organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

24,4,8-Trioxa-21-aza-1,3,6(1,2)-tri­benzena-2(2,3)-bi­cyclo­[3.3.0]octa­na­cyclo­octa­phane

aPostGraduate and Research Department of Physics, Agurchand Manmull Jain College, Chennai 600 114, India, bDepartment of Physics, P. T. Lee Chengalvaraya Naicker College of Engineering and Technology, Kancheepuram 631 502, India, cPostGraduate and Research Department of Physics, RKM Vivekananda College, Chennai 600 004, India, and dDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: seshadri_pr@yahoo.com

(Received 18 February 2009; accepted 26 February 2009; online 6 March 2009)

The crystal structure of the title compound, C26H25NO3, was determined as part of an investigation of host–guest and electron donor–acceptor complexes. The oxazole and the pyrrole rings both adopt envelope conformations. The dihedral angle between the two benzene rings directly linked to the oxazole ring is 49.5 (1)°. The crystal structure is stabilized by a C—H⋯π inter­action.

Related literature

For biological properties of azomethine ylides, see: Chiacchio et al. (2003[Chiacchio, U., Corsaro, A., Iannazzo, D., Piperno, A., Pistara, V., Resifina, A., Romeo, R., Sindona, G. & Romeo, G. (2003). Tetrahedron Asymmetry, 14, 2717-2723.]). For general background, see: Diederich (1991[Diederich, F. (1991). Cyclophanes. Cambridge: Royal Society of Chemistry.]); Cram & Cram (1994[Cram, D. J. & Cram, D. M. (1994). Container Molecules and Their Guests. Cambridge: Royal Society of Chemistry.]); Morrison & Hoger (1996[Morrison, D. L. & Hoger, S. (1996). Chem. Commun. pp. 2313-2314.]); Padwa (1984[Padwa, A. (1984). Editor. 1-3-Dipolar Cycloaddition Chemistry, Vols. 1 and 2. New York: Wiley.]). For reference bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).For puckering and asymmetry parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C26H25NO3

  • Mr = 399.47

  • Monoclinic, C 2/c

  • a = 31.1942 (7) Å

  • b = 8.3992 (2) Å

  • c = 16.0323 (4) Å

  • β = 101.468 (1)°

  • V = 4116.70 (17) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.979, Tmax = 0.983

  • 22005 measured reflections

  • 5004 independent reflections

  • 2790 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.213

  • S = 1.03

  • 5004 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7ACg1i 0.97 2.94 3.827 (3) 153
Symmetry code: (i) [-x+{\script{1\over 2}}, -y-{\script{1\over 2}}, -z+1]. Cg1 is the centroid of the C1–C6 ring.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

The design and synthesis of cyclophanes possessing rigidly defined cavities and shape-persistent structures of molecular dimensions is of interest as molecular hosts in the areas of host-guest and electron donor-acceptor complexes (Diederich, 1991; Cram & Cram, 1994; Morrison & Hoger, 1996). 1,3-Dipolar cycloaddition reactions afford efficient methods for the construction of heterocyclic units in a highly regio- and stereoselective manner (Padwa, 1984). In particular, the chemistry of azomethine ylides has gained significance in recent years as it serves as an expedient route for the construction of nitrogen heterocycles. N and O heterocycles have also been shown to provide useful information about anticancer and antiviral properties (Chiacchio et al., 2003).

In the crystal structure of the title compound, the oxazole ring adopts an envelope conformation with atom C15 displaced by 0.172 (3) Å from the plane of the other ring atoms N1/O3//C14/C19. The puckering parameters (Cremer & Pople, 1975) and asymmetry parameters (Nardelli, 1983) are q2 =0.275 (2) Å, ϕ = 152.3 (5)°, ΔS(C15) = 5.7 (2)° and Δ2(C19) = 8.5 (2)°. The pyrrole ring also adopts an envelope conformation with atom C18 displaced by 0.208 (3) Å from the plane of the other ring atoms C15/C16/C17/N1. The puckering parameters (Cremer & Pople, 1975) and asymmetry parameters (Nardelli, 1983) are q2= 0.329 (3) Å, ϕ = 144.0 (6)°, ΔS(C18) = 0.9 (4)° and Δ2(C16) = 16.5 (4)°.

The conformation of the cyclophane ring O1/ C7/ C6/ C1/ C26/ O2/ C21/ C20/ C19/ C14/ C13/ C8 is described by the torsion angles in Table 1. The dihedral angle between the two benzene rings directly linked to the oxazole ring is 49.5 (1)°. The bond lengths (Allen et al., 1987) and bond angles are in agreement with the values reported in literature.

The crystal structure is stabilized by a C—H···π (C7—H7A···Cg1) interaction, where Cg1 is the centroid of the C1—C6 ring.

Related literature top

For biological properties of azomethine ylides, see: Chiacchio et al. (2003). For general background, see: Diederich (1991); Cram & Cram (1994); Morrison & Hoger (1996); Padwa (1984). For reference bond-length data, see: Allen et al. (1987). Cg1 is the centroid of the C1–C6 ring. For puckering and asymmetry parameters, see: Cremer & Pople (1975); Nardelli (1983).

Experimental top

To a solution of O,O'-coupled salicylaldehyde (bis aldehyde), using o-xylylene bromide (2 mmol) in dry acetonitrile (20 ml), was added L-proline (1 mmol) under an N2 atmosphere. The reaction was refluxed for 4 h. After completion of the reaction, the solvent was distilled off under reduced pressure and the crude product was purified by column chromatography.

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93-0.98 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing 30% probability displacement ellipsoids. Hydrogen atoms are drawn as spheres of arbitrary radius. Hydrogen atoms of the benzene rings are omitted for clarity.
24,4,8-Trioxa-21-aza-1,3,6(1,2)-tribenzena-2(2,3)- bicyclo[3.3.0]octanacyclooctaphane top
Crystal data top
C26H25NO3F(000) = 1696
Mr = 399.47Dx = 1.289 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: C2/cCell parameters from 4735 reflections
a = 31.1942 (7) Åθ = 1.3–28.2°
b = 8.3992 (2) ŵ = 0.08 mm1
c = 16.0323 (4) ÅT = 293 K
β = 101.468 (1)°Block, colourless
V = 4116.70 (17) Å30.25 × 0.20 × 0.20 mm
Z = 8
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
5004 independent reflections
Radiation source: fine-focus sealed tube2790 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 28.2°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 4041
Tmin = 0.979, Tmax = 0.983k = 1110
22005 measured reflectionsl = 2021
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.213H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.1118P)2 + 1.2039P]
where P = (Fo2 + 2Fc2)/3
5004 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C26H25NO3V = 4116.70 (17) Å3
Mr = 399.47Z = 8
Monoclinic, C2/cMo Kα radiation
a = 31.1942 (7) ŵ = 0.08 mm1
b = 8.3992 (2) ÅT = 293 K
c = 16.0323 (4) Å0.25 × 0.20 × 0.20 mm
β = 101.468 (1)°
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
5004 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
2790 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.983Rint = 0.029
22005 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.213H-atom parameters constrained
S = 1.03Δρmax = 0.40 e Å3
5004 reflectionsΔρmin = 0.22 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.20831 (5)1.12120 (17)0.44961 (9)0.0625 (4)
O20.14559 (5)0.87432 (17)0.35663 (10)0.0594 (4)
O30.11764 (7)1.3961 (2)0.32924 (11)0.0843 (6)
N10.06599 (6)1.2386 (2)0.24650 (12)0.0645 (5)
C10.21940 (7)0.7919 (3)0.37217 (15)0.0599 (6)
C20.22911 (10)0.7010 (3)0.30588 (17)0.0781 (8)
H20.20900.62620.27940.094*
C30.26785 (11)0.7196 (4)0.27879 (19)0.0905 (9)
H30.27390.65770.23450.109*
C40.29724 (11)0.8295 (4)0.3174 (2)0.0923 (9)
H40.32360.84190.29930.111*
C50.28860 (8)0.9222 (3)0.38261 (18)0.0752 (7)
H50.30900.99710.40810.090*
C60.24927 (8)0.9047 (3)0.41087 (15)0.0607 (6)
C70.24064 (8)1.0041 (3)0.48294 (15)0.0668 (6)
H7A0.23020.93760.52420.080*
H7B0.26741.05600.51120.080*
C80.17635 (7)1.1527 (2)0.49412 (13)0.0527 (5)
C90.18214 (9)1.1313 (3)0.58168 (14)0.0665 (6)
H90.20891.09640.61250.080*
C100.14848 (10)1.1616 (3)0.62241 (16)0.0745 (7)
H100.15231.14560.68080.089*
C110.10922 (10)1.2155 (3)0.57754 (17)0.0774 (7)
H110.08621.23430.60520.093*
C120.10395 (8)1.2421 (3)0.49096 (16)0.0704 (7)
H120.07741.28160.46120.084*
C130.13715 (7)1.2113 (2)0.44787 (13)0.0525 (5)
C140.13172 (7)1.2381 (3)0.35333 (14)0.0563 (5)
H140.16031.22240.33810.068*
C150.07270 (10)1.3900 (3)0.28885 (17)0.0798 (8)
H150.05381.40130.33060.096*
C160.06289 (13)1.5177 (4)0.22115 (19)0.1011 (10)
H16A0.03881.58450.23010.121*
H16B0.08841.58400.22130.121*
C170.05085 (14)1.4273 (4)0.1393 (2)0.1170 (12)
H17A0.01931.42200.12090.140*
H17B0.06311.47820.09500.140*
C180.06941 (10)1.2667 (3)0.15755 (16)0.0816 (8)
H18A0.05281.18820.12010.098*
H18B0.09971.26310.15110.098*
C190.09799 (7)1.1284 (2)0.29399 (13)0.0525 (5)
H190.11331.07700.25340.063*
C200.07809 (7)0.9999 (3)0.33905 (12)0.0519 (5)
C210.10425 (7)0.8702 (2)0.37255 (13)0.0540 (5)
C220.08812 (9)0.7507 (3)0.41656 (16)0.0687 (7)
H220.10580.66570.43910.082*
C230.04511 (10)0.7597 (3)0.42659 (19)0.0816 (8)
H230.03380.68010.45630.098*
C240.01903 (9)0.8843 (4)0.3933 (2)0.0832 (8)
H240.00990.88860.40010.100*
C250.03556 (8)1.0033 (3)0.34981 (16)0.0698 (7)
H250.01761.08750.32730.084*
C260.17676 (7)0.7624 (3)0.39923 (16)0.0657 (6)
H26A0.16680.65480.38450.079*
H26B0.18040.77500.46040.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0701 (10)0.0589 (9)0.0583 (9)0.0164 (7)0.0121 (8)0.0064 (7)
O20.0591 (9)0.0554 (9)0.0626 (9)0.0100 (7)0.0094 (7)0.0100 (7)
O30.1190 (16)0.0529 (10)0.0703 (11)0.0025 (9)0.0067 (10)0.0091 (8)
N10.0603 (12)0.0722 (13)0.0579 (11)0.0056 (9)0.0046 (9)0.0161 (9)
C10.0632 (14)0.0525 (12)0.0595 (13)0.0157 (10)0.0015 (11)0.0063 (10)
C20.0860 (19)0.0707 (16)0.0692 (16)0.0215 (13)0.0045 (14)0.0063 (13)
C30.098 (2)0.100 (2)0.0741 (18)0.0352 (18)0.0192 (17)0.0050 (16)
C40.083 (2)0.111 (2)0.089 (2)0.0345 (18)0.0320 (17)0.0158 (19)
C50.0646 (16)0.0723 (16)0.0863 (18)0.0094 (12)0.0089 (13)0.0138 (14)
C60.0640 (14)0.0521 (12)0.0622 (14)0.0154 (10)0.0035 (11)0.0072 (10)
C70.0656 (15)0.0626 (14)0.0653 (15)0.0142 (11)0.0032 (11)0.0013 (11)
C80.0643 (13)0.0428 (11)0.0487 (11)0.0024 (9)0.0059 (10)0.0038 (8)
C90.0797 (16)0.0666 (15)0.0478 (12)0.0007 (12)0.0003 (11)0.0036 (10)
C100.104 (2)0.0747 (16)0.0452 (12)0.0122 (14)0.0145 (14)0.0080 (11)
C110.0869 (19)0.0867 (19)0.0649 (16)0.0075 (14)0.0302 (15)0.0144 (13)
C120.0687 (15)0.0807 (17)0.0619 (15)0.0058 (12)0.0136 (12)0.0048 (12)
C130.0616 (13)0.0468 (11)0.0486 (11)0.0020 (9)0.0097 (10)0.0061 (9)
C140.0621 (13)0.0550 (13)0.0502 (12)0.0010 (9)0.0074 (10)0.0041 (9)
C150.104 (2)0.0718 (17)0.0639 (15)0.0302 (14)0.0183 (15)0.0094 (12)
C160.144 (3)0.080 (2)0.0763 (19)0.0394 (18)0.0144 (18)0.0199 (16)
C170.178 (4)0.086 (2)0.078 (2)0.009 (2)0.004 (2)0.0264 (18)
C180.102 (2)0.0821 (18)0.0520 (14)0.0150 (14)0.0052 (13)0.0114 (12)
C190.0564 (12)0.0537 (12)0.0461 (11)0.0062 (9)0.0074 (9)0.0007 (9)
C200.0541 (13)0.0550 (12)0.0445 (11)0.0000 (9)0.0046 (9)0.0044 (9)
C210.0617 (13)0.0503 (12)0.0473 (11)0.0052 (9)0.0044 (9)0.0047 (9)
C220.0781 (17)0.0597 (14)0.0647 (15)0.0086 (11)0.0053 (12)0.0034 (11)
C230.092 (2)0.0769 (18)0.0759 (18)0.0253 (15)0.0164 (15)0.0091 (14)
C240.0637 (16)0.094 (2)0.093 (2)0.0116 (14)0.0185 (14)0.0062 (16)
C250.0621 (15)0.0729 (16)0.0733 (16)0.0012 (11)0.0109 (12)0.0062 (12)
C260.0678 (15)0.0525 (13)0.0717 (15)0.0072 (10)0.0019 (12)0.0098 (11)
Geometric parameters (Å, º) top
O1—C81.362 (2)C11—H110.9300
O1—C71.433 (2)C12—C131.379 (3)
O2—C211.364 (3)C12—H120.9300
O2—C261.425 (2)C13—C141.508 (3)
O3—C151.423 (3)C14—C191.569 (3)
O3—C141.427 (3)C14—H140.9800
N1—C151.437 (3)C15—C161.513 (4)
N1—C191.459 (3)C15—H150.9800
N1—C181.470 (3)C16—C171.498 (5)
C1—C61.386 (3)C16—H16A0.9700
C1—C21.390 (3)C16—H16B0.9700
C1—C261.500 (3)C17—C181.475 (4)
C2—C31.372 (4)C17—H17A0.9700
C2—H20.9300C17—H17B0.9700
C3—C41.360 (5)C18—H18A0.9700
C3—H30.9300C18—H18B0.9700
C4—C51.373 (4)C19—C201.501 (3)
C4—H40.9300C19—H190.9800
C5—C61.398 (3)C20—C251.372 (3)
C5—H50.9300C20—C211.402 (3)
C6—C71.493 (3)C21—C221.378 (3)
C7—H7A0.9700C22—C231.385 (4)
C7—H7B0.9700C22—H220.9300
C8—C131.388 (3)C23—C241.367 (4)
C8—C91.391 (3)C23—H230.9300
C9—C101.366 (4)C24—C251.376 (4)
C9—H90.9300C24—H240.9300
C10—C111.368 (4)C25—H250.9300
C10—H100.9300C26—H26A0.9700
C11—C121.383 (4)C26—H26B0.9700
C8—O1—C7118.15 (17)O3—C15—N1106.52 (19)
C21—O2—C26118.28 (17)O3—C15—C16110.0 (3)
C15—O3—C14108.19 (18)N1—C15—C16107.4 (2)
C15—N1—C19107.11 (18)O3—C15—H15110.9
C15—N1—C18106.54 (19)N1—C15—H15110.9
C19—N1—C18115.7 (2)C16—C15—H15110.9
C6—C1—C2119.2 (2)C17—C16—C15104.4 (3)
C6—C1—C26122.7 (2)C17—C16—H16A110.9
C2—C1—C26118.1 (2)C15—C16—H16A110.9
C3—C2—C1121.3 (3)C17—C16—H16B110.9
C3—C2—H2119.4C15—C16—H16B110.9
C1—C2—H2119.4H16A—C16—H16B108.9
C4—C3—C2119.3 (3)C18—C17—C16105.6 (2)
C4—C3—H3120.3C18—C17—H17A110.6
C2—C3—H3120.3C16—C17—H17A110.6
C3—C4—C5121.0 (3)C18—C17—H17B110.6
C3—C4—H4119.5C16—C17—H17B110.6
C5—C4—H4119.5H17A—C17—H17B108.7
C4—C5—C6120.3 (3)N1—C18—C17103.8 (2)
C4—C5—H5119.8N1—C18—H18A111.0
C6—C5—H5119.8C17—C18—H18A111.0
C1—C6—C5118.8 (2)N1—C18—H18B111.0
C1—C6—C7121.3 (2)C17—C18—H18B111.0
C5—C6—C7119.8 (2)H18A—C18—H18B109.0
O1—C7—C6108.49 (18)N1—C19—C20113.70 (17)
O1—C7—H7A110.0N1—C19—C14104.53 (17)
C6—C7—H7A110.0C20—C19—C14114.96 (17)
O1—C7—H7B110.0N1—C19—H19107.8
C6—C7—H7B110.0C20—C19—H19107.8
H7A—C7—H7B108.4C14—C19—H19107.8
O1—C8—C13116.60 (18)C25—C20—C21118.2 (2)
O1—C8—C9122.8 (2)C25—C20—C19123.3 (2)
C13—C8—C9120.6 (2)C21—C20—C19118.58 (18)
C10—C9—C8120.0 (2)O2—C21—C22124.7 (2)
C10—C9—H9120.0O2—C21—C20114.11 (18)
C8—C9—H9120.0C22—C21—C20121.2 (2)
C9—C10—C11120.2 (2)C21—C22—C23118.7 (2)
C9—C10—H10119.9C21—C22—H22120.6
C11—C10—H10119.9C23—C22—H22120.6
C10—C11—C12119.8 (2)C24—C23—C22120.8 (2)
C10—C11—H11120.1C24—C23—H23119.6
C12—C11—H11120.1C22—C23—H23119.6
C13—C12—C11121.4 (2)C23—C24—C25120.0 (3)
C13—C12—H12119.3C23—C24—H24120.0
C11—C12—H12119.3C25—C24—H24120.0
C12—C13—C8117.9 (2)C20—C25—C24121.2 (2)
C12—C13—C14122.0 (2)C20—C25—H25119.4
C8—C13—C14120.04 (19)C24—C25—H25119.4
O3—C14—C13112.20 (18)O2—C26—C1108.19 (18)
O3—C14—C19104.38 (17)O2—C26—H26A110.1
C13—C14—C19116.72 (18)C1—C26—H26A110.1
O3—C14—H14107.7O2—C26—H26B110.1
C13—C14—H14107.7C1—C26—H26B110.1
C19—C14—H14107.7H26A—C26—H26B108.4
C6—C1—C2—C30.7 (4)C19—N1—C15—C16145.9 (2)
C26—C1—C2—C3178.8 (2)C18—N1—C15—C1621.5 (3)
C1—C2—C3—C40.2 (4)O3—C15—C16—C17115.0 (3)
C2—C3—C4—C50.3 (5)N1—C15—C16—C170.5 (4)
C3—C4—C5—C60.3 (4)C15—C16—C17—C1820.5 (4)
C2—C1—C6—C50.7 (3)C15—N1—C18—C1734.3 (3)
C26—C1—C6—C5178.8 (2)C19—N1—C18—C17153.2 (2)
C2—C1—C6—C7179.3 (2)C16—C17—C18—N133.6 (4)
C26—C1—C6—C70.2 (3)C15—N1—C19—C20111.9 (2)
C4—C5—C6—C10.2 (3)C18—N1—C19—C20129.5 (2)
C4—C5—C6—C7178.9 (2)C15—N1—C19—C1414.3 (2)
C8—O1—C7—C6138.6 (2)C18—N1—C19—C14104.3 (2)
C1—C6—C7—O174.0 (3)O3—C14—C19—N14.3 (2)
C5—C6—C7—O1107.5 (2)C13—C14—C19—N1120.2 (2)
C7—O1—C8—C13154.37 (19)O3—C14—C19—C20129.65 (19)
C7—O1—C8—C926.9 (3)C13—C14—C19—C205.2 (3)
O1—C8—C9—C10178.5 (2)N1—C19—C20—C2512.9 (3)
C13—C8—C9—C102.8 (3)C14—C19—C20—C25107.6 (2)
C8—C9—C10—C111.1 (4)N1—C19—C20—C21167.67 (18)
C9—C10—C11—C121.2 (4)C14—C19—C20—C2171.9 (2)
C10—C11—C12—C131.8 (4)C26—O2—C21—C2210.6 (3)
C11—C12—C13—C80.1 (3)C26—O2—C21—C20170.11 (18)
C11—C12—C13—C14179.4 (2)C25—C20—C21—O2178.11 (19)
O1—C8—C13—C12179.08 (19)C19—C20—C21—O22.4 (3)
C9—C8—C13—C122.2 (3)C25—C20—C21—C221.2 (3)
O1—C8—C13—C140.4 (3)C19—C20—C21—C22178.2 (2)
C9—C8—C13—C14178.3 (2)O2—C21—C22—C23178.6 (2)
C15—O3—C14—C13105.7 (2)C20—C21—C22—C230.7 (3)
C15—O3—C14—C1921.6 (2)C21—C22—C23—C240.2 (4)
C12—C13—C14—O354.1 (3)C22—C23—C24—C250.5 (4)
C8—C13—C14—O3126.5 (2)C21—C20—C25—C240.9 (3)
C12—C13—C14—C1966.3 (3)C19—C20—C25—C24178.5 (2)
C8—C13—C14—C19113.2 (2)C23—C24—C25—C200.1 (4)
C14—O3—C15—N131.6 (3)C21—O2—C26—C1179.37 (17)
C14—O3—C15—C16147.6 (2)C6—C1—C26—O284.9 (3)
C19—N1—C15—O328.2 (2)C2—C1—C26—O295.5 (2)
C18—N1—C15—O396.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···Cg1i0.972.943.827 (3)153
Symmetry code: (i) x+1/2, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC26H25NO3
Mr399.47
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)31.1942 (7), 8.3992 (2), 16.0323 (4)
β (°) 101.468 (1)
V3)4116.70 (17)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.25 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.979, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
22005, 5004, 2790
Rint0.029
(sin θ/λ)max1)0.665
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.213, 1.03
No. of reflections5004
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.22

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected torsion angles (º) top
C26—C1—C6—C70.2 (3)C13—C14—C19—C205.2 (3)
C8—O1—C7—C6138.6 (2)C14—C19—C20—C2171.9 (2)
C1—C6—C7—O174.0 (3)C26—O2—C21—C20170.11 (18)
C7—O1—C8—C13154.37 (19)C19—C20—C21—O22.4 (3)
O1—C8—C13—C140.4 (3)C21—O2—C26—C1179.37 (17)
C8—C13—C14—C19113.2 (2)C6—C1—C26—O284.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···Cg1i0.972.943.827 (3)153
Symmetry code: (i) x+1/2, y1/2, z+1.
 

Acknowledgements

BB thanks Dr Babu Varghese, SAIF, IIT-Madras, India, for his help with the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChiacchio, U., Corsaro, A., Iannazzo, D., Piperno, A., Pistara, V., Resifina, A., Romeo, R., Sindona, G. & Romeo, G. (2003). Tetrahedron Asymmetry, 14, 2717–2723.  Web of Science CrossRef CAS Google Scholar
First citationCram, D. J. & Cram, D. M. (1994). Container Molecules and Their Guests. Cambridge: Royal Society of Chemistry.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDiederich, F. (1991). Cyclophanes. Cambridge: Royal Society of Chemistry.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMorrison, D. L. & Hoger, S. (1996). Chem. Commun. pp. 2313–2314.  CrossRef Web of Science Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPadwa, A. (1984). Editor. 1-3-Dipolar Cycloaddition Chemistry, Vols. 1 and 2. New York: Wiley.  Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds