0.932.493.274 (7)142
C3—H3···O3iii0.932.503.352 (8)153
C9—H9···O3v0.932.483.391 (7)168
C10—H10···O30.932.553.478 (7)175
C12—H12···O4ii0.932.583.423 (7)151
C20—H20···O5vi0.932.493.344 (8)152
C8—H8···Cg2ii0.933.073.638 (7)113
C12—H12···Cg3ii0.933.033.277 (7)95
C23—H23···Cg1vii0.932.613.509 (7)164
Symmetry codes: (ii) x+1/2, y+3/2, z+1/2; (iii) x+3/2, y+1/2, z+3/2; (iv) x1/2, y+3/2, z+1/2; (v) x+2, y+1, z+1; (vi) x1, y, z1; (vii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Cd2Cr2O8(C12H8N2)4]·2H2O
Mr1213.65
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)11.2303 (13), 13.6892 (16), 14.5352 (19)
β (°) 91.928 (1)
V3)2233.3 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.48
Crystal size (mm)0.13 × 0.08 × 0.05
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.830, 0.930
No. of measured, independent and
observed [I > 2σ(I)] reflections
11590, 3922, 2145
Rint0.096
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.065, 0.86
No. of reflections3922
No. of parameters316
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.52

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cd1—O22.215 (4)Cd1—N32.397 (5)
Cd1—O12.226 (4)O1—Cr11.660 (4)
Cd1—N22.370 (5)O2—Cr1i1.683 (4)
Cd1—N12.376 (5)O3—Cr11.638 (4)
Cd1—N42.394 (5)O4—Cr11.619 (4)
Cr1—O1—Cd1166.5 (2)Cr1i—O2—Cd1133.1 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O2ii0.852.132.849 (6)142.3
O5—H5B···O4iii0.852.403.122 (6)143.5
C2—H2···O3iv0.932.493.274 (7)141.6
C3—H3···O3iii0.932.503.352 (8)153.2
C9—H9···O3v0.932.483.391 (7)168.2
C10—H10···O30.932.553.478 (7)174.7
C12—H12···O4ii0.932.583.423 (7)151.3
C20—H20···O5vi0.932.493.344 (8)152.3
C23—H23···Cg1vii0.932.613.509 (7)164.0
Symmetry codes: (ii) x+1/2, y+3/2, z+1/2; (iii) x+3/2, y+1/2, z+3/2; (iv) x1/2, y+3/2, z+1/2; (v) x+2, y+1, z+1; (vi) x1, y, z1; (vii) x+1, y+2, z+1.
 

References

First citationBruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChaudhuri, P., Winter, M., Wieghardt, K., Gehring, S., Haase, W., Nuber, B. & Weiss, J. (1988). Inorg. Chem. 27, 1564–1569.  CSD CrossRef CAS Web of Science Google Scholar
First citationCostisor, O., Mereiter, K., Julve, M., Lloret, F., Journaux, Y., Linert, W. & Andruh, M. (2001). Inorg. Chim. Acta, 324, 352–358.  Web of Science CSD CrossRef CAS Google Scholar
First citationDai, J. C., Wu, X. T., Fu, Z. Y., Cui, C. P., Hu, S. M., Du, W. X., Wu, L. M., Zhang, H. H. & Sun, R. Q. (2002). Inorg. Chem. 41, 1391–1396.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLarsen, F. K., McInnes, E. J., Mlkami, H. E., Overgaard, J., Piligkos, S., Rajaraman, G., Rentschler, E., Smith, A. A., Smith, G. M., Boote, V., Jennings, M., Timco, G. A. & Winpenny, R. E. P. (2003). Angew. Chem. Int. Ed. 42, 101–105.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTimco, G. A., Batsanov, A. S., Larsen, F. K., Muryn, C. A., Overgaard, J., Teat, S. J. & Winpenny, R. E. P. (2005). Chem. Commun. pp. 3649–3651.  Web of Science CSD CrossRef Google Scholar
First citationYoshikawa, H., Nishikiori, S., Watanabe, T., Ishida, T., Watanabe, G., Murakami, M., Suwinska, K., Luboradzki, R. & Lipkowski, J. (2002). J. Chem. Soc. Dalton Trans. pp. 1907–1917.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages m392-m393
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds