organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Methyl­sulfanyl-5-phenyl-4H-1,2,4-triazol-4-amine–water (6/1)

aSchool of Chemistry and Materials Science, Wenzhou University, Zhejiang Wenzhou 325027, People's Republic of China, and bZhejiang Key Laboratory of Pharmaceutical Engineering, College of Pharmaceutical Sciences, Zhejiang University of Technology, Zhejiang Hangzhou 310014, People's Republic of China
*Correspondence e-mail: lijianjun@zjut.edu.cn

(Received 30 October 2008; accepted 5 December 2008; online 6 March 2009)

In the title compound, 6C9H10N4S·H2O, the dihedral angle between the five-membered triazole ring and the phenyl ring is 44.33 (16)°. The solvent water molecule is disordered about a special position with [\overline3] symmetry and its occupancy cannot be greater than 0.1667. The crystal structure is stabilized by inter­molecular N—H⋯N and C–H⋯N hydrogen bonds.

Related literature

For general background to 1,2,4-triazoles, see: Feng et al. (1992[Feng, X. M., Chen, R. & Yang, W. D. (1992). Chem. J. Chin. Univ. 13, 187-194.]); Hui et al. (2000[Hui, X. P., Zhang, L. M. & Zhang, Z. Y. (2000). J. Chin. Chem. Soc. 47, 535-541.]); Prasad et al. (1989[Prasad, A. P., Ramalingam, T. & Rao, A. B. (1989). J. Med. Chem. 24, 199-214.]); Mohan et al. (1987[Mohan, J. & Anjaneyulu, G. S. R. (1987). Pol. J. Chem. 61, 547-551.]) For related structures, see: Xiang et al. (2004[Xiang, G.-Q., Zhang, L.-X., Zhang, A.-J., Cai, X.-Q. & Hu, M.-L. (2004). Acta Cryst. E60, o2249-o2251.]); Jin et al. (2004[Jin, Z.-M., Li, L., Li, M.-C., Hu, M.-L. & Shen, L. (2004). Acta Cryst. C60, o642-o643.])

[Scheme 1]

Experimental

Crystal data
  • 6C9H10N4S·H2O

  • Mr = 1255.73

  • Hexagonal, [R \overline 3]

  • a = 23.0266 (15) Å

  • c = 10.5190 (9) Å

  • V = 4830.2 (6) Å3

  • Z = 3

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 298 K

  • 0.32 × 0.23 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.918, Tmax = 0.960

  • 8946 measured reflections

  • 2011 independent reflections

  • 1647 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.073

  • wR(F2) = 0.204

  • S = 0.99

  • 2011 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯N1i 0.86 2.30 3.127 (4) 162
N4—H4B⋯N2ii 0.86 2.21 3.060 (4) 172
C5—H5⋯N1i 0.93 2.60 3.507 (6) 167
Symmetry codes: (i) y, -x+y+1, -z+1; (ii) [-y+{\script{5\over 3}}, x-y+{\script{1\over 3}}, z+{\script{1\over 3}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

A literature survey reveals that 1,2,4-triazoles are good intermediates in the synthesis of some fused heterocycles which exhibit various biological properties, including antimicrobial (Feng et al., 1992), antibacterial and antifungal (Hui et al., 2000), anti-inflammatory (Prasad et al., 1989) and diuretic (Mohan & Anjaneyulu, 1987) activities.

The molecule of (I), Fig. 1, contains a five-membered triazole ring A(N1,N2,C3,N3,C2) with a benzene ring substituent B(C1—C6). The two rings are each essentially planar, with average deviations from planarity of 0.003 (1) and 0.004 (1) Å, respectively. The dihedral angle between the thiadiazole ring and the benzene ring is 44.33 (16)°.

The water molecule is disordered about a threefold inversion axis such that the asymmetric unit comprises one C9H10N4S molecule and a water molecule with occupancy ca 0.167

The C—N bond lengths in the molecule lie in the range 1.302 (5)–1.364 (4) Å. These are longer than a typical double C=N bond [ca 1.269 (2) Å] (Xiang et al., 2004), but shorter than a C—N single bond [ca 1.443 (4) Å] (Jin et al., 2004), indicating a degree of electron delocalization in the triazole ring.

The crystal packing in (I), Fig. 2, is stabilized by intermolecular and intramolecular N—H···N and C–H···N hydrogen bonds, Table 1.

Related literature top

For general background to 1,2,4-triazoles, see: Feng et al. (1992); Hui et al. (2000); Prasad et al. (1989); Mohan et al. (1987) For related structures, see: Xiang et al. (2004); Jin et al. (2004)

Experimental top

4-Amino-5-phenyl-2,4-dihydro[1,2,4]triazole-3-thione(0.96 g 5.0 mmol), methyl iodide(1.07 g 7.5 mmol) and sodium hydroxide(0.28 g 7.0 mmol) were dissolved in stirred dichloromethane (30 ml)and left for 2 h at room temperature. The resulting solid was filtered off and recrystallized from ethanol to give the title compound in 73% yield. Crystals suitable for X-ray analysis were obtained by slow evaporation of a ethanol solution at room temperature (m.p. 425–426 K).

Refinement top

H atoms bound to N and O atoms were found in difference Fourier maps and their distances restrainted to N—H = 0.86 (2)Å and O—H = 0.85 (2)Å with Uiso = 1.2Ueq (parent atom), respectively. All other H atoms were positioned geometrically and allowed to ride on their parent atoms at distances of Csp2—H = 0.93 Å with Uiso = 1.2 Ueq (parent atom), C(methyl)-H = 0.96 Å with Uiso = 1.5 Ueq (parent atom).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The formula unit of (I) with atom numbering, showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure, showing the infinite hydrogen-bonding network of (I) running along the a axis. Hydrogen bonds are indicated by dashed lines.
3-Methylsulfanyl-5-phenyl-4H-1,2,4-triazol-4-amine–water (6/1) top
Crystal data top
6C9H10N4S·H2ODx = 1.314 Mg m3
Mr = 1255.73Mo Kα radiation, λ = 0.71073 Å
Hexagonal, R3Cell parameters from 2375 reflections
Hall symbol: -R 3θ = 2.2–23.0°
a = 23.0266 (15) ŵ = 0.27 mm1
c = 10.5190 (9) ÅT = 298 K
V = 4830.2 (6) Å3Prism, colorless
Z = 30.32 × 0.23 × 0.15 mm
F(000) = 2004
Data collection top
Bruker SMART CCD area-detector
diffractometer
2011 independent reflections
Radiation source: fine-focus sealed tube1647 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ϕ and ω scansθmax = 25.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 2727
Tmin = 0.918, Tmax = 0.960k = 2720
8946 measured reflectionsl = 1012
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.204H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.1049P)2 + 19.9182P]
where P = (Fo2 + 2Fc2)/3
2011 reflections(Δ/σ)max < 0.001
137 parametersΔρmax = 0.70 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
6C9H10N4S·H2OZ = 3
Mr = 1255.73Mo Kα radiation
Hexagonal, R3µ = 0.27 mm1
a = 23.0266 (15) ÅT = 298 K
c = 10.5190 (9) Å0.32 × 0.23 × 0.15 mm
V = 4830.2 (6) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
2011 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1647 reflections with I > 2σ(I)
Tmin = 0.918, Tmax = 0.960Rint = 0.047
8946 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0730 restraints
wR(F2) = 0.204H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.1049P)2 + 19.9182P]
where P = (Fo2 + 2Fc2)/3
2011 reflectionsΔρmax = 0.70 e Å3
137 parametersΔρmin = 0.27 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S11.03285 (6)0.89151 (5)0.71331 (11)0.0608 (4)
O1W0.645 (2)0.348 (3)0.356 (2)0.095 (12)0.166667
H1W0.66670.33330.39670.142*0.50
H2W0.64390.37790.31020.142*0.166667
N11.08197 (15)0.83742 (16)0.5409 (3)0.0520 (8)
N21.05881 (15)0.77523 (16)0.4828 (3)0.0501 (8)
N30.98055 (13)0.76822 (14)0.6086 (3)0.0381 (7)
N40.92266 (14)0.74747 (15)0.6827 (3)0.0457 (8)
H4A0.89180.74380.63180.055*
H4B0.91360.70900.71240.055*
C11.1062 (3)0.9644 (2)0.6516 (5)0.0809 (15)
H1A1.14420.95790.65780.121*
H1B1.11461.00310.70010.121*
H1C1.09890.97090.56420.121*
C21.03399 (18)0.83096 (18)0.6157 (3)0.0433 (9)
C30.99830 (17)0.73476 (18)0.5243 (3)0.0410 (8)
C40.95704 (18)0.66410 (18)0.4868 (3)0.0427 (8)
C50.8903 (2)0.6366 (2)0.4557 (4)0.0555 (10)
H50.86950.66220.46260.067*
C60.8543 (2)0.5711 (2)0.4142 (5)0.0726 (13)
H60.80920.55260.39350.087*
C70.8845 (3)0.5333 (2)0.4034 (5)0.0783 (14)
H70.86000.48920.37460.094*
C80.9510 (3)0.5600 (2)0.4349 (5)0.0689 (13)
H80.97140.53410.42760.083*
C90.9874 (2)0.6252 (2)0.4773 (4)0.0524 (10)
H91.03220.64310.49960.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0603 (7)0.0493 (6)0.0676 (7)0.0236 (5)0.0099 (5)0.0071 (5)
O1W0.050 (15)0.09 (3)0.100 (18)0.001 (10)0.041 (12)0.015 (14)
N10.0389 (17)0.0496 (19)0.060 (2)0.0166 (15)0.0097 (15)0.0029 (15)
N20.0428 (18)0.0512 (19)0.0565 (19)0.0236 (15)0.0112 (14)0.0018 (15)
N30.0322 (14)0.0406 (16)0.0436 (16)0.0197 (13)0.0060 (12)0.0054 (12)
N40.0378 (16)0.0474 (17)0.0534 (19)0.0225 (14)0.0097 (13)0.0090 (14)
C10.079 (3)0.044 (2)0.095 (4)0.012 (2)0.013 (3)0.005 (2)
C20.0404 (19)0.0412 (19)0.048 (2)0.0203 (16)0.0030 (16)0.0040 (15)
C30.0404 (19)0.045 (2)0.0417 (19)0.0245 (16)0.0027 (15)0.0037 (15)
C40.048 (2)0.045 (2)0.0392 (19)0.0258 (17)0.0067 (15)0.0056 (15)
C50.050 (2)0.053 (2)0.069 (3)0.029 (2)0.0036 (19)0.005 (2)
C60.056 (3)0.057 (3)0.100 (4)0.025 (2)0.012 (2)0.012 (3)
C70.080 (3)0.048 (3)0.102 (4)0.028 (2)0.000 (3)0.014 (2)
C80.081 (3)0.060 (3)0.081 (3)0.047 (3)0.010 (3)0.001 (2)
C90.055 (2)0.056 (2)0.054 (2)0.033 (2)0.0063 (18)0.0038 (18)
Geometric parameters (Å, º) top
S1—C21.743 (4)N4—H4B0.8600
S1—C11.804 (5)C1—H1A0.9600
O1W—O1Wi0.88 (3)C1—H1B0.9600
O1W—O1Wii0.88 (3)C1—H1C0.9600
O1W—O1Wiii1.28 (4)C3—C41.470 (5)
O1W—O1Wiv1.28 (4)C4—C51.378 (5)
O1W—O1Wv1.55 (4)C4—C91.388 (5)
O1W—H1W0.8501C5—C61.379 (6)
O1W—H2W0.8500C5—H50.9300
N1—C21.302 (5)C6—C71.365 (7)
N1—N21.395 (5)C6—H60.9300
N2—C31.305 (5)C7—C81.375 (7)
N3—C21.352 (5)C7—H70.9300
N3—C31.364 (4)C8—C91.377 (6)
N3—N41.406 (4)C8—H80.9300
N4—H4A0.8601C9—H90.9300
C2—S1—C198.7 (2)S1—C1—H1C109.5
O1Wi—O1W—O1Wii93 (4)H1A—C1—H1C109.5
O1Wi—O1W—O1Wiii89.994 (4)H1B—C1—H1C109.5
O1Wii—O1W—O1Wiv89.995 (9)N1—C2—N3110.8 (3)
O1Wiii—O1W—O1Wiv60.000 (8)N1—C2—S1128.0 (3)
O1Wi—O1W—O1Wv55.4 (9)N3—C2—S1121.2 (3)
O1Wii—O1W—O1Wv55.4 (9)N2—C3—N3109.2 (3)
O1Wi—O1W—H1W85.0N2—C3—C4124.7 (3)
O1Wii—O1W—H1W85.0N3—C3—C4126.1 (3)
O1Wv—O1W—H1W48.2C5—C4—C9119.5 (4)
O1Wi—O1W—H2W67.8C5—C4—C3121.8 (3)
O1Wii—O1W—H2W108.1C9—C4—C3118.6 (3)
O1Wiii—O1W—H2W144.8C4—C5—C6119.9 (4)
O1Wiv—O1W—H2W110.0C4—C5—H5120.0
O1Wv—O1W—H2W117.3C6—C5—H5120.0
H1W—O1W—H2W149.9C7—C6—C5120.4 (4)
C2—N1—N2106.3 (3)C7—C6—H6119.8
C3—N2—N1108.1 (3)C5—C6—H6119.8
C2—N3—C3105.6 (3)C6—C7—C8120.1 (4)
C2—N3—N4122.3 (3)C6—C7—H7119.9
C3—N3—N4132.0 (3)C8—C7—H7119.9
N3—N4—H4A106.6C7—C8—C9120.1 (4)
N3—N4—H4B104.5C7—C8—H8120.0
H4A—N4—H4B111.3C9—C8—H8120.0
S1—C1—H1A109.5C8—C9—C4119.9 (4)
S1—C1—H1B109.5C8—C9—H9120.1
H1A—C1—H1B109.5C4—C9—H9120.1
C2—N1—N2—C30.4 (4)N4—N3—C3—C41.5 (6)
N2—N1—C2—N30.6 (4)N2—C3—C4—C5135.3 (4)
N2—N1—C2—S1179.7 (3)N3—C3—C4—C545.9 (5)
C3—N3—C2—N10.6 (4)N2—C3—C4—C941.9 (5)
N4—N3—C2—N1178.1 (3)N3—C3—C4—C9137.0 (4)
C3—N3—C2—S1179.7 (2)C9—C4—C5—C60.7 (6)
N4—N3—C2—S12.7 (5)C3—C4—C5—C6176.4 (4)
C1—S1—C2—N111.9 (4)C4—C5—C6—C70.2 (7)
C1—S1—C2—N3167.1 (3)C5—C6—C7—C80.6 (8)
N1—N2—C3—N30.1 (4)C6—C7—C8—C90.1 (8)
N1—N2—C3—C4179.1 (3)C7—C8—C9—C40.8 (7)
C2—N3—C3—N20.3 (4)C5—C4—C9—C81.2 (6)
N4—N3—C3—N2177.5 (3)C3—C4—C9—C8176.0 (4)
C2—N3—C3—C4178.7 (3)
Symmetry codes: (i) y+1/3, x+y+2/3, z+2/3; (ii) xy+1/3, x1/3, z+2/3; (iii) y+1, xy, z; (iv) x+y+1, x+1, z; (v) x+4/3, y+2/3, z+2/3.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···N1vi0.862.303.127 (4)162
N4—H4B···N2vii0.862.213.060 (4)172
C5—H5···N1vi0.932.603.507 (6)167
Symmetry codes: (vi) y, x+y+1, z+1; (vii) y+5/3, xy+1/3, z+1/3.

Experimental details

Crystal data
Chemical formula6C9H10N4S·H2O
Mr1255.73
Crystal system, space groupHexagonal, R3
Temperature (K)298
a, c (Å)23.0266 (15), 10.5190 (9)
V3)4830.2 (6)
Z3
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.32 × 0.23 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.918, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
8946, 2011, 1647
Rint0.047
(sin θ/λ)max1)0.605
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.204, 0.99
No. of reflections2011
No. of parameters137
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.1049P)2 + 19.9182P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.70, 0.27

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···N1i0.862.303.127 (4)162.4
N4—H4B···N2ii0.862.213.060 (4)171.6
C5—H5···N1i0.932.603.507 (6)166.6
Symmetry codes: (i) y, x+y+1, z+1; (ii) y+5/3, xy+1/3, z+1/3.
 

Acknowledgements

The authors thank the Opening Foundation of Zhejiang Provincial Top-Key Pharmaceutical Discipline (grant Nos. 20050603, 20050610 and 20080602) for financial support.

References

First citationBruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFeng, X. M., Chen, R. & Yang, W. D. (1992). Chem. J. Chin. Univ. 13, 187–194.  CAS Google Scholar
First citationHui, X. P., Zhang, L. M. & Zhang, Z. Y. (2000). J. Chin. Chem. Soc. 47, 535–541.  CAS Google Scholar
First citationJin, Z.-M., Li, L., Li, M.-C., Hu, M.-L. & Shen, L. (2004). Acta Cryst. C60, o642–o643.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMohan, J. & Anjaneyulu, G. S. R. (1987). Pol. J. Chem. 61, 547–551.  CAS Google Scholar
First citationPrasad, A. P., Ramalingam, T. & Rao, A. B. (1989). J. Med. Chem. 24, 199–214.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiang, G.-Q., Zhang, L.-X., Zhang, A.-J., Cai, X.-Q. & Hu, M.-L. (2004). Acta Cryst. E60, o2249–o2251.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds