organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o660-o661

4-[1-(4-Cyano­benz­yl)-1H-benzimidazol-2-yl]benzo­nitrile

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, School of Science, Payame Noor University (PNU), Ardakan, Yazd, Iran
*Correspondence e-mail: hkfun@usm.my

(Received 15 January 2009; accepted 25 February 2009; online 6 March 2009)

In the title compound, C22H14N4, a new substituted benzimidazole, three inter­molecular C—H⋯N inter­actions link neighbouring mol­ecules into different dimers with R22(12), R22(8) and R22(24) ring motifs. A fourth C—H⋯N inter­action links neighbouring mol­ecules along the c axis. There is also a short inter­molecular contact between the azomethine (C=N) segment of the benzimidazole ring and one of the C atoms of a neighbouring benzene ring [N⋯C = 3.191 (5), C⋯C = 3.364 (6) Å], which links the mol­ecules along the a axis. The two cyano­benzene rings are almost perpendicular to each other, with an inter­planar angle of 87.70 (7)°. The dihedral angles between the mean planes of the benzimidazole ring and the two outer benzene rings are 36.27 (16) and 86.70 (16)°. In the crystal structure, mol­ecules are stacked down the a axis with centroid–centroid distances of 3.906 (2)–3.912 (2) Å and inter­planar distances of 3.5040 (17) and 3.6235 (17) Å.

Related literature

For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For benzimidazole chemistry, reaction mechanisms and their bioactivity, see, for example: Latif et al. (1983[Latif, N., Mishriky, N. & F. M. Assad (1983). Recl Trav. Chim. Pays-Bas, 102, 73-77.]); Craigo et al. (1999[Craigo, W. A., LeSueur, B. W. & Skibo, E. B. (1999). J. Med. Chem. 42, 3324-3333.]); Gudmundsson et al. (2000[Gudmundsson, K. S., Tidwell, J., Lippa, N., Koszalka, G. W., van Draanen, N., Ptak, R. G., Drach, J. C. & Townsend, L. B. (2000). J. Med. Chem. 43, 2464-2472.]); Trivedi et al. (2006); Kim et al. (1996[Kim, J. S., Gatto, B., Yu, C., Liu, A., Liu, L. F. & LaVoie, E. J. (1996). J. Med. Chem. 39, 992-998.]); Ramla et al. (2006[Ramla, M. M., Omer, M. A., El-Khamry, A. M. & El-Diwani, H. I. (2006). Bioorg. Med. Chem. 14, 7324-7332.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C22H14N4

  • Mr = 334.37

  • Monoclinic, P 21 /n

  • a = 5.0553 (4) Å

  • b = 17.3437 (10) Å

  • c = 19.6339 (14) Å

  • β = 97.653 (5)°

  • V = 1706.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.45 × 0.09 × 0.04 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.965, Tmax = 0.997

  • 15641 measured reflections

  • 2906 independent reflections

  • 1490 reflections with I > 2σ(I)

  • Rint = 0.153

Refinement
  • R[F2 > 2σ(F2)] = 0.079

  • wR(F2) = 0.169

  • S = 1.07

  • 2906 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯N1i 0.93 2.62 3.425 (5) 146
C19—H19A⋯N4ii 0.93 2.57 3.502 (6) 175
C9—H9A⋯N4iii 0.93 2.71 3.361 (5) 128
C14—H14A⋯N3iv 0.97 2.57 3.502 (5) 162
Symmetry codes: (i) -x+2, -y+1, -z; (ii) -x, -y, -z; (iii) -x+1, -y, -z; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Benzimidazoles are used widely in biological applications and as pharmaceutical agents (Craigo et al., 1999; Gudmundsson et al., 2000; Trivedi et al., 2006). They are also used as topoisomerase I inhibitors (Kim et al., 1996) and for antitumor activity (Ramla et al., 2006). Due to these important applications, many synthetic routes towards benzimidazoles have been developed. They can, for example, be synthesized by the reaction of phenolic aldehydes with o-phenylenediamine (Latif et al., 1983). Based on this route the title compound was synthesized and its crystal structure is reported here.

The title compound, Fig.1, comprises a single molecule in the asymmetric unit. Three intermolecular C—H···N interactions link neighbouring molecules into different dimers with R22(12), R22(8) and R22(24) ring motifs (Bernstein et al., 1995). A fourth C—H···N interaction links neighbouring molecules along the c axis. The two cyanobenzene rings are almost perpendicular to each other, with an interplanar angle of 87.70 (7)°. The dihedral angles between the the mean planes of the benzimidazole ring and the two outer benzene rings are 36.27 (16) and 86.70 (16)°. There is also a short intermolecular contact between the azomethine (C1N1) segment of the benzimidazole ring and one of the carbon atoms (C13) of the neighbouring benzene rings which links the molecules along the a axis (N1···C13v = 3.191 (5) C1···C13v = 3.364 (6), symmetry code: (v) x-1, y, z). In the crystal structure, the molecules are stacked down the a axis with centroid to centroid distances of 3.906 (2)–3.912 (2) Å and interplanar distances of 3.5040 (17) and 3.6235 (17) Å [Cg1···Cg2vi = 3.906 (2); (vi) 1 + x, y, z and Cg1···Cg3vii = 3.912 (2) Å; (vii) -1 + x, y, z: Cg1, Cg2 and Cg3 are the centroids of the N1/C1/C6/N2/C7, C1–C6, and C8–C13 benzene rings] (Fig. 2).

Related literature top

For hydrogen-bond motifs, see: Bernstein et al. (1995). For benzimidazole chemistry, reaction mechanisms and their bioactivity, see, for example: Latif et al. (1983); Craigo et al. (1999); Gudmundsson et al. (2000); Trivedi et al. (2006); Kim et al. (1996); Ramla et al. (2006). For the stability of the temperature controller, see: Cosier & Glazer (1986).

Experimental top

An ethanolic solution (50 ml) of 4-cyanobenzaldehyde (2 mmol, 263 mg) was added to 1,2-phenylenediamine (1 mmol, 217 mg). The mixture was refluxed for 2 h, and cooled to room temperature. The resulting colourless powder was filtered, washed with cooled ethanol and dried in vacuo. Single crystals suitable for X-ray diffraction were obtained from an ethanol solution at room temperature.

Refinement top

All hydrogen atoms were positioned gemetrically and refined in a riding model approximation with C—H = 0.93–0.97 Å and Uiso (H) = 1.2 Ueq (C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels and 50% probability ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed down the a-axis showing infinite stacks of molecules along the a-axis and also linking of molecules through C—H···N interactions along the c-axis. Intermolecular hydrogen bonds are shown as dashed lines.
4-[1-(4-Cyanobenzyl)-1H-benzimidazol-2-yl]benzonitrile top
Crystal data top
C22H14N4F(000) = 696
Mr = 334.37Dx = 1.302 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3931 reflections
a = 5.0553 (4) Åθ = 2.4–30.2°
b = 17.3437 (10) ŵ = 0.08 mm1
c = 19.6339 (14) ÅT = 100 K
β = 97.653 (5)°Needle, colourless
V = 1706.1 (2) Å30.45 × 0.09 × 0.04 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2906 independent reflections
Radiation source: fine-focus sealed tube1490 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.153
ϕ and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 66
Tmin = 0.965, Tmax = 0.997k = 2020
15641 measured reflectionsl = 2322
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.079H-atom parameters constrained
wR(F2) = 0.169 w = 1/[σ2(Fo2) + (0.0473P)2 + 1.9898P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2906 reflectionsΔρmax = 0.26 e Å3
236 parametersΔρmin = 0.35 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0124 (18)
Crystal data top
C22H14N4V = 1706.1 (2) Å3
Mr = 334.37Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.0553 (4) ŵ = 0.08 mm1
b = 17.3437 (10) ÅT = 100 K
c = 19.6339 (14) Å0.45 × 0.09 × 0.04 mm
β = 97.653 (5)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2906 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1490 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.997Rint = 0.153
15641 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0790 restraints
wR(F2) = 0.169H-atom parameters constrained
S = 1.07Δρmax = 0.26 e Å3
2906 reflectionsΔρmin = 0.35 e Å3
236 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.7041 (7)0.41520 (18)0.10705 (18)0.0222 (9)
N20.8001 (6)0.29462 (17)0.14467 (17)0.0196 (9)
N31.5730 (8)0.3343 (2)0.1704 (2)0.0366 (11)
N40.1768 (8)0.0990 (2)0.05749 (19)0.0328 (10)
C10.5702 (8)0.3997 (2)0.1633 (2)0.0205 (10)
C20.3933 (8)0.4456 (2)0.1943 (2)0.0250 (11)
H2A0.35100.49530.17870.030*
C30.2841 (8)0.4148 (2)0.2487 (2)0.0271 (11)
H3A0.16390.44410.26970.033*
C40.3485 (8)0.3408 (2)0.2733 (2)0.0272 (11)
H4A0.27190.32230.31050.033*
C50.5240 (8)0.2944 (2)0.2434 (2)0.0240 (11)
H5A0.56810.24510.25970.029*
C60.6310 (8)0.3255 (2)0.1876 (2)0.0197 (10)
C70.8349 (8)0.3516 (2)0.0971 (2)0.0196 (10)
C80.9937 (8)0.3425 (2)0.0400 (2)0.0183 (10)
C91.0085 (8)0.2747 (2)0.0032 (2)0.0206 (11)
H9A0.91930.23100.01530.025*
C101.1554 (8)0.2718 (2)0.0515 (2)0.0248 (11)
H10A1.16560.22620.07580.030*
C111.2870 (8)0.3372 (2)0.0697 (2)0.0207 (11)
C121.2703 (8)0.4059 (2)0.0344 (2)0.0228 (11)
H12A1.35610.44990.04730.027*
C131.1248 (8)0.4079 (2)0.0200 (2)0.0229 (11)
H13A1.11350.45380.04390.027*
C140.9363 (8)0.2212 (2)0.1570 (2)0.0221 (11)
H14A0.99870.21670.20570.026*
H14B1.09180.22090.13290.026*
C150.7667 (8)0.1513 (2)0.1346 (2)0.0193 (10)
C160.8439 (8)0.0795 (2)0.1615 (2)0.0232 (11)
H16A0.99620.07510.19350.028*
C170.6958 (8)0.0145 (2)0.1410 (2)0.0256 (11)
H17A0.74920.03360.15890.031*
C180.4669 (8)0.0212 (2)0.0936 (2)0.0217 (11)
C190.3883 (8)0.0931 (2)0.0667 (2)0.0228 (11)
H19A0.23490.09780.03510.027*
C200.5388 (8)0.1572 (2)0.0871 (2)0.0208 (10)
H20A0.48690.20520.06870.025*
C211.4437 (9)0.3350 (2)0.1261 (3)0.0281 (12)
C220.3071 (9)0.0458 (2)0.0734 (2)0.0256 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.028 (2)0.016 (2)0.023 (2)0.0017 (16)0.0025 (19)0.0006 (16)
N20.026 (2)0.0127 (19)0.019 (2)0.0003 (15)0.0024 (18)0.0026 (16)
N30.043 (3)0.031 (2)0.036 (3)0.0030 (19)0.006 (2)0.001 (2)
N40.045 (3)0.027 (2)0.027 (2)0.006 (2)0.006 (2)0.0006 (18)
C10.026 (2)0.016 (3)0.019 (3)0.0022 (19)0.003 (2)0.003 (2)
C20.029 (3)0.015 (2)0.030 (3)0.003 (2)0.000 (2)0.006 (2)
C30.025 (2)0.031 (3)0.027 (3)0.004 (2)0.007 (2)0.006 (2)
C40.032 (3)0.026 (3)0.026 (3)0.008 (2)0.008 (2)0.006 (2)
C50.028 (3)0.019 (2)0.024 (3)0.003 (2)0.002 (2)0.003 (2)
C60.024 (2)0.016 (2)0.018 (3)0.0035 (19)0.001 (2)0.005 (2)
C70.021 (2)0.017 (2)0.019 (3)0.0054 (19)0.005 (2)0.000 (2)
C80.021 (2)0.015 (2)0.019 (3)0.0019 (18)0.001 (2)0.003 (2)
C90.023 (2)0.016 (3)0.023 (3)0.0008 (18)0.003 (2)0.004 (2)
C100.032 (3)0.022 (3)0.019 (3)0.002 (2)0.001 (2)0.001 (2)
C110.022 (2)0.021 (3)0.020 (3)0.0000 (19)0.004 (2)0.005 (2)
C120.031 (3)0.017 (3)0.021 (3)0.0037 (19)0.004 (2)0.002 (2)
C130.031 (3)0.015 (2)0.022 (3)0.002 (2)0.002 (2)0.002 (2)
C140.023 (2)0.021 (2)0.023 (3)0.0009 (19)0.003 (2)0.0011 (19)
C150.023 (3)0.016 (2)0.019 (3)0.0013 (18)0.005 (2)0.0030 (19)
C160.026 (2)0.020 (2)0.024 (3)0.001 (2)0.004 (2)0.001 (2)
C170.026 (3)0.019 (2)0.032 (3)0.003 (2)0.004 (3)0.001 (2)
C180.026 (3)0.017 (2)0.024 (3)0.0035 (19)0.010 (2)0.004 (2)
C190.021 (2)0.024 (3)0.022 (3)0.000 (2)0.001 (2)0.001 (2)
C200.027 (3)0.015 (2)0.021 (3)0.0006 (19)0.004 (2)0.0002 (19)
C210.035 (3)0.019 (3)0.030 (3)0.003 (2)0.003 (3)0.000 (2)
C220.033 (3)0.023 (3)0.022 (3)0.001 (2)0.007 (2)0.002 (2)
Geometric parameters (Å, º) top
N1—C71.314 (5)C10—C111.385 (5)
N1—C11.397 (5)C10—H10A0.9300
N2—C61.385 (5)C11—C121.387 (5)
N2—C71.387 (5)C11—C211.446 (6)
N2—C141.453 (5)C12—C131.376 (5)
N3—C211.155 (5)C12—H12A0.9300
N4—C221.152 (5)C13—H13A0.9300
C1—C61.391 (5)C14—C151.515 (5)
C1—C21.397 (5)C14—H14A0.9700
C2—C31.375 (6)C14—H14B0.9700
C2—H2A0.9300C15—C201.386 (5)
C3—C41.393 (6)C15—C161.388 (5)
C3—H3A0.9300C16—C171.384 (5)
C4—C51.385 (6)C16—H16A0.9300
C4—H4A0.9300C17—C181.390 (5)
C5—C61.394 (6)C17—H17A0.9300
C5—H5A0.9300C18—C191.391 (5)
C7—C81.472 (6)C18—C221.440 (6)
C8—C91.387 (5)C19—C201.377 (5)
C8—C131.397 (5)C19—H19A0.9300
C9—C101.385 (5)C20—H20A0.9300
C9—H9A0.9300
C7—N1—C1105.2 (3)C10—C11—C21120.6 (4)
C6—N2—C7106.1 (3)C12—C11—C21118.8 (4)
C6—N2—C14123.7 (3)C13—C12—C11119.0 (4)
C7—N2—C14129.6 (3)C13—C12—H12A120.5
C6—C1—C2120.2 (4)C11—C12—H12A120.5
C6—C1—N1109.9 (4)C12—C13—C8121.3 (4)
C2—C1—N1129.8 (4)C12—C13—H13A119.3
C3—C2—C1117.6 (4)C8—C13—H13A119.3
C3—C2—H2A121.2N2—C14—C15114.6 (3)
C1—C2—H2A121.2N2—C14—H14A108.6
C2—C3—C4121.8 (4)C15—C14—H14A108.6
C2—C3—H3A119.1N2—C14—H14B108.6
C4—C3—H3A119.1C15—C14—H14B108.6
C5—C4—C3121.5 (4)H14A—C14—H14B107.6
C5—C4—H4A119.3C20—C15—C16119.3 (4)
C3—C4—H4A119.3C20—C15—C14121.6 (3)
C4—C5—C6116.4 (4)C16—C15—C14119.2 (4)
C4—C5—H5A121.8C17—C16—C15120.4 (4)
C6—C5—H5A121.8C17—C16—H16A119.8
N2—C6—C1106.0 (4)C15—C16—H16A119.8
N2—C6—C5131.6 (4)C16—C17—C18119.7 (4)
C1—C6—C5122.4 (4)C16—C17—H17A120.1
N1—C7—N2112.7 (4)C18—C17—H17A120.1
N1—C7—C8122.6 (4)C17—C18—C19120.0 (4)
N2—C7—C8124.6 (4)C17—C18—C22120.2 (4)
C9—C8—C13118.8 (4)C19—C18—C22119.8 (4)
C9—C8—C7124.0 (4)C20—C19—C18119.6 (4)
C13—C8—C7117.1 (4)C20—C19—H19A120.2
C10—C9—C8120.4 (4)C18—C19—H19A120.2
C10—C9—H9A119.8C19—C20—C15120.9 (4)
C8—C9—H9A119.8C19—C20—H20A119.6
C9—C10—C11119.8 (4)C15—C20—H20A119.6
C9—C10—H10A120.1N3—C21—C11178.5 (5)
C11—C10—H10A120.1N4—C22—C18179.2 (5)
C10—C11—C12120.7 (4)
C7—N1—C1—C61.5 (4)N2—C7—C8—C13147.4 (4)
C7—N1—C1—C2177.1 (4)C13—C8—C9—C101.3 (6)
C6—C1—C2—C30.1 (6)C7—C8—C9—C10177.7 (4)
N1—C1—C2—C3178.4 (4)C8—C9—C10—C110.3 (6)
C1—C2—C3—C40.9 (6)C9—C10—C11—C120.9 (6)
C2—C3—C4—C50.7 (6)C9—C10—C11—C21179.3 (4)
C3—C4—C5—C60.3 (6)C10—C11—C12—C131.2 (6)
C7—N2—C6—C10.4 (4)C21—C11—C12—C13179.0 (4)
C14—N2—C6—C1172.4 (3)C11—C12—C13—C80.2 (6)
C7—N2—C6—C5178.7 (4)C9—C8—C13—C121.0 (6)
C14—N2—C6—C59.3 (6)C7—C8—C13—C12177.7 (4)
C2—C1—C6—N2177.5 (3)C6—N2—C14—C1581.2 (5)
N1—C1—C6—N21.2 (4)C7—N2—C14—C15108.9 (4)
C2—C1—C6—C51.0 (6)N2—C14—C15—C2020.2 (5)
N1—C1—C6—C5179.7 (4)N2—C14—C15—C16160.9 (4)
C4—C5—C6—N2177.0 (4)C20—C15—C16—C170.2 (6)
C4—C5—C6—C11.1 (6)C14—C15—C16—C17178.7 (4)
C1—N1—C7—N21.3 (4)C15—C16—C17—C180.6 (6)
C1—N1—C7—C8177.1 (3)C16—C17—C18—C190.4 (6)
C6—N2—C7—N10.5 (4)C16—C17—C18—C22178.2 (4)
C14—N2—C7—N1170.8 (4)C17—C18—C19—C200.2 (6)
C6—N2—C7—C8177.8 (4)C22—C18—C19—C20178.7 (4)
C14—N2—C7—C810.9 (6)C18—C19—C20—C150.6 (6)
N1—C7—C8—C9142.1 (4)C16—C15—C20—C190.3 (6)
N2—C7—C8—C936.1 (6)C14—C15—C20—C19179.3 (4)
N1—C7—C8—C1334.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···N1i0.932.623.425 (5)146
C19—H19A···N4ii0.932.573.502 (6)175
C9—H9A···N4iii0.932.713.361 (5)128
C14—H14A···N3iv0.972.573.502 (5)162
Symmetry codes: (i) x+2, y+1, z; (ii) x, y, z; (iii) x+1, y, z; (iv) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC22H14N4
Mr334.37
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)5.0553 (4), 17.3437 (10), 19.6339 (14)
β (°) 97.653 (5)
V3)1706.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.45 × 0.09 × 0.04
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.965, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
15641, 2906, 1490
Rint0.153
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.079, 0.169, 1.07
No. of reflections2906
No. of parameters236
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.35

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···N1i0.93002.62003.425 (5)146.00
C19—H19A···N4ii0.93002.57003.502 (6)175.00
C9—H9A···N4iii0.93002.71003.361 (5)128.00
C14—H14A···N3iv0.97002.57003.502 (5)162.00
Symmetry codes: (i) x+2, y+1, z; (ii) x, y, z; (iii) x+1, y, z; (iv) x1/2, y+1/2, z+1/2.
 

Acknowledgements

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship. HK thanks PNU for financial support. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCraigo, W. A., LeSueur, B. W. & Skibo, E. B. (1999). J. Med. Chem. 42, 3324–3333.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGudmundsson, K. S., Tidwell, J., Lippa, N., Koszalka, G. W., van Draanen, N., Ptak, R. G., Drach, J. C. & Townsend, L. B. (2000). J. Med. Chem. 43, 2464–2472.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKim, J. S., Gatto, B., Yu, C., Liu, A., Liu, L. F. & LaVoie, E. J. (1996). J. Med. Chem. 39, 992–998.  CrossRef CAS PubMed Web of Science Google Scholar
First citationLatif, N., Mishriky, N. & F. M. Assad (1983). Recl Trav. Chim. Pays-Bas, 102, 73–77.  Google Scholar
First citationRamla, M. M., Omer, M. A., El-Khamry, A. M. & El-Diwani, H. I. (2006). Bioorg. Med. Chem. 14, 7324–7332.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrivedi, R., De, S. K. & Gibbs, R. A. (2006). J. Mol. Catal. A Chem. 245, 8–11.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o660-o661
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds