organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-tert-butyl (1,1′-bi­naphthyl-2,2′-di­­oxy)di­acetate

aHEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 20 March 2009; accepted 24 March 2009; online 28 March 2009)

In the crystal structure of the title compound, C32H34O6, the mol­ecule is located on a twofold rotation axis. The two naphthyl fused-ring systems are aligned at 72.6 (1)°. Weak intermolecular C—H⋯O hydrogen bonding is present in the crystal structure.

Related literature

For the crystal structure of the parent carboxylic acid, see: Wu et al. (2007[Wu, Y.-M., Cao, G.-Q., Qian, M.-Y. & Zhu, H.-J. (2007). Acta Cryst. E63, o3446.]).

[Scheme 1]

Experimental

Crystal data
  • C32H34O6

  • Mr = 514.59

  • Monoclinic, C 2/c

  • a = 18.7604 (3) Å

  • b = 14.3204 (3) Å

  • c = 10.9997 (2) Å

  • β = 110.144 (1)°

  • V = 2774.37 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 133 K

  • 0.30 × 0.15 × 0.10 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: none

  • 12968 measured reflections

  • 3198 independent reflections

  • 2514 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.121

  • S = 1.01

  • 3198 reflections

  • 175 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O2i 0.95 2.38 3.226 (2) 149
Symmetry code: (i) [x, -y+1, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

For the crystal structure of the parent carboxylic acid, see: Wu et al. (2007).

Experimental top

Potassium carbonate (0.97 g, 7 mmol) and 1,1'-binaphthyl-2,2'-diol (0.57 mg, 2 mmol) in acetone (20 ml) were stirred for 15 minutes. tert-Butyl 2-bromoacetate (1.95 g, 10 mmol) was added and the mixture was stirred at 323 K for 2 h. The solvent was removed and the residue was dissolved in a mixture of water (50 ml) and dichloromethane (50 ml). The two phases were separated and the aqueous layer was extracted with dichloromethane. The combined organic phases were dried and the solvent evaporated. The residue was dissolved recrysstallized from dichloromethane (0.82 mg, 80% yield).

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.99 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) plot of C32H34O6 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
Di-tert-butyl (1,1'-binaphthyl-2,2'-dioxy)diacetate top
Crystal data top
C32H34O6F(000) = 1096
Mr = 514.59Dx = 1.232 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3672 reflections
a = 18.7604 (3) Åθ = 2.3–28.2°
b = 14.3204 (3) ŵ = 0.08 mm1
c = 10.9997 (2) ÅT = 133 K
β = 110.144 (1)°Block, colorless
V = 2774.37 (9) Å30.30 × 0.15 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
2514 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.035
Graphite monochromatorθmax = 27.5°, θmin = 1.8°
ω scansh = 2424
12968 measured reflectionsk = 1818
3198 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0548P)2 + 1.9389P]
where P = (Fo2 + 2Fc2)/3
3198 reflections(Δ/σ)max = 0.001
175 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C32H34O6V = 2774.37 (9) Å3
Mr = 514.59Z = 4
Monoclinic, C2/cMo Kα radiation
a = 18.7604 (3) ŵ = 0.08 mm1
b = 14.3204 (3) ÅT = 133 K
c = 10.9997 (2) Å0.30 × 0.15 × 0.10 mm
β = 110.144 (1)°
Data collection top
Bruker SMART APEX
diffractometer
2514 reflections with I > 2σ(I)
12968 measured reflectionsRint = 0.035
3198 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.01Δρmax = 0.30 e Å3
3198 reflectionsΔρmin = 0.20 e Å3
175 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.38962 (5)0.53557 (7)0.23963 (9)0.0278 (2)
O20.28361 (6)0.45195 (10)0.03634 (11)0.0531 (4)
O30.19998 (5)0.45848 (7)0.14254 (9)0.0292 (2)
C10.49788 (7)0.63074 (9)0.31656 (11)0.0219 (3)
C20.55167 (7)0.68166 (9)0.41843 (12)0.0255 (3)
C30.61052 (8)0.73495 (10)0.39965 (14)0.0326 (3)
H30.61620.73520.31710.039*
C40.65937 (10)0.78615 (12)0.49836 (16)0.0441 (4)
H40.69800.82230.48330.053*
C50.65281 (11)0.78558 (13)0.62268 (16)0.0503 (5)
H50.68690.82130.69080.060*
C60.59820 (10)0.73436 (12)0.64444 (15)0.0437 (4)
H60.59480.73360.72860.052*
C70.54571 (8)0.68154 (10)0.54431 (13)0.0314 (3)
C80.48693 (8)0.62974 (12)0.56391 (13)0.0350 (3)
H80.48330.62830.64790.042*
C90.43514 (8)0.58162 (11)0.46649 (13)0.0310 (3)
H90.39580.54740.48240.037*
C100.44042 (7)0.58301 (9)0.34153 (12)0.0242 (3)
C110.32140 (7)0.50678 (11)0.25672 (13)0.0291 (3)
H11A0.29790.56030.28570.035*
H11B0.33240.45750.32380.035*
C120.26778 (8)0.46984 (10)0.13024 (14)0.0304 (3)
C130.13800 (8)0.40721 (10)0.04369 (14)0.0315 (3)
C140.16385 (11)0.30839 (13)0.0342 (2)0.0556 (5)
H14A0.18560.28170.12130.083*
H14B0.20230.30870.00750.083*
H14C0.12040.27060.01730.083*
C150.11375 (9)0.45879 (14)0.08469 (15)0.0439 (4)
H15A0.10280.52410.07100.066*
H15B0.06810.42940.14510.066*
H15C0.15470.45620.12080.066*
C160.07523 (8)0.40965 (12)0.10104 (15)0.0394 (4)
H16A0.09300.37990.18650.059*
H16B0.03080.37600.04400.059*
H16C0.06130.47460.10970.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0218 (5)0.0396 (6)0.0254 (5)0.0038 (4)0.0123 (4)0.0006 (4)
O20.0342 (6)0.0883 (10)0.0461 (7)0.0154 (6)0.0255 (5)0.0245 (6)
O30.0220 (5)0.0364 (5)0.0321 (5)0.0025 (4)0.0131 (4)0.0021 (4)
C10.0220 (6)0.0255 (6)0.0194 (6)0.0059 (5)0.0088 (5)0.0020 (5)
C20.0265 (7)0.0256 (6)0.0225 (6)0.0064 (5)0.0062 (5)0.0007 (5)
C30.0345 (7)0.0302 (7)0.0292 (7)0.0021 (6)0.0061 (6)0.0016 (6)
C40.0416 (9)0.0373 (8)0.0456 (9)0.0091 (7)0.0050 (7)0.0067 (7)
C50.0545 (10)0.0477 (10)0.0339 (8)0.0049 (8)0.0037 (8)0.0146 (7)
C60.0508 (10)0.0487 (9)0.0261 (7)0.0031 (8)0.0060 (7)0.0089 (7)
C70.0340 (7)0.0357 (7)0.0214 (6)0.0105 (6)0.0054 (6)0.0029 (5)
C80.0367 (8)0.0513 (9)0.0199 (6)0.0129 (7)0.0134 (6)0.0035 (6)
C90.0282 (7)0.0447 (8)0.0241 (7)0.0072 (6)0.0142 (6)0.0064 (6)
C100.0218 (6)0.0310 (7)0.0213 (6)0.0062 (5)0.0094 (5)0.0035 (5)
C110.0223 (6)0.0385 (8)0.0310 (7)0.0016 (5)0.0150 (6)0.0050 (6)
C120.0249 (7)0.0345 (7)0.0359 (7)0.0004 (6)0.0157 (6)0.0007 (6)
C130.0240 (6)0.0332 (7)0.0377 (8)0.0051 (6)0.0110 (6)0.0043 (6)
C140.0443 (10)0.0366 (9)0.0848 (14)0.0032 (8)0.0207 (10)0.0131 (9)
C150.0359 (8)0.0621 (11)0.0335 (8)0.0065 (8)0.0118 (7)0.0006 (7)
C160.0262 (7)0.0516 (10)0.0419 (9)0.0063 (7)0.0138 (6)0.0024 (7)
Geometric parameters (Å, º) top
O1—C101.3749 (16)C8—C91.360 (2)
O1—C111.4174 (15)C8—H80.9500
O2—C121.1966 (17)C9—C101.4118 (17)
O3—C121.3347 (15)C9—H90.9500
O3—C131.4842 (16)C11—C121.504 (2)
C1—C101.3815 (17)C11—H11A0.9900
C1—C21.4237 (18)C11—H11B0.9900
C1—C1i1.494 (2)C13—C141.511 (2)
C2—C31.415 (2)C13—C161.5158 (19)
C2—C71.4270 (18)C13—C151.518 (2)
C3—C41.368 (2)C14—H14A0.9800
C3—H30.9500C14—H14B0.9800
C4—C51.415 (2)C14—H14C0.9800
C4—H40.9500C15—H15A0.9800
C5—C61.347 (3)C15—H15B0.9800
C5—H50.9500C15—H15C0.9800
C6—C71.417 (2)C16—H16A0.9800
C6—H60.9500C16—H16B0.9800
C7—C81.406 (2)C16—H16C0.9800
C10—O1—C11116.08 (10)O1—C11—H11A109.9
C12—O3—C13121.30 (11)C12—C11—H11A109.9
C10—C1—C2119.15 (11)O1—C11—H11B109.9
C10—C1—C1i120.24 (12)C12—C11—H11B109.9
C2—C1—C1i120.60 (12)H11A—C11—H11B108.3
C3—C2—C1122.59 (12)O2—C12—O3126.15 (14)
C3—C2—C7117.92 (13)O2—C12—C11126.00 (13)
C1—C2—C7119.47 (12)O3—C12—C11107.83 (11)
C4—C3—C2121.09 (14)O3—C13—C14108.95 (12)
C4—C3—H3119.5O3—C13—C16102.04 (11)
C2—C3—H3119.5C14—C13—C16111.35 (14)
C3—C4—C5120.45 (16)O3—C13—C15110.43 (12)
C3—C4—H4119.8C14—C13—C15113.09 (15)
C5—C4—H4119.8C16—C13—C15110.43 (13)
C6—C5—C4119.97 (15)C13—C14—H14A109.5
C6—C5—H5120.0C13—C14—H14B109.5
C4—C5—H5120.0H14A—C14—H14B109.5
C5—C6—C7121.34 (15)C13—C14—H14C109.5
C5—C6—H6119.3H14A—C14—H14C109.5
C7—C6—H6119.3H14B—C14—H14C109.5
C8—C7—C6122.29 (13)C13—C15—H15A109.5
C8—C7—C2118.50 (13)C13—C15—H15B109.5
C6—C7—C2119.20 (14)H15A—C15—H15B109.5
C9—C8—C7122.11 (12)C13—C15—H15C109.5
C9—C8—H8118.9H15A—C15—H15C109.5
C7—C8—H8118.9H15B—C15—H15C109.5
C8—C9—C10119.30 (13)C13—C16—H16A109.5
C8—C9—H9120.3C13—C16—H16B109.5
C10—C9—H9120.3H16A—C16—H16B109.5
O1—C10—C1116.85 (10)C13—C16—H16C109.5
O1—C10—C9121.70 (12)H16A—C16—H16C109.5
C1—C10—C9121.44 (12)H16B—C16—H16C109.5
O1—C11—C12109.05 (10)
C10—C1—C2—C3177.72 (12)C7—C8—C9—C100.3 (2)
C1i—C1—C2—C30.71 (18)C11—O1—C10—C1164.92 (11)
C10—C1—C2—C70.70 (18)C11—O1—C10—C916.29 (18)
C1i—C1—C2—C7179.14 (11)C2—C1—C10—O1179.49 (11)
C1—C2—C3—C4177.29 (13)C1i—C1—C10—O11.05 (16)
C7—C2—C3—C41.2 (2)C2—C1—C10—C91.72 (19)
C2—C3—C4—C51.1 (2)C1i—C1—C10—C9179.83 (11)
C3—C4—C5—C60.0 (3)C8—C9—C10—O1179.96 (12)
C4—C5—C6—C71.0 (3)C8—C9—C10—C11.2 (2)
C5—C6—C7—C8178.13 (16)C10—O1—C11—C12171.26 (11)
C5—C6—C7—C20.9 (2)C13—O3—C12—O29.7 (2)
C3—C2—C7—C8179.26 (13)C13—O3—C12—C11168.85 (11)
C1—C2—C7—C80.76 (19)O1—C11—C12—O212.1 (2)
C3—C2—C7—C60.2 (2)O1—C11—C12—O3169.43 (11)
C1—C2—C7—C6178.34 (13)C12—O3—C13—C1460.23 (17)
C6—C7—C8—C9177.77 (14)C12—O3—C13—C16178.05 (13)
C2—C7—C8—C91.3 (2)C12—O3—C13—C1564.54 (16)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O2ii0.952.383.226 (2)149
Symmetry code: (ii) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC32H34O6
Mr514.59
Crystal system, space groupMonoclinic, C2/c
Temperature (K)133
a, b, c (Å)18.7604 (3), 14.3204 (3), 10.9997 (2)
β (°) 110.144 (1)
V3)2774.37 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12968, 3198, 2514
Rint0.035
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.121, 1.01
No. of reflections3198
No. of parameters175
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.20

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O2i0.952.383.226 (2)149
Symmetry code: (i) x, y+1, z+1/2.
 

Acknowledgements

We thank the Higher Education Commission of Pakistan and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar
First citationWu, Y.-M., Cao, G.-Q., Qian, M.-Y. & Zhu, H.-J. (2007). Acta Cryst. E63, o3446.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds