organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o905-o906

3-Bromo-N′-(2-hydr­­oxy-3,5-di­iodo­benzyl­­idene)benzohydrazide monohydrate

aCollege of Chemical and Biological Engineering, Changsha University of Science and Technology, Changsha 410004, People's Republic of China, and bChangsha Chemical Industry Research Institute, Changsha 410007, People's Republic of China
*Correspondence e-mail: ningjingheng@126.com

(Received 23 March 2009; accepted 25 March 2009; online 28 March 2009)

Crystals of the title compound, C14H9BrI2N2O2·H2O, were obtained from a condensation reaction of 3-bromo­benzohydrazide with 3,5-diiodo­salicylaldehyde. The Schiff base mol­ecule assumes an E configuration with respect to the C=N bond, and the dihedral angle between the two benzene rings is 6.9 (2)°. An intra­molecular O—H⋯N hydrogen bond is observed in the Schiff base mol­ecule and may contribute to its overall near planarity. In the crystal structure, mol­ecules are linked through inter­molecular O—H⋯O and N—H⋯O hydrogen bonds, forming layers parallel to the bc plane. Short inter­molecular I⋯O contacts [2.930 (5) Å] are also found, linking the mol­ecules into zigzag chains along b.

Related literature

For the biological activity of Schiff bases, see: Bedia et al. (2006[Bedia, K.-K., Elçin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253-1261.]); Richardson & Bernhardt (1999[Richardson, D. R. & Bernhardt, P. V. (1999). J. Biol. Inorg. Chem. 4, 266-273.]); Koh et al. (1998[Koh, L. L., Kon, O. L., Loh, K. W., Long, Y. C., Ranford, J. D., Tan, A. L. C. & Tjan, Y. Y. (1998). J. Inorg. Biochem. 72, 155-162.]); Prasad et al. (2007[Prasad, C. V. C., Zheng, M., Vig, S., Bergstrom, C., Smith, D. W., Gao, Q., Yeola, S., Polson, C. T., Corsa, J. A., Guss, V. L., Loo, A., Wang, J., Sleczka, B. G., Dangler, C., Robertson, B. J., Hendrick, J. P., Roberts, S. B. & Barten, D. M. (2007). Bioorg. Med. Chem. Lett. 17, 4006-4011.]). For metal complexes of Schiff bases, see: Adams et al. (2000[Adams, H., Fenton, D. E., Minardi, G., Mura, E., Pistuddi, A. M. & Solinas, C. (2000). Inorg. Chem. Commun. 3, 24-28.]); Ainscough et al. (1998[Ainscough, E. W., Brodie, A. M., Dobbs, A. J., Ranford, J. D. & Waters, J. M. (1998). Inorg. Chim. Acta, 267, 27-38.]); Roth et al. (2007[Roth, A., Buchholz, A., Gärtner, M., Malassa, A., Görls, H., Vaughan, G. & Plass, W. (2007). Z. Anorg. Allg. Chem. 633, 2009-2018.]). For related structures, see: Fun et al. (2008[Fun, H.-K., Jebas, S. R., Sujith, K. V., Patil, P. S. & Kalluraya, B. (2008). Acta Cryst. E64, o1907-o1908.]); Butcher et al. (2007[Butcher, R. J., Jasinski, J. P., Narayana, B., Sunil, K. & Yathirajan, H. S. (2007). Acta Cryst. E63, o3652.]); Zhi & Yang (2007[Zhi, F. & Yang, Y.-L. (2007). Acta Cryst. E63, o4471.]); Ejsmont et al. (2008[Ejsmont, K., Zareef, M., Arfan, M., Bashir, S. A. & Zaleski, J. (2008). Acta Cryst. E64, o1128.]); Yathirajan et al. (2007[Yathirajan, H. S., Sarojini, B. K., Narayana, B., Sunil, K. & Bolte, M. (2007). Acta Cryst. E63, o2719.]); Narayana et al. (2007[Narayana, B., Siddaraju, B. P., Raju, C. R., Yathirajan, H. S. & Bolte, M. (2007). Acta Cryst. E63, o3522.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For short inter­molecular I⋯O contacts, see, for example: Britton (2003[Britton, D. (2003). Acta Cryst. E59, o1332-o1333.]).

[Scheme 1]

Experimental

Crystal data
  • C14H9BrI2N2O2·H2O

  • Mr = 588.96

  • Monoclinic, P 21 /c

  • a = 15.181 (3) Å

  • b = 7.611 (2) Å

  • c = 15.516 (3) Å

  • β = 110.628 (3)°

  • V = 1677.8 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.14 mm−1

  • T = 298 K

  • 0.23 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.261, Tmax = 0.293

  • 13552 measured reflections

  • 3656 independent reflections

  • 2651 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.090

  • S = 1.00

  • 3656 reflections

  • 209 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.69 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O1i 0.86 (4) 2.50 (6) 3.131 (6) 132 (6)
N2—H2⋯O3ii 0.89 (4) 2.08 (6) 2.934 (6) 162 (7)
O1—H1⋯N1 0.82 1.87 2.579 (6) 144
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases have been demonstrated to possess interesting biological activities (Bedia et al., 2006; Richardson & Bernhardt, 1999; Koh et al., 1998; Prasad et al., 2007). These compounds have been widely used as versatile ligands in coordination chemistry (Adams et al., 2000; Ainscough et al., 1998; Roth et al., 2007). Recently, the crystal structures of such compounds have been extensively reported (Fun et al., 2008; Butcher et al., 2007; Zhi & Yang, 2007). In this paper, the new title Schiff base, (I), Fig. 1, is reported.

The asymmetric unit of (I) contains a Schiff base molecule and a water molecule of crystallization. The Schiff base molecule assumes an E configuration with respect to the CN bond. The dihedral angle between the two benzene rings is 6.9 (2)°, indicating that the molecule is essentially planar. An intramolecular O—H···N hydrogen bond is observed in the Schiff base molecule and may contribute to its overall planarity. All bond lengths in (I) are within normal ranges (Allen et al., 1987) and comparable to the corresponding values in other similar compounds (Ejsmont et al., 2008; Yathirajan et al., 2007; Narayana et al., 2007).

In the crystal structure, molecules are linked through intermolecular O–H···O and N–H···O (Table 1) hydrogen bonds, forming layers parallel to the bc plane (Fig. 2). Additional short intermolecular I1···O12i contacts, 2.930 (5)Å, i = 1-x, -1/2+y, 1/2+z, are also observed linking molecules into zig-zag chains along b. Similar short I···O contacts have been reported previously (Britton, 2003).

Related literature top

For the biological activity of Schiff bases, see: Bedia et al. (2006); Richardson & Bernhardt (1999); Koh et al. (1998); Prasad et al. (2007). For metal complexes of Schiff bases, see: Adams et al. (2000); Ainscough et al. (1998); Roth et al. (2007). For related structures, see: Fun et al. (2008); Butcher et al. (2007); Zhi & Yang (2007); Ejsmont et al. (2008); Yathirajan et al. (2007); Narayana et al. (2007). For bond-length data, see: Allen et al. (1987). For short intermolecular I···O contacts, see, for example: Britton (2003).

Experimental top

3-Bromobenzohydrazide (1.0 mmol, 215.2 mg) and 3,5-diiodosalicylaldehyde (1.0 mmol, 374.9 mg) were stirred at room temperature for two hours. The filtrate was kept in air for a week to obtain yellow block-shaped crystals of (I).

Refinement top

Atoms H2, H3A and H3B were located in a difference Fourier map and refined isotropically, with the N–H, O–H, and H···H distances restrained to 0.90 (1), 0.85 (1), and 1.37 (2) Å, respectively. Other H atoms were positioned geometrically and refined using a riding model with d(C–H) = 0.93 Å, d(O–H) = 0.82 Å and Uiso = 1.2Ueq(C) and 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with 30% probability displacement ellipsoids. The intramolecular hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. Molecular packing of (I), viewed along the b axis. H atoms not involved in the interactions have been omitted for clarity. Intermolecular hydrogen bonds and short I···O contacts are shown as dashed lines.
3-Bromo-N'-(2-hydroxy-3,5-diiodobenzylidene)benzohydrazide monohydrate top
Crystal data top
C14H9BrI2N2O2·H2OF(000) = 1096
Mr = 588.96Dx = 2.331 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2004 reflections
a = 15.181 (3) Åθ = 2.6–24.5°
b = 7.611 (2) ŵ = 6.14 mm1
c = 15.516 (3) ÅT = 298 K
β = 110.628 (3)°Block, yellow
V = 1677.8 (6) Å30.23 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3656 independent reflections
Radiation source: fine-focus sealed tube2651 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
ω scansθmax = 27.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1919
Tmin = 0.261, Tmax = 0.293k = 99
13552 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0296P)2]
where P = (Fo2 + 2Fc2)/3
3656 reflections(Δ/σ)max = 0.001
209 parametersΔρmax = 0.63 e Å3
4 restraintsΔρmin = 0.69 e Å3
Crystal data top
C14H9BrI2N2O2·H2OV = 1677.8 (6) Å3
Mr = 588.96Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.181 (3) ŵ = 6.14 mm1
b = 7.611 (2) ÅT = 298 K
c = 15.516 (3) Å0.23 × 0.20 × 0.20 mm
β = 110.628 (3)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3656 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2651 reflections with I > 2σ(I)
Tmin = 0.261, Tmax = 0.293Rint = 0.059
13552 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0424 restraints
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.63 e Å3
3656 reflectionsΔρmin = 0.69 e Å3
209 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.32291 (3)0.01495 (5)0.20582 (3)0.04369 (14)
I20.14532 (3)0.04420 (6)0.49489 (3)0.04849 (15)
Br11.04870 (5)0.64844 (11)0.62538 (6)0.0699 (3)
O10.4774 (3)0.1800 (5)0.3704 (2)0.0362 (9)
H10.52120.21900.41400.054*
O20.6948 (3)0.4091 (6)0.4847 (3)0.0465 (11)
O30.4178 (4)0.0028 (7)0.7467 (3)0.0636 (14)
N10.5549 (3)0.3106 (5)0.5331 (3)0.0303 (10)
N20.6303 (3)0.3938 (6)0.5939 (3)0.0318 (10)
C10.4070 (4)0.1717 (7)0.4882 (4)0.0301 (12)
C20.4058 (4)0.1324 (6)0.3995 (3)0.0260 (11)
C30.3290 (4)0.0455 (7)0.3393 (4)0.0314 (12)
C40.2549 (4)0.0061 (7)0.3655 (4)0.0312 (13)
H40.20400.06600.32440.037*
C50.2572 (4)0.0324 (7)0.4540 (4)0.0333 (13)
C60.3317 (4)0.1209 (7)0.5138 (4)0.0325 (13)
H60.33230.14760.57240.039*
C70.4852 (4)0.2632 (7)0.5544 (4)0.0323 (13)
H70.48440.28720.61290.039*
C80.7013 (4)0.4386 (7)0.5641 (4)0.0304 (12)
C90.7872 (4)0.5200 (6)0.6326 (4)0.0301 (12)
C100.8620 (4)0.5467 (7)0.6036 (4)0.0389 (14)
H100.85760.51400.54440.047*
C110.9424 (4)0.6211 (8)0.6616 (4)0.0429 (15)
C120.9500 (4)0.6747 (9)0.7478 (5)0.0530 (17)
H121.00520.72690.78630.064*
C130.8755 (4)0.6511 (8)0.7772 (4)0.0489 (16)
H130.88020.68840.83570.059*
C140.7934 (5)0.5721 (7)0.7204 (4)0.0422 (15)
H140.74330.55430.74070.051*
H20.626 (5)0.411 (9)0.649 (2)0.080*
H3A0.414 (6)0.082 (4)0.709 (3)0.080*
H3B0.414 (5)0.097 (3)0.717 (3)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0401 (3)0.0640 (3)0.0293 (2)0.00844 (19)0.01519 (18)0.01025 (18)
I20.0423 (3)0.0602 (3)0.0522 (3)0.0090 (2)0.0281 (2)0.0014 (2)
Br10.0381 (4)0.0888 (6)0.0902 (6)0.0056 (4)0.0317 (4)0.0133 (5)
O10.029 (2)0.054 (3)0.027 (2)0.0065 (19)0.0114 (18)0.0023 (18)
O20.047 (3)0.067 (3)0.025 (2)0.009 (2)0.013 (2)0.004 (2)
O30.062 (3)0.079 (3)0.058 (3)0.014 (3)0.031 (3)0.017 (3)
N10.024 (2)0.032 (2)0.030 (3)0.0035 (19)0.003 (2)0.000 (2)
N20.026 (3)0.042 (3)0.026 (3)0.005 (2)0.007 (2)0.005 (2)
C10.027 (3)0.032 (3)0.029 (3)0.001 (2)0.008 (2)0.004 (2)
C20.028 (3)0.030 (3)0.021 (3)0.004 (2)0.009 (2)0.003 (2)
C30.037 (3)0.033 (3)0.026 (3)0.001 (3)0.012 (3)0.003 (2)
C40.025 (3)0.041 (3)0.027 (3)0.006 (2)0.009 (2)0.002 (2)
C50.030 (3)0.035 (3)0.037 (3)0.003 (2)0.014 (3)0.006 (2)
C60.035 (3)0.035 (3)0.031 (3)0.000 (2)0.015 (3)0.001 (2)
C70.033 (3)0.039 (3)0.024 (3)0.001 (3)0.010 (3)0.000 (2)
C80.030 (3)0.029 (3)0.029 (3)0.002 (2)0.006 (3)0.004 (2)
C90.028 (3)0.029 (3)0.031 (3)0.003 (2)0.008 (3)0.004 (2)
C100.039 (4)0.038 (3)0.039 (3)0.005 (3)0.013 (3)0.001 (3)
C110.032 (3)0.048 (4)0.045 (4)0.001 (3)0.009 (3)0.009 (3)
C120.031 (4)0.062 (4)0.053 (4)0.009 (3)0.000 (3)0.011 (3)
C130.048 (4)0.065 (4)0.031 (3)0.010 (3)0.011 (3)0.002 (3)
C140.046 (4)0.044 (4)0.042 (4)0.002 (3)0.022 (3)0.003 (3)
Geometric parameters (Å, º) top
I1—C32.092 (5)C4—C51.394 (7)
I2—C52.094 (6)C4—H40.9300
Br1—C111.898 (6)C5—C61.362 (7)
O1—C21.364 (6)C6—H60.9300
O1—H10.8200C7—H70.9300
O2—C81.222 (6)C8—C91.496 (7)
O3—H3A0.86 (4)C9—C101.377 (8)
O3—H3B0.84 (3)C9—C141.390 (8)
N1—C71.267 (6)C10—C111.359 (8)
N1—N21.356 (6)C10—H100.9300
N2—C81.357 (7)C11—C121.363 (9)
N2—H20.89 (4)C12—C131.373 (8)
C1—C61.390 (7)C12—H120.9300
C1—C21.403 (7)C13—C141.384 (8)
C1—C71.445 (7)C13—H130.9300
C2—C31.380 (7)C14—H140.9300
C3—C41.379 (7)
C2—O1—H1109.5N1—C7—C1120.3 (5)
H3A—O3—H3B107 (3)N1—C7—H7119.9
C7—N1—N2121.9 (5)C1—C7—H7119.9
N1—N2—C8117.2 (4)O2—C8—N2120.4 (5)
N1—N2—H2114 (5)O2—C8—C9122.2 (5)
C8—N2—H2129 (5)N2—C8—C9117.4 (5)
C6—C1—C2119.5 (5)C10—C9—C14120.0 (5)
C6—C1—C7118.9 (5)C10—C9—C8116.2 (5)
C2—C1—C7121.5 (5)C14—C9—C8123.7 (5)
O1—C2—C3119.0 (4)C11—C10—C9119.8 (6)
O1—C2—C1122.1 (5)C11—C10—H10120.1
C3—C2—C1118.8 (5)C9—C10—H10120.1
C4—C3—C2121.3 (5)C10—C11—C12121.4 (6)
C4—C3—I1118.2 (4)C10—C11—Br1120.5 (5)
C2—C3—I1120.5 (4)C12—C11—Br1118.1 (5)
C3—C4—C5119.4 (5)C11—C12—C13119.4 (6)
C3—C4—H4120.3C11—C12—H12120.3
C5—C4—H4120.3C13—C12—H12120.3
C6—C5—C4120.0 (5)C12—C13—C14120.5 (6)
C6—C5—I2120.0 (4)C12—C13—H13119.7
C4—C5—I2120.0 (4)C14—C13—H13119.7
C5—C6—C1120.9 (5)C13—C14—C9118.8 (6)
C5—C6—H6119.5C13—C14—H14120.6
C1—C6—H6119.5C9—C14—H14120.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O1i0.86 (4)2.50 (6)3.131 (6)132 (6)
N2—H2···O3ii0.89 (4)2.08 (6)2.934 (6)162 (7)
O1—H1···N10.821.872.579 (6)144
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC14H9BrI2N2O2·H2O
Mr588.96
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)15.181 (3), 7.611 (2), 15.516 (3)
β (°) 110.628 (3)
V3)1677.8 (6)
Z4
Radiation typeMo Kα
µ (mm1)6.14
Crystal size (mm)0.23 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.261, 0.293
No. of measured, independent and
observed [I > 2σ(I)] reflections
13552, 3656, 2651
Rint0.059
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.090, 1.00
No. of reflections3656
No. of parameters209
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.63, 0.69

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O1i0.86 (4)2.50 (6)3.131 (6)132 (6)
N2—H2···O3ii0.89 (4)2.08 (6)2.934 (6)162 (7)
O1—H1···N10.821.872.579 (6)144.1
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1/2, z+3/2.
 

Acknowledgements

We are grateful for financial support of this work from the Natural Science Foundation of Hunan Province, People's Republic of China (Project No. 07 J J6023).

References

First citationAdams, H., Fenton, D. E., Minardi, G., Mura, E., Pistuddi, A. M. & Solinas, C. (2000). Inorg. Chem. Commun. 3, 24–28.  Web of Science CSD CrossRef CAS Google Scholar
First citationAinscough, E. W., Brodie, A. M., Dobbs, A. J., Ranford, J. D. & Waters, J. M. (1998). Inorg. Chim. Acta, 267, 27–38.  CSD CrossRef CAS Web of Science Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBedia, K.-K., Elçin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253–1261.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBritton, D. (2003). Acta Cryst. E59, o1332–o1333.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationButcher, R. J., Jasinski, J. P., Narayana, B., Sunil, K. & Yathirajan, H. S. (2007). Acta Cryst. E63, o3652.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEjsmont, K., Zareef, M., Arfan, M., Bashir, S. A. & Zaleski, J. (2008). Acta Cryst. E64, o1128.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Jebas, S. R., Sujith, K. V., Patil, P. S. & Kalluraya, B. (2008). Acta Cryst. E64, o1907–o1908.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKoh, L. L., Kon, O. L., Loh, K. W., Long, Y. C., Ranford, J. D., Tan, A. L. C. & Tjan, Y. Y. (1998). J. Inorg. Biochem. 72, 155–162.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNarayana, B., Siddaraju, B. P., Raju, C. R., Yathirajan, H. S. & Bolte, M. (2007). Acta Cryst. E63, o3522.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPrasad, C. V. C., Zheng, M., Vig, S., Bergstrom, C., Smith, D. W., Gao, Q., Yeola, S., Polson, C. T., Corsa, J. A., Guss, V. L., Loo, A., Wang, J., Sleczka, B. G., Dangler, C., Robertson, B. J., Hendrick, J. P., Roberts, S. B. & Barten, D. M. (2007). Bioorg. Med. Chem. Lett. 17, 4006–4011.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRichardson, D. R. & Bernhardt, P. V. (1999). J. Biol. Inorg. Chem. 4, 266–273.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRoth, A., Buchholz, A., Gärtner, M., Malassa, A., Görls, H., Vaughan, G. & Plass, W. (2007). Z. Anorg. Allg. Chem. 633, 2009–2018.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYathirajan, H. S., Sarojini, B. K., Narayana, B., Sunil, K. & Bolte, M. (2007). Acta Cryst. E63, o2719.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhi, F. & Yang, Y.-L. (2007). Acta Cryst. E63, o4471.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o905-o906
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds